This paper investigates vibration control of beam through electro-magnetic constrained layer damping (EMCLD) which consists of electromagnet layer, permanent magnet layer and viscoelastic damping layer. When the coi...This paper investigates vibration control of beam through electro-magnetic constrained layer damping (EMCLD) which consists of electromagnet layer, permanent magnet layer and viscoelastic damping layer. When the coil of the electromagnet is electrified with proper control strategy, the electromagnet can exert magnetic force opposite to the direction of structural deformation so that the structural vibration is attenuated. A mathematical model is developed based on the equivalent current method to calculate the electromagnetic control force produced by EMCLD. The governing equations of the system are obtained using Hamilton's Principle and then reduced with the assumed-mode method. A simulation on vibration control of a cantilever beam is conducted under the velocity proportional feedback to demonstrate the energy dissipation capability of EMCLD, and the beam system with the same parameter is experimented. The results of experiment and simulation are compared and the results show that the EMCLD is an effective means for suppressing modal vibration. The results also indicate that the beam system has better control performance for larger control current. The EMCLD method presented in this paper provides an applicable and efficient tool for the vibration control of structures.展开更多
This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In ...This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In this regard finite element formulation has been derived.The plate kinematics adjudged via higher order shear deformation theory(HSDT)is considered for evaluation.The equations of motion are obtained with the help of Hamilton’s principle and solved using condensation technique.It is found that the convergence and accuracy of the present FE formulation is very good to address the vibration problem of FG-CNTMEE plate.For the first time,frequency response analysis of FG-CNTMEE plates considering the effect of various circuit conditions associated with parameters such as CNT distributions,volume fraction,skew angle,aspect ratio,length-to-thickness ratio and coupling fields has been carried out.The results of this article can serve as benchmark for future development and analysis of smart structures.展开更多
Objective To investigate the effects of extremely low frequency magnetic and electric fields (ELFEMFs) emitted from 380 kV transmission lines on some leukocyte differentiation antigens in dairy cows. Methods The stu...Objective To investigate the effects of extremely low frequency magnetic and electric fields (ELFEMFs) emitted from 380 kV transmission lines on some leukocyte differentiation antigens in dairy cows. Methods The study was carded out in 5 cows exposed to 1.98-3.28 μT of ELFEMFs and in 5 control cows exposed to 0.2-0.7 μT of ELFEMFs. Following haematological and immunologic parameters were measured in both groups: WBC, CD45R, CD6, CD4, CD8, CD21, and CD11B leukocyte antigen expression. Results Some of the haematological and immunologic parameters under investigation were similar in both groups. However, CD8 (T lymphocyte surface antigen) was higher in the exposed group (1.35 ±0.120 vs 0.50 ±0.14×10^3/mL). Furthermore, the CD4/CD8 ratio (0.84 ±0.05 and 2.19±0.16 for exposed and not exposed cows respectively) and circadian rhythm were different between the two groups. Conclusion Exposure to ELFEMFs is responsible of the abnormal temporal variations and distribution of some haematological and immunological parameters in dairy cows.展开更多
This paper analyzes the eddy currents and the electro-magnetic forces on the lower hybrid wave (LHW) launching antenna on the superconducting Tohamak HT-7 by using a finite element circult method. A new iterative algo...This paper analyzes the eddy currents and the electro-magnetic forces on the lower hybrid wave (LHW) launching antenna on the superconducting Tohamak HT-7 by using a finite element circult method. A new iterative algorithm is developed to analyze the coupled magnetic fields Which are very difficult to be calculated. The method and results obtained are helpful to study the eddy currents and electro-magnetic forces on metal plates which are placed in a rather complicated electro-magnetic environment.展开更多
Employing even higher voltage level to promote power transmission economy is an important subject in the program of power transmission from west to east. The influence of electro-magnetic environment of transmission p...Employing even higher voltage level to promote power transmission economy is an important subject in the program of power transmission from west to east. The influence of electro-magnetic environment of transmission project being closely related with human health and construction cost has to be seriously considered before advancing transmission voltage. This paper analyzes and discusses overseas and domestic research achievements on radio interference, audible noise, power frequency electric field, power frequency magnetic fields, DC resultant field intensity and ion stream involved in power transmission at ultra-high-voltage (UHV)AC and ± 800 kV DC or even higher voltage levels. Suggestions on limiting electro-magnetic effects and their ceiling value as well as measures to improve electro-magnetic environment are put forward.展开更多
The CsI(T1) crystal modules of the Beijing Spectrometer Ⅲ (BESⅢ) electro-magnetic calorimeter (EMC) were designed and assembled through Monte Carlo simulation and experiments. After the assembly was finished, ...The CsI(T1) crystal modules of the Beijing Spectrometer Ⅲ (BESⅢ) electro-magnetic calorimeter (EMC) were designed and assembled through Monte Carlo simulation and experiments. After the assembly was finished, the performance of each crystal module was tested by cosmic rays. All crystal modules were found to work well before the installation of EMC.展开更多
The advent of CUDA-enabled GPU makes it possible to provide cloud applications with high-performance data security services.Unfortunately,recent studies have shown that GPU-based applications are also susceptible to s...The advent of CUDA-enabled GPU makes it possible to provide cloud applications with high-performance data security services.Unfortunately,recent studies have shown that GPU-based applications are also susceptible to side-channel attacks.These published work studied the side-channel vulnerabilities of GPU-based AES implementations by taking the advantage of the cache sharing among multiple threads or high parallelism of GPUs.Therefore,for GPU-based bitsliced cryptographic implementations,which are immune to the cache-based attacks referred to above,only a power analysis method based on the high-parallelism of GPUs may be effective.However,the leakage model used in the power analysis is not efficient at all in practice.In light of this,we investigate electro-magnetic(EM)side-channel vulnerabilities of a GPU-based bitsliced AES implementation from the perspective of bit-level parallelism and thread-level parallelism in order to make the best of the localization effect of EM leakage with parallelism.Specifically,we propose efficient multi-bit and multi-thread combinational analysis techniques based on the intrinsic properties of bitsliced ciphers and the effect of multi-thread parallelism of GPUs,respectively.The experimental result shows that the proposed combinational analysis methods perform better than non-combinational and intuitive ones.Our research suggests that multi-thread leakages can be used to improve attacks if the multi-thread leakages are not synchronous in the time domain.展开更多
The advent of CUDA-enabled GPU makes it possible to provide cloud applications with high-performance data security services.Unfortunately,recent studies have shown that GPU-based applications are also susceptible to s...The advent of CUDA-enabled GPU makes it possible to provide cloud applications with high-performance data security services.Unfortunately,recent studies have shown that GPU-based applications are also susceptible to side-channel attacks.These published work studied the side-channel vulnerabilities of GPU-based AES implementations by taking the advantage of the cache sharing among multiple threads or high parallelism of GPUs.Therefore,for GPU-based bitsliced cryptographic implementations,which are immune to the cache-based attacks referred to above,only a power analysis method based on the high-parallelism of GPUs may be effective.However,the leakage model used in the power analysis is not efficient at all in practice.In light of this,we investigate electro-magnetic(EM)side-channel vulnerabilities of a GPU-based bitsliced AES implementation from the perspective of bit-level parallelism and thread-level parallelism in order to make the best of the localization effect of EM leakage with parallelism.Specifically,we propose efficient multi-bit and multi-thread combinational analysis techniques based on the intrinsic properties of bitsliced ciphers and the effect of multi-thread parallelism of GPUs,respectively.The experimental result shows that the proposed combinational analysis methods perform better than non-combinational and intuitive ones.Our research suggests that multi-thread leakages can be used to improve attacks if the multi-thread leakages are not synchronous in the time domain.展开更多
The concept of the memristor was proposed by Leon Chua in 1971, along with some electro-magnetic interpretations according to quasi-static expansion of Maxwell's equations. In 2003, Chua included the memristor into a...The concept of the memristor was proposed by Leon Chua in 1971, along with some electro-magnetic interpretations according to quasi-static expansion of Maxwell's equations. In 2003, Chua included the memristor into a four-element torus that has infinite circuit elements. This paper uses the quasi-static method to interpret every circuit element in the torus. Two examples are also provided to show how topologic structure of an element affects its electrical properties by affecting the dominant electro-magnetic field components. Additionally, it is proved that the circuit elements in the torus, except the resistive, capacitive and inductive elements, cannot exist independently. Moreover, the incorrectness in Chua's interpretation of the memristor, that the memristor cannot be interpreted with the transient quasi-static method due to its memory property, is pointed out. Finally, the limitations of the electro-magnetic interpretation method are discussed.展开更多
With advantages of strong drive capability,nested-loop secondary linear machine(NLS-LM)has great potentiality in linear metro.For its secondary structure with multiple loops,it is difficult to calculate the electromag...With advantages of strong drive capability,nested-loop secondary linear machine(NLS-LM)has great potentiality in linear metro.For its secondary structure with multiple loops,it is difficult to calculate the electromagnetic thrust of NLS-LM reasonably.Hence,in this paper,one thrust calculation method is proposed considering variable loop inductance and transient loop current.Firstly,to establish the secondary winding function,the modeling domain is confined to a limited range,and the equivalent loop span is employed by analyzing the coupling relationship between primary and secondary.Then,in order to obtain the secondary flux density,the transient secondary current is solved based on the loop impedance and induced voltage.Finally,the electromagnetic thrust can be calculated reasonably by the given primary current sheet and the calculated secondary flux density.Comprehensive simulations and experiments have demonstrated the effectiveness of the proposed method.展开更多
Composite electromagnetic scattering from a two-dimensional (2D) ship-like target on a one-dimensional sea surface is investigated by using the finite-difference time-domain (FDTD) method. A uniaxial perfectly mat...Composite electromagnetic scattering from a two-dimensional (2D) ship-like target on a one-dimensional sea surface is investigated by using the finite-difference time-domain (FDTD) method. A uniaxial perfectly matched layer is adopted for truncation of FDTD lattices.The FDTD updated equations can be used for the total computation domain by choosing the uniaxial parameters properly. To validate the proposed numerical technique,a 2D infinitely long cylinder over the sea surface is taken into account first.The variation of angular distribution of the scattering changing with incident angle is calculated. The results show good agreement with the conventional moment method. Finally,the influence of the incident angle,the polarization,and the size of the ship-like target on the composite scattering coefficient is discussed in detail.展开更多
This paper proposed the reclosing method in distribution system with battery energy storage system(BESS)using wavelet transform(WT).The proposed method performs the WT of load current and then calculates the absolute ...This paper proposed the reclosing method in distribution system with battery energy storage system(BESS)using wavelet transform(WT).The proposed method performs the WT of load current and then calculates the absolute value of slope of detail coefficient.The mother wavelet used is db4of level6.The fault clearing is detected using the rapid increase of this value.After the detection of fault clearing,the reclosing is performed.To verify the proposed method,various simulations according to the fault clearing times,fault resistances,and fault lengths are performed using EMTP.The simulation results show that fault clearing can be detected using proposed absolute value of slope of detail coefficient and hence the reclosing can be performed successfully.展开更多
Theoretical analysis is made on the temperature field at the time of pulse current discharge in a metal structure with an elliptical embedding crack. In finding the temperature field, analogy between the current flow ...Theoretical analysis is made on the temperature field at the time of pulse current discharge in a metal structure with an elliptical embedding crack. In finding the temperature field, analogy between the current flow through an elliptical embedding crack and the fluid flow through a barrier is made based on the similarity principle. Boundary conditions derived from this theory are introduced so that the distribution of current density and the temperature field expressions can be obtained. The study provides a theoretic basis to the applications of stopping spatial crack with electromagnetic heating.展开更多
Mass imbalance-induced vibration affects the rotating machinery very large,especially the highspeed types.Off-line balancing techniques have been widely developed for rejecting unbalance-induced vibration but do not e...Mass imbalance-induced vibration affects the rotating machinery very large,especially the highspeed types.Off-line balancing techniques have been widely developed for rejecting unbalance-induced vibration but do not eliminate unbalanced vibration in the working state.Moreover,multiple start-stops are required in off-line balancing techniques.Therefore,research on an efficient electromagnetically-driven auto-balancer is carried out in the present work,and an internal excitation actuator is designed in this balancer.The electromagnetic characteristics of the two copper coil bobbins in the internal excitation actuator are compared and analyzed.The permanent magnets inside the actuator are simulated and analyzed with different sections of round,rectangular,and elliptical.And the results show that the elliptic type has the largest self-locking force.Finally,the dynamic balance test is performed on a test bench equipped with a designed electromagnetic balancing actuator,and the unbalance vibration is reduced from 130.23 μm to 5.98 μm.展开更多
The electro-magnetic (EM) and acoustic emission (AE) in the fracture process of both dry and wet rock samples including gabbro, granite, sandstone and marble are studied in the experiment in the laboratory under uniax...The electro-magnetic (EM) and acoustic emission (AE) in the fracture process of both dry and wet rock samples including gabbro, granite, sandstone and marble are studied in the experiment in the laboratory under uniaxial pressure. Signals during the test are detected in ultralow frequency band. The experimental results may be outlined as follows: original waveforms of the electro-magnetic radiation (EMR) and AE in the range of 0-20 kHz frequencies are obtained; the EMR's intensity in fracture process is related to some factors as rock type, content of water, fracture intensity of rocks, loading rates and fracture state etc.; the EMR'S rate is proportional to that of AE during fracture statistically. About 70% of maximum values of EMR rate and AE rate are corresponded with each other; furthermore, the EM signals (EMS) are generally more developed and longer duration than AE signals; the principal energy of EMS detected by copper coin antenna as sensor in power spectra are distributed in frequencies lower than 6 kHz and otherwise those detected by EMinduction coil are at about 10 kHz, and in contrast the major energies of AE are in frequencies less than3 kHz; another notable phenomenon is that distinct electro-magnetic signals are detected before AE occurrence. Since EMR and AE signals obtained in the process of rock fracture are better corresponded to eachother, therefore it'S reasonable to propose that the EMR anormalies observed prior to some earthquakes aremainly produced by fractures of rock in source region, as for the EMS occurred before AE may be related topiezoelectric and piezomagnetic effects.展开更多
The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhanc...The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force increases the lift.展开更多
The design and manufacture of the main drift chamber(MDC) and the electro-magnetic calorimeter are most important issues in Beijing electron-positron collider upgraded projects. The whole mass of electro-magnetic ca...The design and manufacture of the main drift chamber(MDC) and the electro-magnetic calorimeter are most important issues in Beijing electron-positron collider upgraded projects. The whole mass of electro-magnetic calorimeter (EMC) in BESIII is 40 t, thus high stiffness, strength and dynamical properties are required for the design of entire structural of electro-magnetic calorimeter. Based on numerical technique, the strength and the dynamical properties of EMC are analyzed, which provide theoretical reference for the design of entire structural of EMC. The MDC is composed of the elements with 28 680 pre-stressed high-sensitive wires and during the assembly the wires are stringed layer by layer. The stretching forces of the wires vary continuously and couple with each other in the whole process. The modeling technique with high precision (especially "element birth and death") is carefully used to study the stress state during the process of assembly. So the variations of the stretching force of the wire are investigated, and several design schemes are evaluated and optimized. The research results have been adopted in the Beijing electron-positron collider's new project directly.展开更多
The axis symmetric analysis method can neither handle initial curved plates nor be used in the optimization of coil shapes because an axis symmetric coil is the only shape to analyze in this method. But the method usi...The axis symmetric analysis method can neither handle initial curved plates nor be used in the optimization of coil shapes because an axis symmetric coil is the only shape to analyze in this method. But the method using some discrete divisions and steps, can overcome these difficulties and show more accurate, reasonable results of temperatures and deflections in flat or curved plates with initial curvature, than those in the axis symmetric analysis method. Traditionally, the coil shape in induction heating is circular shape and it needs the moving process along heating lines. To overcome these, the “long type coil” with some linear parallel coils is proposed. It does not need the moving process along heating lines and reduces the heating process time. The results of experiments are compared with those of simulation.展开更多
基金National Natural Science Foundation of China (50275114)
文摘This paper investigates vibration control of beam through electro-magnetic constrained layer damping (EMCLD) which consists of electromagnet layer, permanent magnet layer and viscoelastic damping layer. When the coil of the electromagnet is electrified with proper control strategy, the electromagnet can exert magnetic force opposite to the direction of structural deformation so that the structural vibration is attenuated. A mathematical model is developed based on the equivalent current method to calculate the electromagnetic control force produced by EMCLD. The governing equations of the system are obtained using Hamilton's Principle and then reduced with the assumed-mode method. A simulation on vibration control of a cantilever beam is conducted under the velocity proportional feedback to demonstrate the energy dissipation capability of EMCLD, and the beam system with the same parameter is experimented. The results of experiment and simulation are compared and the results show that the EMCLD is an effective means for suppressing modal vibration. The results also indicate that the beam system has better control performance for larger control current. The EMCLD method presented in this paper provides an applicable and efficient tool for the vibration control of structures.
文摘This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In this regard finite element formulation has been derived.The plate kinematics adjudged via higher order shear deformation theory(HSDT)is considered for evaluation.The equations of motion are obtained with the help of Hamilton’s principle and solved using condensation technique.It is found that the convergence and accuracy of the present FE formulation is very good to address the vibration problem of FG-CNTMEE plate.For the first time,frequency response analysis of FG-CNTMEE plates considering the effect of various circuit conditions associated with parameters such as CNT distributions,volume fraction,skew angle,aspect ratio,length-to-thickness ratio and coupling fields has been carried out.The results of this article can serve as benchmark for future development and analysis of smart structures.
文摘Objective To investigate the effects of extremely low frequency magnetic and electric fields (ELFEMFs) emitted from 380 kV transmission lines on some leukocyte differentiation antigens in dairy cows. Methods The study was carded out in 5 cows exposed to 1.98-3.28 μT of ELFEMFs and in 5 control cows exposed to 0.2-0.7 μT of ELFEMFs. Following haematological and immunologic parameters were measured in both groups: WBC, CD45R, CD6, CD4, CD8, CD21, and CD11B leukocyte antigen expression. Results Some of the haematological and immunologic parameters under investigation were similar in both groups. However, CD8 (T lymphocyte surface antigen) was higher in the exposed group (1.35 ±0.120 vs 0.50 ±0.14×10^3/mL). Furthermore, the CD4/CD8 ratio (0.84 ±0.05 and 2.19±0.16 for exposed and not exposed cows respectively) and circadian rhythm were different between the two groups. Conclusion Exposure to ELFEMFs is responsible of the abnormal temporal variations and distribution of some haematological and immunological parameters in dairy cows.
文摘This paper analyzes the eddy currents and the electro-magnetic forces on the lower hybrid wave (LHW) launching antenna on the superconducting Tohamak HT-7 by using a finite element circult method. A new iterative algorithm is developed to analyze the coupled magnetic fields Which are very difficult to be calculated. The method and results obtained are helpful to study the eddy currents and electro-magnetic forces on metal plates which are placed in a rather complicated electro-magnetic environment.
文摘Employing even higher voltage level to promote power transmission economy is an important subject in the program of power transmission from west to east. The influence of electro-magnetic environment of transmission project being closely related with human health and construction cost has to be seriously considered before advancing transmission voltage. This paper analyzes and discusses overseas and domestic research achievements on radio interference, audible noise, power frequency electric field, power frequency magnetic fields, DC resultant field intensity and ion stream involved in power transmission at ultra-high-voltage (UHV)AC and ± 800 kV DC or even higher voltage levels. Suggestions on limiting electro-magnetic effects and their ceiling value as well as measures to improve electro-magnetic environment are put forward.
文摘The CsI(T1) crystal modules of the Beijing Spectrometer Ⅲ (BESⅢ) electro-magnetic calorimeter (EMC) were designed and assembled through Monte Carlo simulation and experiments. After the assembly was finished, the performance of each crystal module was tested by cosmic rays. All crystal modules were found to work well before the installation of EMC.
基金This work was supported in part by National Natural Science Foundation of China(No.61632020,UI936209)Beijing National Science Foundation(No.4192067).
文摘The advent of CUDA-enabled GPU makes it possible to provide cloud applications with high-performance data security services.Unfortunately,recent studies have shown that GPU-based applications are also susceptible to side-channel attacks.These published work studied the side-channel vulnerabilities of GPU-based AES implementations by taking the advantage of the cache sharing among multiple threads or high parallelism of GPUs.Therefore,for GPU-based bitsliced cryptographic implementations,which are immune to the cache-based attacks referred to above,only a power analysis method based on the high-parallelism of GPUs may be effective.However,the leakage model used in the power analysis is not efficient at all in practice.In light of this,we investigate electro-magnetic(EM)side-channel vulnerabilities of a GPU-based bitsliced AES implementation from the perspective of bit-level parallelism and thread-level parallelism in order to make the best of the localization effect of EM leakage with parallelism.Specifically,we propose efficient multi-bit and multi-thread combinational analysis techniques based on the intrinsic properties of bitsliced ciphers and the effect of multi-thread parallelism of GPUs,respectively.The experimental result shows that the proposed combinational analysis methods perform better than non-combinational and intuitive ones.Our research suggests that multi-thread leakages can be used to improve attacks if the multi-thread leakages are not synchronous in the time domain.
基金supported in part by National Natural Science Foundation of China(No.61632020,UI936209)Beijing National Science Foundation(No.4192067).
文摘The advent of CUDA-enabled GPU makes it possible to provide cloud applications with high-performance data security services.Unfortunately,recent studies have shown that GPU-based applications are also susceptible to side-channel attacks.These published work studied the side-channel vulnerabilities of GPU-based AES implementations by taking the advantage of the cache sharing among multiple threads or high parallelism of GPUs.Therefore,for GPU-based bitsliced cryptographic implementations,which are immune to the cache-based attacks referred to above,only a power analysis method based on the high-parallelism of GPUs may be effective.However,the leakage model used in the power analysis is not efficient at all in practice.In light of this,we investigate electro-magnetic(EM)side-channel vulnerabilities of a GPU-based bitsliced AES implementation from the perspective of bit-level parallelism and thread-level parallelism in order to make the best of the localization effect of EM leakage with parallelism.Specifically,we propose efficient multi-bit and multi-thread combinational analysis techniques based on the intrinsic properties of bitsliced ciphers and the effect of multi-thread parallelism of GPUs,respectively.The experimental result shows that the proposed combinational analysis methods perform better than non-combinational and intuitive ones.Our research suggests that multi-thread leakages can be used to improve attacks if the multi-thread leakages are not synchronous in the time domain.
文摘The concept of the memristor was proposed by Leon Chua in 1971, along with some electro-magnetic interpretations according to quasi-static expansion of Maxwell's equations. In 2003, Chua included the memristor into a four-element torus that has infinite circuit elements. This paper uses the quasi-static method to interpret every circuit element in the torus. Two examples are also provided to show how topologic structure of an element affects its electrical properties by affecting the dominant electro-magnetic field components. Additionally, it is proved that the circuit elements in the torus, except the resistive, capacitive and inductive elements, cannot exist independently. Moreover, the incorrectness in Chua's interpretation of the memristor, that the memristor cannot be interpreted with the transient quasi-static method due to its memory property, is pointed out. Finally, the limitations of the electro-magnetic interpretation method are discussed.
基金supported in part by the National Natural Science Foundation of China under Grants 52277050the Shenzhen International Collaboration under Grant GJHZ20210705142539007。
文摘With advantages of strong drive capability,nested-loop secondary linear machine(NLS-LM)has great potentiality in linear metro.For its secondary structure with multiple loops,it is difficult to calculate the electromagnetic thrust of NLS-LM reasonably.Hence,in this paper,one thrust calculation method is proposed considering variable loop inductance and transient loop current.Firstly,to establish the secondary winding function,the modeling domain is confined to a limited range,and the equivalent loop span is employed by analyzing the coupling relationship between primary and secondary.Then,in order to obtain the secondary flux density,the transient secondary current is solved based on the loop impedance and induced voltage.Finally,the electromagnetic thrust can be calculated reasonably by the given primary current sheet and the calculated secondary flux density.Comprehensive simulations and experiments have demonstrated the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No 20070701010)
文摘Composite electromagnetic scattering from a two-dimensional (2D) ship-like target on a one-dimensional sea surface is investigated by using the finite-difference time-domain (FDTD) method. A uniaxial perfectly matched layer is adopted for truncation of FDTD lattices.The FDTD updated equations can be used for the total computation domain by choosing the uniaxial parameters properly. To validate the proposed numerical technique,a 2D infinitely long cylinder over the sea surface is taken into account first.The variation of angular distribution of the scattering changing with incident angle is calculated. The results show good agreement with the conventional moment method. Finally,the influence of the incident angle,the polarization,and the size of the ship-like target on the composite scattering coefficient is discussed in detail.
文摘This paper proposed the reclosing method in distribution system with battery energy storage system(BESS)using wavelet transform(WT).The proposed method performs the WT of load current and then calculates the absolute value of slope of detail coefficient.The mother wavelet used is db4of level6.The fault clearing is detected using the rapid increase of this value.After the detection of fault clearing,the reclosing is performed.To verify the proposed method,various simulations according to the fault clearing times,fault resistances,and fault lengths are performed using EMTP.The simulation results show that fault clearing can be detected using proposed absolute value of slope of detail coefficient and hence the reclosing can be performed successfully.
基金Project supported by the National Natural Science Foundation of China (No.50675190)
文摘Theoretical analysis is made on the temperature field at the time of pulse current discharge in a metal structure with an elliptical embedding crack. In finding the temperature field, analogy between the current flow through an elliptical embedding crack and the fluid flow through a barrier is made based on the similarity principle. Boundary conditions derived from this theory are introduced so that the distribution of current density and the temperature field expressions can be obtained. The study provides a theoretic basis to the applications of stopping spatial crack with electromagnetic heating.
基金Supported by the National Natural Suience Foundation of China(No.51775030,91860126).
文摘Mass imbalance-induced vibration affects the rotating machinery very large,especially the highspeed types.Off-line balancing techniques have been widely developed for rejecting unbalance-induced vibration but do not eliminate unbalanced vibration in the working state.Moreover,multiple start-stops are required in off-line balancing techniques.Therefore,research on an efficient electromagnetically-driven auto-balancer is carried out in the present work,and an internal excitation actuator is designed in this balancer.The electromagnetic characteristics of the two copper coil bobbins in the internal excitation actuator are compared and analyzed.The permanent magnets inside the actuator are simulated and analyzed with different sections of round,rectangular,and elliptical.And the results show that the elliptic type has the largest self-locking force.Finally,the dynamic balance test is performed on a test bench equipped with a designed electromagnetic balancing actuator,and the unbalance vibration is reduced from 130.23 μm to 5.98 μm.
文摘The electro-magnetic (EM) and acoustic emission (AE) in the fracture process of both dry and wet rock samples including gabbro, granite, sandstone and marble are studied in the experiment in the laboratory under uniaxial pressure. Signals during the test are detected in ultralow frequency band. The experimental results may be outlined as follows: original waveforms of the electro-magnetic radiation (EMR) and AE in the range of 0-20 kHz frequencies are obtained; the EMR's intensity in fracture process is related to some factors as rock type, content of water, fracture intensity of rocks, loading rates and fracture state etc.; the EMR'S rate is proportional to that of AE during fracture statistically. About 70% of maximum values of EMR rate and AE rate are corresponded with each other; furthermore, the EM signals (EMS) are generally more developed and longer duration than AE signals; the principal energy of EMS detected by copper coin antenna as sensor in power spectra are distributed in frequencies lower than 6 kHz and otherwise those detected by EMinduction coil are at about 10 kHz, and in contrast the major energies of AE are in frequencies less than3 kHz; another notable phenomenon is that distinct electro-magnetic signals are detected before AE occurrence. Since EMR and AE signals obtained in the process of rock fracture are better corresponded to eachother, therefore it'S reasonable to propose that the EMR anormalies observed prior to some earthquakes aremainly produced by fractures of rock in source region, as for the EMS occurred before AE may be related topiezoelectric and piezomagnetic effects.
基金Sponsored by the National Nature Science Foundation of China (11202102,11172140)
文摘The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force increases the lift.
基金Selected from Proceedings of the 7th International Conference on Frontiers of DesignManufacturing(ICFDM'2006)This projects is supported by National Natural Science Fund for Distinguished Young Scholars of China(No.59825117)National Natural Science Foundation of China(No.50175060).
文摘The design and manufacture of the main drift chamber(MDC) and the electro-magnetic calorimeter are most important issues in Beijing electron-positron collider upgraded projects. The whole mass of electro-magnetic calorimeter (EMC) in BESIII is 40 t, thus high stiffness, strength and dynamical properties are required for the design of entire structural of electro-magnetic calorimeter. Based on numerical technique, the strength and the dynamical properties of EMC are analyzed, which provide theoretical reference for the design of entire structural of EMC. The MDC is composed of the elements with 28 680 pre-stressed high-sensitive wires and during the assembly the wires are stringed layer by layer. The stretching forces of the wires vary continuously and couple with each other in the whole process. The modeling technique with high precision (especially "element birth and death") is carefully used to study the stress state during the process of assembly. So the variations of the stretching force of the wire are investigated, and several design schemes are evaluated and optimized. The research results have been adopted in the Beijing electron-positron collider's new project directly.
文摘The axis symmetric analysis method can neither handle initial curved plates nor be used in the optimization of coil shapes because an axis symmetric coil is the only shape to analyze in this method. But the method using some discrete divisions and steps, can overcome these difficulties and show more accurate, reasonable results of temperatures and deflections in flat or curved plates with initial curvature, than those in the axis symmetric analysis method. Traditionally, the coil shape in induction heating is circular shape and it needs the moving process along heating lines. To overcome these, the “long type coil” with some linear parallel coils is proposed. It does not need the moving process along heating lines and reduces the heating process time. The results of experiments are compared with those of simulation.