Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB a...Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB are modeled as a binary mixture of electronic and ionic conducting particles to estimate effective transport properties. Particle packings of 10000 spherical, binary sized and randomly positioned particles are created numerically and densified considering the different manufacturing processes in SOFC and LIB: the sintering of SOFC electrodes is approximated geometrically, whereas the calendering process and volume change due to intercalation in LIB are modeled physically by a discrete el- ement approach. A combination of a tracking algorithm and a resistor network approach is developed to predict the con- nectivity and effective conductivity for the various densified structures. For SOFC, a systematic study of the influence of morphology on connectivity and conductivity is performed on a large number of assemblies with different compositions and particle size ratios between 1 and 10. In comparison to percolation theory, an enlarged percolation area is found, es- pecially for large size ratios. It is shown that in contrast to former studies the percolation threshold correlates to varying coordination numbers. The effective conductivity shows not only an increase with volume fraction as expected but also with size ratio. For LIB, a general increase of conductivity during the intercalation process was observed in correlation with increasing contact forces. The positive influence of cal- endering on the percolation threshold and the effective conductivity of carbon black is shown. The anisotropy caused by the calendering process does not influence the carbon black phase.展开更多
We present the design, fabrication, and characterization of two new types of terahertz photoconductive emitters. One has an asymmetric four-contact electrode structure and the other has an arc-shaped electrode structu...We present the design, fabrication, and characterization of two new types of terahertz photoconductive emitters. One has an asymmetric four-contact electrode structure and the other has an arc-shaped electrode structure, which are all modified from a traditional strip line antenna. Numerical simulations and real experiments confirm the good performance of the proposed antennas. An amplitude increase of about 40% is experimentally observed for the terahertz signals generated from the new structures. The special electrode structure and its induced local bias field enhancement are responsible for this radiation efficiency improvement. Our work demonstrates the feasibility of developing highly efficient terahertz photoconductive emitters by optimizing the electrode structure.展开更多
In recent years,the rapid development of portable/wearable electronics has created an urgent need for the development of flexible energy storage devices.Flexible lithium-ion batteries(FLIBs)have emerged as the most at...In recent years,the rapid development of portable/wearable electronics has created an urgent need for the development of flexible energy storage devices.Flexible lithium-ion batteries(FLIBs)have emerged as the most attractive and versatile flexible electronic storage devices available.Carbon nanotubes(CNTs)are hollow-structured tubular nanomaterials with high electrical conductivity,large specific surface area,and excellent mechanical properties.Graphene(G)is to some extent comparable to CNTs,because both have unlimited value in flexible electrodes.Herein,a systematic summary of the application of CNT and G in FLIBs electrodes is presented,including different functional applications and services at different temperatures.Furthermore,the effects of electrode structures,including powder,wire-shaped,and film-shaped structures,on electrochemical properties is highlighted.The assembly structures of the FLIBs consisting of CNT and G-based flexible electrodes to realize different functions,including bendability,stretchability,foldability,self-healing,and self-detecting,are systematically reviewed.The current challenges and development prospects of flexible CNT and G-based flexible electrodes and corresponding FLIBs are discussed.展开更多
Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compa...Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compared the discharge characteristics and the film modifications of atmospheric pressure plasma jets with needle-ring electrode(NRE) and doublering electrode(DRE). The results show that jet with NRE has stronger electric field intensity and higher discharge power,making it present more reactive oxygen particles and higher electron temperature, but its discharge stability is insufficient.In contrast, the jet with DRE has uniform electric field distribution of lower field intensity, which allows it to maintain stable discharge over a wide range of applied voltages. Besides, the modification results show that the treatment efficiency of PET film by NRE is higher than that by DRE. These results provide a suitable atmospheric pressure plasma jets device selection scheme for polymer film processing process.展开更多
The tremendous potential of triboelectric generators-TENGs for converting mechanical energy into electrical energy places them as one of the most promising energy harvesting technologies. In this work, the fabrication...The tremendous potential of triboelectric generators-TENGs for converting mechanical energy into electrical energy places them as one of the most promising energy harvesting technologies. In this work, the fabrication of enhanced performance TENGs using Ag octahedron nano-assemblies on ITO as electrodes significantly increases the electric charge collection of the induced tribocharges. Thereby, nanostructured electrical contacts coated with Ag macroscale nano-assemblies with octahedral features were obtained by the electrodeposition technique on flexible PET/ITO substrates. Consequently, the nanostructured triboelectric generator-TENG exhibited 65 times more maximum output power, and almost 10 times more open circuit output voltage than that of a TENG with non-nanostructured contacts passing from μW to m W capabilities, which was attributed to the increment of intrinsic interface states due to a higher effective contact area in the former. Likewise, output performances of TENGs also displayed an asymptotic behavior on the output voltage as the operating frequency of the mechanical oscillations increased, which is attributed to a decrement in the internal impedance of the device with frequency. Furthermore, it is shown that the resulting electrical output power can successfully drive low power consumption electronic devices. On that account, the present research establishes a promising platform which contributes in an original way to the development of the TENGs technology.展开更多
In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herei...In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries.展开更多
The development of high-sulfur-loading Li-S batteries is a key prerequisite for their commercial applications.This requires to surmount the huge polarization,severe polysulfide shuttling and drastic volume change caus...The development of high-sulfur-loading Li-S batteries is a key prerequisite for their commercial applications.This requires to surmount the huge polarization,severe polysulfide shuttling and drastic volume change caused by electrode thickening.High-strength polar binders are ideal for constructing robust and long-life high-loading sulfur cathodes but show very weak interfacial interaction with non-polar sulfur materials.To address this issue,this work devises a highly integrated sulfur@polydopamine/highstrength binder composite cathodes,targeting long-lasting and high-sulfur-loading Li-S batteries.The super-adhesion polydopamine(PD)can form a uniform nano-coating over the graphene/sulfur(G-S)surface and provide strong affinity to the cross-linked polyacrylamide(c-PAM)binder,thus tightly integrating sulfur with the binder network and greatly boosting the overall mechanical strength/conductivity of the electrode.Moreover,the PD coating and c-PAM binder rich in polar groups can form two effective blockades against the effusion of soluble polysulfides.As such,the 4.5 mg cm−2 sulfur-loaded G-S@PD-c-PAM cathode achieves a capacity of 480 mAh g−1 after 300 cycles at 1 C,while maintaining a capacity of 396 mAh g−1 after 50 cycles at 0.2 C when the sulfur loading rises to 9.1 mg cm−2.This work provides a system-wide concept for constructing high-loading sulfur cathodes through integrated structural design.展开更多
With the rapid development of wearable smart devices,many researchershave carried out in-depth research on the stretchable electrodes.As one of the corecomponents for electronics,the electrode mainly transfers the ele...With the rapid development of wearable smart devices,many researchershave carried out in-depth research on the stretchable electrodes.As one of the corecomponents for electronics,the electrode mainly transfers the electrons,which plays animportant role in driving the various electrical devices.The key to the research for thestretchable electrode is to maintain the excellent electrical properties or exhibit theregular conductive change when subjected to large tensile deformation.This articleoutlines the recent progress of stretchable electrodes and gives a comprehensiveintroduction to the structures,materials,and applications,including supercapacitors,lithium-ion batteries,organic light-emitting diodes,smart sensors,and heaters.Theperformance comparison of various stretchable electrodes was proposed to clearly showthe development challenges in this field.We hope that it can provide a meaningfulreference for realizing more sensitive,smart,and low-cost wearable electrical devices inthe near future.展开更多
At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell PEMFC deteriorates markedly. The object of this work is to study the degradation mechanism of key compo- nents o...At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell PEMFC deteriorates markedly. The object of this work is to study the degradation mechanism of key compo- nents of PEMFC—membrane-electrode assembly MEA and seek feasible measures to avoid degradation. The ef- fect of freezethaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freezethaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable per- formance under subzero temperature and gas purging is proved to be the effective operation.展开更多
When interrupting short circuit fault by 40.5-kV vacuum circuit breakers, it is significant to eliminate multiple restrike phenomena, which occur frequently and result in high overvoltage and even interruption failure...When interrupting short circuit fault by 40.5-kV vacuum circuit breakers, it is significant to eliminate multiple restrike phenomena, which occur frequently and result in high overvoltage and even interruption failure. A synthetic circuit that can supply a DC recovery voltage after current zero was used to study multiple restrike phenomena in switching. Some key factors including breaking current, clearance between open contacts, electrode structure and contact material, which may affect restrike characteristics, were studied. Under various clearances, the statistical probability of restrike was obtained. As a result, the best scope of clearance between open contacts was found. The performance of CuCr50/50 and CuCr75/25 material were compared. Two kinds of electrode structures, namely 1/2 coil structure and cup-shaped axial magnetic structure, were tested. After a high-current interruption, conditioning effoct was realized and the probability of restrike decreased.展开更多
In the contemporary era,lithium-ion batteries have gained considerable attention in various industries such as 3C products,electric vehicles and energy storage systems due to their exceptional properties.With the rapi...In the contemporary era,lithium-ion batteries have gained considerable attention in various industries such as 3C products,electric vehicles and energy storage systems due to their exceptional properties.With the rapid progress in the energy storage sector,there is a growing demand for greater energy density in lithium-ion batteries.While the use of thick electrodes is a straightforward and effective approach to enhance the energy density of battery,it is hindered by the sluggish reaction dynamics and insufficient mechanical properties.Therefore,we comprehensively review recent advances in the field of thick electrodes for lithium-ion batteries to overcome the bottlenecks in the development of thick electrodes and achieve efficient fabrication for high-performance lithium-ion batteries.Initially,a systematic analysis is performed to identify the factors affecting the performance of the thick electrodes.the correlation between electrode materials,structural parameters,and performance is also investigated.Subsequently,the viable strategies for constructing thick electrodes with improved properties are summarize,including high throughput,high conductivity and low tortuosity,in both material development and structural design.In addition,recent advances in efficient fabrication methods for thick electrode fabrication are reviewed,with a comprehensive assessment of their merits,limitations,and applicable scenarios.Finally,a comprehensive overview of the multiscale design and manufacturing process for thick electrodes in lithium-ion batteries is provided,accompanied by valuable insights into design considerations that are crucial for future advances in this area.展开更多
Nanostructured materials afford a promising potential for many energy storage applications because of their extraordinary electrochemical properties.However,the remarkable electrochemical energy storage performance co...Nanostructured materials afford a promising potential for many energy storage applications because of their extraordinary electrochemical properties.However,the remarkable electrochemical energy storage performance could only be harvested at a relatively low mass-loading via the traditional electrode fabrication process,and the scale of these materials into commercial-level mass-loading remains a daunting challenge because the ion diffusion kinetics deteriorates rapidly along with the increased thickness of the electrodes.Very recently,three-dimensional(3D)printing,a promising additive manufacturing technology,has been considered as an emerging method to address the aforementioned issues where the 3D printed electrodes could possess elaborately regulated architectures and rationally organized porosity.As a result,the outstanding electrochemical performance has been widely observed in energy storage devices made of 3D printed electrodes of high-mass loading.In this review,we systemically introduce the basic working principles of various 3D printing technologies and their practical applications to manufacture highmass loading electrodes for energy storage devices.Challenges and perspectives in 3D printing technologies for the construction of electrodes at the current stage are also outlined,aiming to offer some useful opinions for further development for this prosperous field.展开更多
For better performance of dye sensitized solar cells (DSSCs), a bilayer structured electrode was constructed by employing a mesoporous anatase TiO2 overlayer above a commercial P25 TiO2 nanoparticles underlayer. The...For better performance of dye sensitized solar cells (DSSCs), a bilayer structured electrode was constructed by employing a mesoporous anatase TiO2 overlayer above a commercial P25 TiO2 nanoparticles underlayer. The mesoporous anatase TiO2, prepared through a facile surfactant-assisted sol-gel process, possessed large pore size and well inter-connected network structure, both beneficial for dye adsorption and electron transfer. The dye adsorption capability of the mesoporous TiO2 was nearly twice that of the P25 counterpart. In the electrode, the mesoporous TiO2 film enhanced both dye adsorption and lightharvest, to increase photocurrent (Jsc) from 12.32 to 14.78 mA/cm^2. Compared to the single P25 TiO2 film, the synergy of the mesoporous TiO2 and the P25 TiO2 nanoparticle films in the electrode resulted in a 24% improvement in light-to-electricity conversion efficiency (η). This bilayered electrode provides an alternative approach for further developing a photovoltaic device with better cell performance.展开更多
Metallic lithium is deemed as the“Holy Grail”anode in high-energy-density secondary batteries.Uncontrollable lithium dendrite growth and related issues originated from uneven concentration distribution of Li+in the ...Metallic lithium is deemed as the“Holy Grail”anode in high-energy-density secondary batteries.Uncontrollable lithium dendrite growth and related issues originated from uneven concentration distribution of Li+in the vicinity of the anode,however,induce severe safety concerns and poor cycling efficiency,dragging lithium metal anode out of practical application.Herein we address these issues by using cross-linked lithiophilic amino phosphonic acid resin as the effective host with the ion-transportenhancement feature.Based on theoretical calculations and multiphysics simulation,it is found that this ion-transportenhancement feature is capable of facilitating the self-concentration kinetics of Li+and accelerating Li^(+)transfer at the electrolyte/electrode interface,leading to uniform bulk lithium deposition.Experimental results show that the proposed lithiumhosting resin decreases the irreversible lithium capacity and improves lithium utilization(with the Coulombic efficiency(CE)of 98.8%over 130 cycles).Our work demonstrates that inducing the self-concentrating distribution of Li+at the interface can be an effective strategy for improving the interfacial ion concentration gradient and optimizing lithium deposition,which opens a new avenue for the practical development of next-generation lithium metal batteries.展开更多
基金supported by the Helmholtz Portfolio "elektrochemische Speicher",particularly the work related to lithium-ion batteriespartially supported as part of the HeteroFoam Center,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science, Basic Energy Sciences(DE-SC0001061)+1 种基金support from the Center for Scientific Computing at the CNSI and MRL:an NSF MRSEC(DMR-1121053) and NSF (CNS-0960316)Australian Research Council Grant DE130101639
文摘Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB are modeled as a binary mixture of electronic and ionic conducting particles to estimate effective transport properties. Particle packings of 10000 spherical, binary sized and randomly positioned particles are created numerically and densified considering the different manufacturing processes in SOFC and LIB: the sintering of SOFC electrodes is approximated geometrically, whereas the calendering process and volume change due to intercalation in LIB are modeled physically by a discrete el- ement approach. A combination of a tracking algorithm and a resistor network approach is developed to predict the con- nectivity and effective conductivity for the various densified structures. For SOFC, a systematic study of the influence of morphology on connectivity and conductivity is performed on a large number of assemblies with different compositions and particle size ratios between 1 and 10. In comparison to percolation theory, an enlarged percolation area is found, es- pecially for large size ratios. It is shown that in contrast to former studies the percolation threshold correlates to varying coordination numbers. The effective conductivity shows not only an increase with volume fraction as expected but also with size ratio. For LIB, a general increase of conductivity during the intercalation process was observed in correlation with increasing contact forces. The positive influence of cal- endering on the percolation threshold and the effective conductivity of carbon black is shown. The anisotropy caused by the calendering process does not influence the carbon black phase.
基金supported by the National Science and Technology Support Program of China under Grant No.2013BAK14B03
文摘We present the design, fabrication, and characterization of two new types of terahertz photoconductive emitters. One has an asymmetric four-contact electrode structure and the other has an arc-shaped electrode structure, which are all modified from a traditional strip line antenna. Numerical simulations and real experiments confirm the good performance of the proposed antennas. An amplitude increase of about 40% is experimentally observed for the terahertz signals generated from the new structures. The special electrode structure and its induced local bias field enhancement are responsible for this radiation efficiency improvement. Our work demonstrates the feasibility of developing highly efficient terahertz photoconductive emitters by optimizing the electrode structure.
基金supported by the National Natural Science Foundation of China(Grant Nos.51972261 and 51302206)。
文摘In recent years,the rapid development of portable/wearable electronics has created an urgent need for the development of flexible energy storage devices.Flexible lithium-ion batteries(FLIBs)have emerged as the most attractive and versatile flexible electronic storage devices available.Carbon nanotubes(CNTs)are hollow-structured tubular nanomaterials with high electrical conductivity,large specific surface area,and excellent mechanical properties.Graphene(G)is to some extent comparable to CNTs,because both have unlimited value in flexible electrodes.Herein,a systematic summary of the application of CNT and G in FLIBs electrodes is presented,including different functional applications and services at different temperatures.Furthermore,the effects of electrode structures,including powder,wire-shaped,and film-shaped structures,on electrochemical properties is highlighted.The assembly structures of the FLIBs consisting of CNT and G-based flexible electrodes to realize different functions,including bendability,stretchability,foldability,self-healing,and self-detecting,are systematically reviewed.The current challenges and development prospects of flexible CNT and G-based flexible electrodes and corresponding FLIBs are discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11565003)the Jiangxi Province Academic Degree and Postgraduate Education and Teaching Reform Research Project (Grant No. JXYJG-2022-180)the Scientific Research Base Project of Gannan Normal University (Grant No. 22wdxt01)。
文摘Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compared the discharge characteristics and the film modifications of atmospheric pressure plasma jets with needle-ring electrode(NRE) and doublering electrode(DRE). The results show that jet with NRE has stronger electric field intensity and higher discharge power,making it present more reactive oxygen particles and higher electron temperature, but its discharge stability is insufficient.In contrast, the jet with DRE has uniform electric field distribution of lower field intensity, which allows it to maintain stable discharge over a wide range of applied voltages. Besides, the modification results show that the treatment efficiency of PET film by NRE is higher than that by DRE. These results provide a suitable atmospheric pressure plasma jets device selection scheme for polymer film processing process.
基金Consejo Nacional de Ciencia y Tecnología of México (CONACYT) for her Doctoral scholarshippostgraduate studies department at CIMAVMonterrey for fellowship support。
文摘The tremendous potential of triboelectric generators-TENGs for converting mechanical energy into electrical energy places them as one of the most promising energy harvesting technologies. In this work, the fabrication of enhanced performance TENGs using Ag octahedron nano-assemblies on ITO as electrodes significantly increases the electric charge collection of the induced tribocharges. Thereby, nanostructured electrical contacts coated with Ag macroscale nano-assemblies with octahedral features were obtained by the electrodeposition technique on flexible PET/ITO substrates. Consequently, the nanostructured triboelectric generator-TENG exhibited 65 times more maximum output power, and almost 10 times more open circuit output voltage than that of a TENG with non-nanostructured contacts passing from μW to m W capabilities, which was attributed to the increment of intrinsic interface states due to a higher effective contact area in the former. Likewise, output performances of TENGs also displayed an asymptotic behavior on the output voltage as the operating frequency of the mechanical oscillations increased, which is attributed to a decrement in the internal impedance of the device with frequency. Furthermore, it is shown that the resulting electrical output power can successfully drive low power consumption electronic devices. On that account, the present research establishes a promising platform which contributes in an original way to the development of the TENGs technology.
基金National Natural Science Foundation of China (22222902, 22209062)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB150004)+1 种基金Youth Talent Promotion Project of Jiangsu Association for Science and Technology of China (JSTJ-2022-023)Undergraduate Innovation and Entrepreneurship Training Program (202310320066Z)。
文摘In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries.
基金supported by the National Natural Science Foundation of China(21875155,51675275,21703185 and 21473119)Q.B.Z.acknowledges the Leading Project Foundation of Science Department of Fujian Province(2018H0034)Shenzhen Science and Technology Planning Project(JCYJ20170818153427106).
文摘The development of high-sulfur-loading Li-S batteries is a key prerequisite for their commercial applications.This requires to surmount the huge polarization,severe polysulfide shuttling and drastic volume change caused by electrode thickening.High-strength polar binders are ideal for constructing robust and long-life high-loading sulfur cathodes but show very weak interfacial interaction with non-polar sulfur materials.To address this issue,this work devises a highly integrated sulfur@polydopamine/highstrength binder composite cathodes,targeting long-lasting and high-sulfur-loading Li-S batteries.The super-adhesion polydopamine(PD)can form a uniform nano-coating over the graphene/sulfur(G-S)surface and provide strong affinity to the cross-linked polyacrylamide(c-PAM)binder,thus tightly integrating sulfur with the binder network and greatly boosting the overall mechanical strength/conductivity of the electrode.Moreover,the PD coating and c-PAM binder rich in polar groups can form two effective blockades against the effusion of soluble polysulfides.As such,the 4.5 mg cm−2 sulfur-loaded G-S@PD-c-PAM cathode achieves a capacity of 480 mAh g−1 after 300 cycles at 1 C,while maintaining a capacity of 396 mAh g−1 after 50 cycles at 0.2 C when the sulfur loading rises to 9.1 mg cm−2.This work provides a system-wide concept for constructing high-loading sulfur cathodes through integrated structural design.
基金supported by the Natural ScienceFoundation of Jilin Province(20200201070JC)the National NaturalScience Foundation of China(Grant No.21662038).
文摘With the rapid development of wearable smart devices,many researchershave carried out in-depth research on the stretchable electrodes.As one of the corecomponents for electronics,the electrode mainly transfers the electrons,which plays animportant role in driving the various electrical devices.The key to the research for thestretchable electrode is to maintain the excellent electrical properties or exhibit theregular conductive change when subjected to large tensile deformation.This articleoutlines the recent progress of stretchable electrodes and gives a comprehensiveintroduction to the structures,materials,and applications,including supercapacitors,lithium-ion batteries,organic light-emitting diodes,smart sensors,and heaters.Theperformance comparison of various stretchable electrodes was proposed to clearly showthe development challenges in this field.We hope that it can provide a meaningfulreference for realizing more sensitive,smart,and low-cost wearable electrical devices inthe near future.
基金the National Natural Science Foundation of China (No.20206030) Ministry of Science and Technology 863Hi-Technology Research and Development Program of China (2005AA501660)
文摘At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell PEMFC deteriorates markedly. The object of this work is to study the degradation mechanism of key compo- nents of PEMFC—membrane-electrode assembly MEA and seek feasible measures to avoid degradation. The ef- fect of freezethaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freezethaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable per- formance under subzero temperature and gas purging is proved to be the effective operation.
文摘When interrupting short circuit fault by 40.5-kV vacuum circuit breakers, it is significant to eliminate multiple restrike phenomena, which occur frequently and result in high overvoltage and even interruption failure. A synthetic circuit that can supply a DC recovery voltage after current zero was used to study multiple restrike phenomena in switching. Some key factors including breaking current, clearance between open contacts, electrode structure and contact material, which may affect restrike characteristics, were studied. Under various clearances, the statistical probability of restrike was obtained. As a result, the best scope of clearance between open contacts was found. The performance of CuCr50/50 and CuCr75/25 material were compared. Two kinds of electrode structures, namely 1/2 coil structure and cup-shaped axial magnetic structure, were tested. After a high-current interruption, conditioning effoct was realized and the probability of restrike decreased.
基金supported by the National Natural Science Foundation of China(U22A20193,U22A20438)the Key R&D Plan of Hubei Province(2023BAB036).
文摘In the contemporary era,lithium-ion batteries have gained considerable attention in various industries such as 3C products,electric vehicles and energy storage systems due to their exceptional properties.With the rapid progress in the energy storage sector,there is a growing demand for greater energy density in lithium-ion batteries.While the use of thick electrodes is a straightforward and effective approach to enhance the energy density of battery,it is hindered by the sluggish reaction dynamics and insufficient mechanical properties.Therefore,we comprehensively review recent advances in the field of thick electrodes for lithium-ion batteries to overcome the bottlenecks in the development of thick electrodes and achieve efficient fabrication for high-performance lithium-ion batteries.Initially,a systematic analysis is performed to identify the factors affecting the performance of the thick electrodes.the correlation between electrode materials,structural parameters,and performance is also investigated.Subsequently,the viable strategies for constructing thick electrodes with improved properties are summarize,including high throughput,high conductivity and low tortuosity,in both material development and structural design.In addition,recent advances in efficient fabrication methods for thick electrode fabrication are reviewed,with a comprehensive assessment of their merits,limitations,and applicable scenarios.Finally,a comprehensive overview of the multiscale design and manufacturing process for thick electrodes in lithium-ion batteries is provided,accompanied by valuable insights into design considerations that are crucial for future advances in this area.
基金China Postdoctoral Science Foundation,Grant/Award Number:2020M672166National Natural Science Foundation of China,Grant/Award Numbers:21975287,52002401+4 种基金Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2018ZC1458Taishan Scholar Project of Shandong Province,Grant/Award Number:ts201712020Technological Leading Scholar of 10000 Talent Project,Grant/Award Number:W03020508Shandong Postdoctoral Program for Innovation Talents,Grant/Award Number:sdbX20190032Postdoctoral Applied Research Project of Qingdao,Grant/Award Number:qdyy20110014。
文摘Nanostructured materials afford a promising potential for many energy storage applications because of their extraordinary electrochemical properties.However,the remarkable electrochemical energy storage performance could only be harvested at a relatively low mass-loading via the traditional electrode fabrication process,and the scale of these materials into commercial-level mass-loading remains a daunting challenge because the ion diffusion kinetics deteriorates rapidly along with the increased thickness of the electrodes.Very recently,three-dimensional(3D)printing,a promising additive manufacturing technology,has been considered as an emerging method to address the aforementioned issues where the 3D printed electrodes could possess elaborately regulated architectures and rationally organized porosity.As a result,the outstanding electrochemical performance has been widely observed in energy storage devices made of 3D printed electrodes of high-mass loading.In this review,we systemically introduce the basic working principles of various 3D printing technologies and their practical applications to manufacture highmass loading electrodes for energy storage devices.Challenges and perspectives in 3D printing technologies for the construction of electrodes at the current stage are also outlined,aiming to offer some useful opinions for further development for this prosperous field.
基金supported by the National Natural Science Foundation of China (20925621)Shanghai Rising-Star Program (09QH1400700,09QA1401500)+4 种基金Special Projects for Key Laboratories in Shanghai (09DZ2202000,10DZ2211100)Special Projects for Nanotechnology of Shanghai (0952nm02100)Shanghai Pujiang Program (09PJ1403200)Basic Research Program of Shanghai (10JC1403300)Fundamental Research Funds for the Central Universities
文摘For better performance of dye sensitized solar cells (DSSCs), a bilayer structured electrode was constructed by employing a mesoporous anatase TiO2 overlayer above a commercial P25 TiO2 nanoparticles underlayer. The mesoporous anatase TiO2, prepared through a facile surfactant-assisted sol-gel process, possessed large pore size and well inter-connected network structure, both beneficial for dye adsorption and electron transfer. The dye adsorption capability of the mesoporous TiO2 was nearly twice that of the P25 counterpart. In the electrode, the mesoporous TiO2 film enhanced both dye adsorption and lightharvest, to increase photocurrent (Jsc) from 12.32 to 14.78 mA/cm^2. Compared to the single P25 TiO2 film, the synergy of the mesoporous TiO2 and the P25 TiO2 nanoparticle films in the electrode resulted in a 24% improvement in light-to-electricity conversion efficiency (η). This bilayered electrode provides an alternative approach for further developing a photovoltaic device with better cell performance.
基金This work was financially supported by the National Natural Science Foundation of China(No.21905033)the Science and Technology Department of Sichuan Province(No.2019YJ0503)The support from the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization(No.2020P4FZG02A)is also appreciated.
文摘Metallic lithium is deemed as the“Holy Grail”anode in high-energy-density secondary batteries.Uncontrollable lithium dendrite growth and related issues originated from uneven concentration distribution of Li+in the vicinity of the anode,however,induce severe safety concerns and poor cycling efficiency,dragging lithium metal anode out of practical application.Herein we address these issues by using cross-linked lithiophilic amino phosphonic acid resin as the effective host with the ion-transportenhancement feature.Based on theoretical calculations and multiphysics simulation,it is found that this ion-transportenhancement feature is capable of facilitating the self-concentration kinetics of Li+and accelerating Li^(+)transfer at the electrolyte/electrode interface,leading to uniform bulk lithium deposition.Experimental results show that the proposed lithiumhosting resin decreases the irreversible lithium capacity and improves lithium utilization(with the Coulombic efficiency(CE)of 98.8%over 130 cycles).Our work demonstrates that inducing the self-concentrating distribution of Li+at the interface can be an effective strategy for improving the interfacial ion concentration gradient and optimizing lithium deposition,which opens a new avenue for the practical development of next-generation lithium metal batteries.