Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate v...Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%.展开更多
In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square success...In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square successive difference (RMSSD), are indicators that are less influenced by individual arbitrariness. The present study used EEG and RMSSD signals to assess the emotions aroused by emotion-stimulating images in order to investigate whether various emotions are associated with characteristic biometric signal fluctuations. The participants underwent EEG and RMSSD while viewing emotionally stimulating images and answering the questionnaires. The emotions aroused by emotionally stimulating images were assessed by measuring the EEG signals and RMSSD values to determine whether different emotions are associated with characteristic biometric signal variations. Real-time emotion analysis software was used to identify the evoked emotions by describing them in the Circumplex Model of Affect based on the EEG signals and RMSSD values. Emotions other than happiness did not follow the Circumplex Model of Affect in this study. However, ventral attentional activity may have increased the RMSSD value for disgust as the β/θ value increased in right-sided brain waves. Therefore, the right-sided brain wave results are necessary when measuring disgust. Happiness can be assessed easily using the Circumplex Model of Affect for positive scene analysis. Improving the current analysis methods may facilitate the investigation of face-to-face communication in the future using biometric signals.展开更多
The electrocardiogram(ECG)is one of the physiological signals applied in medical clinics to determine health status.The physiological complexity of the cardiac system is related to age,disease,etc.For the investigatio...The electrocardiogram(ECG)is one of the physiological signals applied in medical clinics to determine health status.The physiological complexity of the cardiac system is related to age,disease,etc.For the investigation of the effects of age and cardiovascular disease on the cardiac system,we then construct multivariate recurrence networks with multiple scale factors from multivariate time series.We propose a new concept of cross-clustering coefficient entropy to construct a weighted network,and calculate the average weighted path length and the graph energy of the weighted network to quantitatively probe the topological properties.The obtained results suggest that these two network measures show distinct changes between different subjects.This is because,with aging or cardiovascular disease,a reduction in the conductivity or structural changes in the myocardium of the heart contributes to a reduction in the complexity of the cardiac system.Consequently,the complexity of the cardiac system is reduced.After that,the support vector machine(SVM)classifier is adopted to evaluate the performance of the proposed approach.Accuracy of 94.1%and 95.58%between healthy and myocardial infarction is achieved on two datasets.Therefore,this method can be adopted for the development of a noninvasive and low-cost clinical prognostic system to identify heart-related diseases and detect hidden state changes in the cardiac system.展开更多
ions in the ECG signal.The cardiologist and medical specialistfind numerous difficulties in the process of traditional approaches.The specified restrictions are eliminated in the proposed classifier.The fundamental ai...ions in the ECG signal.The cardiologist and medical specialistfind numerous difficulties in the process of traditional approaches.The specified restrictions are eliminated in the proposed classifier.The fundamental aim of this work is tofind the R-R interval.To analyze the blockage,different approaches are implemented,which make the computation as facile with high accuracy.The information are recovered from the MIT-BIH dataset.The retrieved data contain normal and pathological ECG signals.To obtain a noiseless signal,Gaborfilter is employed and to compute the amplitude of the signal,DCT-DOST(Discrete cosine based Discrete orthogonal stock well transform)is implemented.The amplitude is computed to detect the cardiac abnormality.The R peak of the underlying ECG signal is noted and the segment length of the ECG cycle is identified.The Genetic algorithm(GA)retrieves the primary highlights and the classifier integrates the data with the chosen attributes to optimize the identification.In addition,the GA helps in performing hereditary calculations to reduce the problem of multi-target enhancement.Finally,the RBFNN(Radial basis function neural network)is applied,which diminishes the local minima present in the signal.It shows enhancement in characterizing the ordinary and anomalous ECG signals.展开更多
Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affec...Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affectsthe subsequent pathological analysis.Therefore,the effective removal of the noise from ECG signals has becomea top priority in cardiac diagnostic research.Aiming at the problem of incomplete signal shape retention andlow signal-to-noise ratio(SNR)after denoising,a novel ECG denoising network,named attention-based residualdense shrinkage network(ARDSN),is proposed in this paper.Firstly,the shallow ECG characteristics are extractedby a shallow feature extraction network(SFEN).Then,the residual dense shrinkage attention block(RDSAB)isused for adaptive noise suppression.Finally,feature fusion representation(FFR)is performed on the hierarchicalfeatures extracted by a series of RDSABs to reconstruct the de-noised ECG signal.Experiments on the MIT-BIHarrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resistthe interference of different sources of noise on the ECG signal.展开更多
目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singula...目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singular value decomposition,SVD)的胎儿心电信号提取算法。方法:首先,采用KPCA对母体心电信号进行降维,再利用改进的基于负熵的FastICA处理降维后的数据,得到独立成分。随后,引入样本熵进行信号通道选择,挑选出包含最多母体信息的信号通道。在选中的母体通道上进行SVD,得到母体心电信号的近似估计,再用腹壁源信号减去该信号得到胎儿心电的初步估计。最后,采用改进的基于负熵的FastICA成功分离出纯净的胎儿心电信号。在腹部和直接胎儿心电图数据库(Abdominal and Direct Fetal Electrocardiogram Database,ADFECGDB)和PhysioNet 2013挑战赛数据库中对提出的算法进行验证。结果:提出的算法在主观视觉效果和客观评价指标上都表现出优越的性能。在ADFECGDB数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.74%、98.85%和99.30%;在PhysioNet 2013挑战赛数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.10%、97.87%和98.48%。结论:融合KPCA、FastICA及SVD的胎儿心电信号提取算法在提取胎儿心电信号的同时有效处理了附加噪声,为胎儿疾病的早期诊断提供了有力支持。展开更多
This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar...This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data.展开更多
We report on electrodes fabricated with EDOT-Pyrrole copolymer through electrophoretic deposition and used for recording and sensing bio-electrical signals. We measured the electrical properties of the copolymer depos...We report on electrodes fabricated with EDOT-Pyrrole copolymer through electrophoretic deposition and used for recording and sensing bio-electrical signals. We measured the electrical properties of the copolymer deposited on a stainless-steel substrate, and we performed Cyclic Voltammetry (CV) and Scanning Electron Microscopy (SEM) studies to characterize the morphological properties and copolymer distribution on the metal surface. We found that electrodes fabricated with EDOT-Pyrrole copolymer exhibit a high signal-to-noise ratio as well as an accurate and stable conductivity compared with other commonly used electroconductive polymers. Stainless-steel-coated EDOT-Pyrrole electrodes are suitable to record electrocardiograms in humans with high resolution comparable to standard silver-electrodes.展开更多
心电信号的分割方法可以有效地反映运动员的心脏功能和身体机能状况.通过人工对心电信号的手动分割往往耗费大量的时间和精力.为了实现自动化的心电信号分割,本文提出了一种改进的两层双向长短期记忆网络(bi-directional long short-ter...心电信号的分割方法可以有效地反映运动员的心脏功能和身体机能状况.通过人工对心电信号的手动分割往往耗费大量的时间和精力.为了实现自动化的心电信号分割,本文提出了一种改进的两层双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)的心电图分割算法,可以前向和后向分析时间序列,以检测和定位重要波段,如P波、QRS波群和T波.实验使用公开QT数据集进行验证,以模拟运动员在赛前的心电数据.在与LSTM,BiLSTM以及两层BiLSTM的对比实验中,本方法的所有评价指标均有所提升.其准确率达95.68%,召回率为91.62%,精确度为91.05%,特异性为96.64%,F1分数为91.41%.结果表明该方法对心电信号进行分割具有较好的效果.展开更多
文摘Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%.
文摘In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square successive difference (RMSSD), are indicators that are less influenced by individual arbitrariness. The present study used EEG and RMSSD signals to assess the emotions aroused by emotion-stimulating images in order to investigate whether various emotions are associated with characteristic biometric signal fluctuations. The participants underwent EEG and RMSSD while viewing emotionally stimulating images and answering the questionnaires. The emotions aroused by emotionally stimulating images were assessed by measuring the EEG signals and RMSSD values to determine whether different emotions are associated with characteristic biometric signal variations. Real-time emotion analysis software was used to identify the evoked emotions by describing them in the Circumplex Model of Affect based on the EEG signals and RMSSD values. Emotions other than happiness did not follow the Circumplex Model of Affect in this study. However, ventral attentional activity may have increased the RMSSD value for disgust as the β/θ value increased in right-sided brain waves. Therefore, the right-sided brain wave results are necessary when measuring disgust. Happiness can be assessed easily using the Circumplex Model of Affect for positive scene analysis. Improving the current analysis methods may facilitate the investigation of face-to-face communication in the future using biometric signals.
基金Project supported by the Xuzhou Key Research and Development Program(Social Development)(Grant No.KC21304)the National Natural Science Foundation of China(Grant No.61876186)。
文摘The electrocardiogram(ECG)is one of the physiological signals applied in medical clinics to determine health status.The physiological complexity of the cardiac system is related to age,disease,etc.For the investigation of the effects of age and cardiovascular disease on the cardiac system,we then construct multivariate recurrence networks with multiple scale factors from multivariate time series.We propose a new concept of cross-clustering coefficient entropy to construct a weighted network,and calculate the average weighted path length and the graph energy of the weighted network to quantitatively probe the topological properties.The obtained results suggest that these two network measures show distinct changes between different subjects.This is because,with aging or cardiovascular disease,a reduction in the conductivity or structural changes in the myocardium of the heart contributes to a reduction in the complexity of the cardiac system.Consequently,the complexity of the cardiac system is reduced.After that,the support vector machine(SVM)classifier is adopted to evaluate the performance of the proposed approach.Accuracy of 94.1%and 95.58%between healthy and myocardial infarction is achieved on two datasets.Therefore,this method can be adopted for the development of a noninvasive and low-cost clinical prognostic system to identify heart-related diseases and detect hidden state changes in the cardiac system.
文摘ions in the ECG signal.The cardiologist and medical specialistfind numerous difficulties in the process of traditional approaches.The specified restrictions are eliminated in the proposed classifier.The fundamental aim of this work is tofind the R-R interval.To analyze the blockage,different approaches are implemented,which make the computation as facile with high accuracy.The information are recovered from the MIT-BIH dataset.The retrieved data contain normal and pathological ECG signals.To obtain a noiseless signal,Gaborfilter is employed and to compute the amplitude of the signal,DCT-DOST(Discrete cosine based Discrete orthogonal stock well transform)is implemented.The amplitude is computed to detect the cardiac abnormality.The R peak of the underlying ECG signal is noted and the segment length of the ECG cycle is identified.The Genetic algorithm(GA)retrieves the primary highlights and the classifier integrates the data with the chosen attributes to optimize the identification.In addition,the GA helps in performing hereditary calculations to reduce the problem of multi-target enhancement.Finally,the RBFNN(Radial basis function neural network)is applied,which diminishes the local minima present in the signal.It shows enhancement in characterizing the ordinary and anomalous ECG signals.
基金the National Natural Science Foundation of China under Grant 62172059 and 62072055Hunan Provincial Natural Science Foundations of China under Grant 2022JJ50318 and 2022JJ30621Scientific Research Fund of Hunan Provincial Education Department of China under Grant 22A0200 and 20K098。
文摘Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affectsthe subsequent pathological analysis.Therefore,the effective removal of the noise from ECG signals has becomea top priority in cardiac diagnostic research.Aiming at the problem of incomplete signal shape retention andlow signal-to-noise ratio(SNR)after denoising,a novel ECG denoising network,named attention-based residualdense shrinkage network(ARDSN),is proposed in this paper.Firstly,the shallow ECG characteristics are extractedby a shallow feature extraction network(SFEN).Then,the residual dense shrinkage attention block(RDSAB)isused for adaptive noise suppression.Finally,feature fusion representation(FFR)is performed on the hierarchicalfeatures extracted by a series of RDSABs to reconstruct the de-noised ECG signal.Experiments on the MIT-BIHarrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resistthe interference of different sources of noise on the ECG signal.
文摘目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singular value decomposition,SVD)的胎儿心电信号提取算法。方法:首先,采用KPCA对母体心电信号进行降维,再利用改进的基于负熵的FastICA处理降维后的数据,得到独立成分。随后,引入样本熵进行信号通道选择,挑选出包含最多母体信息的信号通道。在选中的母体通道上进行SVD,得到母体心电信号的近似估计,再用腹壁源信号减去该信号得到胎儿心电的初步估计。最后,采用改进的基于负熵的FastICA成功分离出纯净的胎儿心电信号。在腹部和直接胎儿心电图数据库(Abdominal and Direct Fetal Electrocardiogram Database,ADFECGDB)和PhysioNet 2013挑战赛数据库中对提出的算法进行验证。结果:提出的算法在主观视觉效果和客观评价指标上都表现出优越的性能。在ADFECGDB数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.74%、98.85%和99.30%;在PhysioNet 2013挑战赛数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.10%、97.87%和98.48%。结论:融合KPCA、FastICA及SVD的胎儿心电信号提取算法在提取胎儿心电信号的同时有效处理了附加噪声,为胎儿疾病的早期诊断提供了有力支持。
文摘This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data.
文摘We report on electrodes fabricated with EDOT-Pyrrole copolymer through electrophoretic deposition and used for recording and sensing bio-electrical signals. We measured the electrical properties of the copolymer deposited on a stainless-steel substrate, and we performed Cyclic Voltammetry (CV) and Scanning Electron Microscopy (SEM) studies to characterize the morphological properties and copolymer distribution on the metal surface. We found that electrodes fabricated with EDOT-Pyrrole copolymer exhibit a high signal-to-noise ratio as well as an accurate and stable conductivity compared with other commonly used electroconductive polymers. Stainless-steel-coated EDOT-Pyrrole electrodes are suitable to record electrocardiograms in humans with high resolution comparable to standard silver-electrodes.
文摘心电信号的分割方法可以有效地反映运动员的心脏功能和身体机能状况.通过人工对心电信号的手动分割往往耗费大量的时间和精力.为了实现自动化的心电信号分割,本文提出了一种改进的两层双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)的心电图分割算法,可以前向和后向分析时间序列,以检测和定位重要波段,如P波、QRS波群和T波.实验使用公开QT数据集进行验证,以模拟运动员在赛前的心电数据.在与LSTM,BiLSTM以及两层BiLSTM的对比实验中,本方法的所有评价指标均有所提升.其准确率达95.68%,召回率为91.62%,精确度为91.05%,特异性为96.64%,F1分数为91.41%.结果表明该方法对心电信号进行分割具有较好的效果.