期刊文献+
共找到86篇文章
< 1 2 5 >
每页显示 20 50 100
Diamond-based electron emission:Structure,properties and mechanisms
1
作者 Liang-Xue Gu Kai Yang +10 位作者 Yan Teng Wei-Kang Zhao Geng-You Zhao Kang-Kang Fan Bo Feng Rong Zhang You-Dou Zheng Jian-Dong Ye Shun-Ming Zhu Kun Tang Shu-Lin Gu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期165-177,共13页
Diamond has an ultrawide bandgap with excellent physical properties,such as high critical electric field,excellent thermal conductivity,high carrier mobility,etc.Diamond with a hydrogen-terminated(H-terminated)surface... Diamond has an ultrawide bandgap with excellent physical properties,such as high critical electric field,excellent thermal conductivity,high carrier mobility,etc.Diamond with a hydrogen-terminated(H-terminated)surface has a negative electron affinity(NEA)and can easily produce surface electrons from valence or trapped electrons via optical absorption,thermal heating energy or carrier transport in a PN junction.The NEA of the H-terminated surface enables surface electrons to emit with high efficiency into the vacuum without encountering additional barriers and promotes further development and application of diamond-based emitting devices.This article reviews the electron emission properties of H-terminated diamond surfaces exhibiting NEA characteristics.The electron emission is induced by different physical mechanisms.Recent advancements in electron-emitting devices based on diamond are also summarized.Finally,the current challenges and future development opportunities are discussed to further develop the relevant applications of diamond-based electronemitting devices. 展开更多
关键词 DIAMOND negative electron affinity(NEA) PN junction electron emission
下载PDF
Nonlinear change of ion-induced secondary electron emission in theκ-Al_(2)O_(3) surface charging from first-principle modelling
2
作者 Zhicheng JIAO Mingrui ZHU +2 位作者 Dong DAI Tao SHAO Buang WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期40-50,共11页
Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant ... Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant impact on the material properties,thereby affecting the SEE in the plasma-surface interactions.However,it does not attract enough attention in the previous studies.In this paper,SEE dependent on the charged surface of specific materials is described with the computational method combining a density functional theory(DFT)model from the first-principle theory and the theory of Auger neutralization.The effect ofκ-Al2O3 surface charge,as an example,on the ion-induced secondary electron emission coefficient(SEEC)is investigated by analyzing the defect energy level and band structure on the charged surface.Simulation results indicate that,with the surface charge from negative to positive,the SEEC of a part of low ionization energy ions(such as Ei=12.6 eV)increases first and then decreases,exhibiting a nonlinear changing trend.This is quite different from the monotonic decreasing tendency observed in the previous model which simplifies the electronic structure.This irregular increase of the SEEC can be attributed to the lower escaped probability of orbital energy.The results further illustrate that the excessive charge could cause the bottom of the conduction band close to the valence band,thus leading to the decrease of the orbital energy occupied by the excited electrons.The nonlinear change of SEEC demonstrates a more realistic situation of how the electronic structure of material surface influences the SEE process.This work provides an accurate method of calculating SEEC from specific materials,which is urgent in widespread physical scenarios sensitive to surface materials,such as increasingly growing practical applications concerning plasma-surface interactions. 展开更多
关键词 secondary electron emission charged surface density functional theory defect energy level
下载PDF
Experimental Study of Electron Emission Characteristics of a Surface Flashover Trigger in a Low Pressure Environment 被引量:1
3
作者 胡上茂 姚学玲 陈景亮 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第6期748-752,共5页
Characteristics of electron emission induced by a surface flashover trigger device in a low-pressure trigger switch were investigated. A test method to measure the emitted charges from the trigger device was developed... Characteristics of electron emission induced by a surface flashover trigger device in a low-pressure trigger switch were investigated. A test method to measure the emitted charges from the trigger device was developed, and the factors affecting the emitted charges were analyzed. The results indicated that the major emitted charges from the trigger device were induced by surface plasma generated by surface flashover occurring on the trigger dielectric material. The emitted charges and the peak emission current increased linearly with the change in the trigger voltage and bias voltage. The emitted charges collected from the anode were affected by the gap distance. However, the emitted charges were less affected by the anode diameter. Furthermore, the emitted charges and the peak emission current decreased rapidly with the increase in gas pressure in a range from 0 Pa to 100 Pa, and then remained stable or changed slightly when the increase in gas pressure up to 2400 Pa. 展开更多
关键词 emission charges electron emission emission current trigger switch surface flashover
下载PDF
Impact of exterior electron emission on the self-sustaining margin of hollow cathode discharge 被引量:1
4
作者 Tianhang MENG Zhongxi NING Daren YU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第9期2-11,共10页
Hollow cathode researches used to focus on the inner cavity or downstream plume,however,rarely on the gap between the throttling orifice plate and the keeper plate(T-K gap),which was found to impact the self-sustainin... Hollow cathode researches used to focus on the inner cavity or downstream plume,however,rarely on the gap between the throttling orifice plate and the keeper plate(T-K gap),which was found to impact the self-sustaining margin of hollow cathode discharge in this paper.Near the lower margin,the main power deposition and electron emission and ionization regions would migrate from inner cavity and downstream plume to the T-K gap,in which case,the source and destination of each m A current therein matter for the self-sustaining capability.Changing the metal surfaces in the T-K gap with emissive materials proved effective in lowering the lower margin by supplementing auxiliary thermionic emission,compensating electron loss on cold absorbing walls and suppressing discharge oscillations.By doing so,the lower margin of a 4 A hollow cathode was lowered from 1 to 0.1-0.2 A,enabling it to couple with low power Hall thruster without extra keeper current. 展开更多
关键词 hollow cathode self-sustained discharge secondary electron emission ionization oscillations thermionic emission
下载PDF
A novel double dielectric barrier discharge reactor with high field emission and secondary electron emission for toluene abatement 被引量:1
5
作者 Shijie LI Xin YU +3 位作者 Xiaoqing DANG Pengyong WANG Xiangkang MENG Huachun ZHENG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第1期118-128,共11页
Dielectric barrier discharge(DBD)has been extensively investigated in the fields of environment and energy,whereas its practical implementation is still limited due to its unsatisfactory energy efficiency.In order to ... Dielectric barrier discharge(DBD)has been extensively investigated in the fields of environment and energy,whereas its practical implementation is still limited due to its unsatisfactory energy efficiency.In order to improve the energy efficiency of DBD,a novel double dielectric barrier discharge(NDDBD)reactor with high field emission and secondary electron emission was developed and compared with traditional DDBD(TDDBD)configuration.Firstly,the discharge characteristics of the two DDBD reactors were analyzed.Compared to TDDBD,the NDDBD reactor exhibited much stronger discharge intensity,higher transferred charge,dissipated power and gas temperature due to the effective utilization of cathode field emission and secondary electron emission.Subsequently,toluene abatement performance of the two reactors was evaluated.The toluene decomposition efficiency and mineralization rate of NDDBD were much higher than that of TDDBD,which were 86.44%-100%versus 28.17%-80.48%and 17.16%-43.42%versus 7.17%-16.44%at 2.17-15.12 W and 1.24-4.90 W respectively.NDDBD also exhibited higher energy yield than TDDBD,whereas the overall energy constant k_(overall)of the two reactors were similar.Finally,plausible toluene decomposition pathway in TDDBD and NDDBD was suggested based on organic intermediates that generated from toluene degradation.The finding of this study is expected to provide reference for the design and optimization of DBD reactor for volatile organic compounds control and other applications. 展开更多
关键词 toluene removal double dielectric barrier discharge field emission secondary electron emission decomposition mechanism
下载PDF
Feedback model of secondary electron emission in DC gas discharge plasmas 被引量:1
6
作者 Saravanan ARUMUGAM Prince ALEX Suraj Kumar SINHA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第2期128-133,共6页
Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input.Similarly,in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and ... Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input.Similarly,in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and self sustain the discharge.The present investigation is intended to emphasize the feedback nature of ions that emits secondary electrons(SEs)from the cathode surface in DC gas discharges.The average number of SEs emitted per incident ion and non ionic species(energetic neutrals,metastables and photons)which results from ion is defined as effective secondary electronemission coefficient(ESEEC,Eg).In this study,we derive an analytic expression that corroborates the relation betweenEg and power influx by ion to the cathode based on the feedback theory of an amplifier.In addition,experimentally,we confirmed the typical positive feedback nature of SEEfrom the cathode in argon DC glow discharges.The experiment is done for three different cathode material of same dimension(tungsten(W),copper(Cu)and brass)under identical discharge conditions(pressure:0.45 mbar,cathode bias:-600 V,discharge gab:15 cm and operating gas:argon).Further,we found that theEg value of these cathode material controls the amount of feedback power given by ions.The difference in feedback leads different final output i.e the power carried by ion at cathode(Pi C¢∣).The experimentally obtained value of Pi C¢∣is 4.28 W,6.87 W and9.26 W respectively for W,Cu and brass.In addition,the present investigation reveals that the amount of feedback power in a DC gas discharges not only affect the fraction of power fed back to the cathode but also the entire characteristics of the discharge. 展开更多
关键词 feedback secondary electron emission DC gas discharges power influx by ion at cathode cathode temperature
下载PDF
Thermionic Electron Emission Stability of Mo-La_2O_3 Cathode
7
作者 周文元 张久兴 +3 位作者 刘燕琴 万小峰 周美玲 左铁镛 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第3期395-398,共4页
The carbonizing process and its influence on the thermionic electron emission properties of Mo-La_2O_3 cathode materials were investigated. The carbonized temperature, carbonized time and the pressure of C_6H_6 are ke... The carbonizing process and its influence on the thermionic electron emission properties of Mo-La_2O_3 cathode materials were investigated. The carbonized temperature, carbonized time and the pressure of C_6H_6 are key factors of the carbonizing process. The carbonized ratio of Mo-La_2O_3 cathode increases with the increase of carbonizing temperature at low temperature. The highest carbonized ratio is 19.7% obtained at 1723 K, then the carbonized ratio decreases rapidly if temperature increases further. The carbonized ratio increases with the prolongation of carbonizing time during the process of first 6 min., after that the carbonization ratio changes little with the time increase, and the carbonized ratio increases with the increase of the C_6H_6 pressure when the pressure is low, the maximum carbonized ratio reaches 19.7% at 1.5×10^(-2) Pa, then the carbonized ratio goes down sharply when the C_6H_6 pressure is over 1.5×10^(-2) Pa. The emission properties at different operated temperatures and the emission current stability of FU-6051 tubes (equipped) with Mo-La_2O_3 cathodes were also studied in the article. The study results indicate that the emission can keep stable only when the operating temperature is from 1700 to 1800 K and the carbonized layer must be composed by Mo_2C only. The FU-6051 tubes (equipped) with Mo-La_2O_3 cathodes have excellent stable emission current and the lifetime exceeds 3000 h when the cathode′s carbonized ratio is 19.7% operated at 1773 K. 展开更多
关键词 Mo-La_2O_3 cathode electron emission stability carbonizing LIFETIME rare earths
下载PDF
Characteristics of wall sheath and secondary electron emission under different electron temperatures in a Hall thruster
8
作者 段萍 覃海娟 +3 位作者 周新维 曹安宁 陈龙 高宏 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期510-515,共6页
In this paper, a two-dimensional physical model is established in a Hall thruster sheath region to investigate the influences of the electron temperature and the propellant on the sheath potential drop and the seconda... In this paper, a two-dimensional physical model is established in a Hall thruster sheath region to investigate the influences of the electron temperature and the propellant on the sheath potential drop and the secondary electron emission in the Hall thruster, by the particle-in-cell (PIC) method. The numerical results show that when the electron temperature is relatively low, the change of sheath potential drop is relatively large, the surface potential maintains a stable value and the stability of the sheath is good. When the electron temperature is relatively high, the surface potential maintains a persistent oscillation, and the stability of the sheath reduces. As the electron temperature increases, the secondary electron emission coefficient on the wall increases. For three kinds of propellants (At, Kr, and Xe), as the ion mass increases the sheath potentials and the secondary electron emission coefficients reduce in sequence. 展开更多
关键词 Hall thruster electron temperature SHEATH secondary electron emission
下载PDF
On characteristics of sheath damping near a dielectric wall with secondary electron emission
9
作者 于达仁 卿绍伟 +1 位作者 闫国军 段萍 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期317-322,共6页
A preliminary investigation is conducted to study the characteristics of sheath damping near a dielectric wall with secondary electron emission (SEE). Making use of the linear analysis of the sheath stability, we ha... A preliminary investigation is conducted to study the characteristics of sheath damping near a dielectric wall with secondary electron emission (SEE). Making use of the linear analysis of the sheath stability, we have found two major contributions to the sheath damping, one similar to the Landau damping in uniform plasmas and another determined by local electric field and electron density of the steady-state sheath. It indicates that in a classical sheath regime the damping in the sheath region monotonically increases towards the wall and decreases with the enhancement of SEE effect. In order to verify the theoretical analysis, sheath oscillation processes induced by an initial disturbance are simulated with a time-dependent one-dimensional (1D) sheath model. Numerical results obtained are consistent with the theoretical analysis qualitatively. 展开更多
关键词 plasma sheath DAMPING electron electrostatic wave secondary electron emission
下载PDF
Electron emission induced by keV protons from tungsten surface at different temperatures
10
作者 Li-Xia Zeng Xian-Ming Zhou +3 位作者 Rui Cheng Yu Liu Xiao-An Zhang Zhong-Feng Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期241-246,共6页
The electron emission yield is measured from the tungsten surface bombarded by the protons in an energy range of 50keV–250keV at different temperatures.In our experimental results,the total electron emission yield,wh... The electron emission yield is measured from the tungsten surface bombarded by the protons in an energy range of 50keV–250keV at different temperatures.In our experimental results,the total electron emission yield,which contains mainly the kinetic electron emission yield,has a very similar change trend to the electronic stopping power.At the same time,it is found that the ratio of total electron emission yield to electronic stopping power becomes smaller as the incident ion energy increases.The experimental result is explained by the ionization competition mechanism between electrons in different shells of the target atom.The explanation is verified by the opposite trends to the incident energy between the ionization cross section of M and outer shells. 展开更多
关键词 electron emission X-RAY electronic stopping power work function
下载PDF
Ion-induced kinetic electron emission from ~6LiF,~7LiF and MgF_2 thin films
11
作者 S.Ullah A.H.Dogar +1 位作者 M.Ashraf A.Qayyum 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期344-349,共6页
Secondary electron yields for Ar^+ impact on 6LiF, 7LiF and MgF2 thin films grown on aluminum substrates are measured each as a function of target temperature and projectile energy. Remarkably different behaviours of... Secondary electron yields for Ar^+ impact on 6LiF, 7LiF and MgF2 thin films grown on aluminum substrates are measured each as a function of target temperature and projectile energy. Remarkably different behaviours of the electron yields for LiF and MgF2 films are observed in a temperature range from 25 ℃ to 300 ℃. The electron yield of LiF is found to sharply increase with target temperature and to be saturated at about 175 ℃. But the target temperature has no effect on the electron yield of MgF2. It is also found that for the ion energies greater than 4 keV, the electron yield of 6LiF is consistently high as compared with that of 7LiF that may be due to the enhanced contribution of recoiling 6Li atoms to the secondary electron generation. A comparison between the electron yields of MgF2 and LiF reveales that above a certain ion energy the electron yield of MgF2 is considerably low as compared with that of LiF. We suggest that the short inelastic mean free path of electrons in MgF2 can be one of the reasons for its low electron yield. 展开更多
关键词 ion-induced electron emission alkali halides electronic stopping electron mean free path
下载PDF
Secondary electron emission model for photo-emission from metals in the vacuum ultraviolet
12
作者 Ai-Gen Xie Yi-Fan Liu Hong-Jie Dong 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第8期89-105,共17页
This study investigates two secondary electron emission(SEE)models for photoelectric energy distribution curves f(E_(ph),hγ),B,E_(mean),absolute quantum efficiency(AQE),and the mean escape depth of photo-emitted elec... This study investigates two secondary electron emission(SEE)models for photoelectric energy distribution curves f(E_(ph),hγ),B,E_(mean),absolute quantum efficiency(AQE),and the mean escape depth of photo-emitted electronsλof metals.The proposed models are developed from the density of states and the theories of photo-emission in the vacuum ultraviolet and SEE,where B is the mean probability that an internal photo-emitted electron escapes into vacuum upon reaching the emission surface of the metal,and E_(mean)is the mean energy of photo-emitted electrons measured from vacuum.The formulas for f(E_(ph),hγ),B,λ,E_(mean),and AQE that were obtained were shown to be correct for the cases of Au at hγ=8.1–11.6 eV,Ni at hγ=9.2–11.6 eV,and Cu at hγ=7.7–11.6 eV.The photoelectric cross sections(PCS)calculated here are analyzed,and it was confirmed that the calculated PCS of the electrons in the conduction band of Au at hγ=8.1–11.6eV,Ni at hγ=9.2–11.6 eV,and Cu at hγ=7.7–11.6 eV are correct. 展开更多
关键词 Absolute quantum efficiency Photoelectric cross section Mean escape depth of photo-emitted electrons Probability Photo-emission from metals Secondary electron emission Vacuum ultraviolet Mean energy of photo-emitted electrons
下载PDF
Secondary electron emission and photoemission from a negative electron affinity semiconductor with large mean escape depth of excited electrons
13
作者 谢爱根 董红杰 刘亦凡 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期677-690,共14页
The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the m... The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the maximumδandδat 100.0 keV≥E_(po)≥1.0 keV of a NEASLD with the deduced formulae are presented(B is the probability that an internal secondary electron escapes into the vacuum upon reaching the emission surface of the emitter,δis the secondary electron yield,E_(po)is the incident energy of primary electrons and E_(pom)is the E_(po)corresponding to the maximumδ).The parameters obtained here are analyzed,and it can be concluded that several parameters of NEASLDs obtained by the methods presented here agree with those obtained by other authors.The relation between the secondary electron emission and photoemission from a NEAS with large mean escape depth of excited electrons is investigated,and it is concluded that the presented method of obtaining A is more accurate than that of obtaining the corresponding parameter for a NEAS with largeλ_(ph)(λ_(ph)being the mean escape depth of photoelectrons),and that the presented method of calculating B at E_(po)>10.0 keV is more widely applicable for obtaining the corresponding parameters for a NEAS with largeλ_(ph). 展开更多
关键词 negative electron affinity semiconductor secondary electron emission PHOTOemission the probability secondary electron yield large mean escape depth of excited electrons
下载PDF
Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
14
作者 Xue-Lian Jin Pei-Yu Ji +2 位作者 Lan-Jian Zhuge Xue-Mei Wu Cheng-Gang Jin 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第2期613-617,共5页
The secondary electron emission yields of materials depend on the geometries of their surface structures.In this paper,a method of depositing vertical graphene nanosheet(VGN)on the surface of the material is proposed,... The secondary electron emission yields of materials depend on the geometries of their surface structures.In this paper,a method of depositing vertical graphene nanosheet(VGN)on the surface of the material is proposed,and the secondary electron emission(SEE)characteristics for the VGN structure are studied.The COMSOL simulation and the scanning electron microscope(SEM)image analysis are carried out to study the secondary electron yield(SEY).The effect of aspect ratio and packing density of VGN on SEY under normal incident condition are studied.The results show that the VGN structure has a good effect on suppressing SEE. 展开更多
关键词 secondary electron emission secondary electron yield vertical graphene nanosheets scanning electron microscope
下载PDF
The charging stability of different silica glasses studied by measuring the secondary electron emission yield
15
作者 赵谡玲 Bertrand Poumellec 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期473-480,共8页
This paper reports that the charging properties of lead silica, Suprasil silica and Infrasil silica are investigated by measuring the secondary electron emission (SEE) yield. At a primary electron beam energy of 25 ... This paper reports that the charging properties of lead silica, Suprasil silica and Infrasil silica are investigated by measuring the secondary electron emission (SEE) yield. At a primary electron beam energy of 25 keV, the intrinsic SEE yields measured at very low injection dose are 0.54, 0.29 and 0.35, respectively for lead silica, Suprasil and Infrasil silica glass. During the first e-beam irradiation at a high injection current density, the SEE yields of lead silica and Suprasil increase continuously and slowly from their initial values to a steady state. At the steady state, the SEE yields of lead silica and Suprasil are 0.94 and 0.93, respectively. In Infrasil, several charging and discharging processes are observed during the experiment. This shows that Infrasil does not reach its steady state. Two hours later, all samples are irradiated again in the same place as the first irradiation at a low current density and low dose. The SEE yields of lead silica, Suprasil and Infrasil are 0.69, 0.76 and 0.55, respectively. Twenty hours later, the values are 0.62, 0.64 and 0.33, respectively, for lead silica, Suprasil and Infrasil. These results show that Infrasil has poor charging stability. Comparatively, the charging stability of lead silica is better, and Suprasil has the best characteristics. 展开更多
关键词 secondary electron emission yield charging stability nonlinear silica glass
下载PDF
A refined Monte Carlo code for low-energy electron emission from gold material irradiated with sub-keV electrons
16
作者 Li-Heng Zhou Shui-Yan Cao +2 位作者 Tao Sun Yun-Long Wang Jun Ma 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期79-92,共14页
Considering the significance of low-energy electrons(LEEs;0–20 eV) in radiobiology, the sensitization potential of gold nanoparticles(AuNPs) as high-flux LEE emitters when irradiated with sub-keV electrons has been s... Considering the significance of low-energy electrons(LEEs;0–20 eV) in radiobiology, the sensitization potential of gold nanoparticles(AuNPs) as high-flux LEE emitters when irradiated with sub-keV electrons has been suggested. In this study, a track-structure Monte Carlo simulation code using the dielectric theory was developed to simulate the transport of electrons below 50 keV in gold. In this code, modifications, particularly for elastic scattering, are implemented for a more precise description of the LEE emission in secondary electron emission. This code was validated using the secondary electron yield and backscattering coefficient. To ensure dosimetry accuracy, we further verified the code for energy deposition calculations using the Monte Carlo toolkit, Geant4. The development of this code provides a basis for future studies regarding the role of AuNPs in targeted radionuclide radiotherapy. 展开更多
关键词 Monte Carlo code Secondary electron emission Low-energy electrons
下载PDF
Analysis of secondary electron emission using the fractal method
17
作者 Chun-Jiang Bai Tian-Cun Hu +4 位作者 Yun He Guang-Hui Miao Rui Wang Na Zhang Wan-Zhao Cui 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期537-544,共8页
Based on the rough surface topography with fractal parameters and the Monte–Carlo simulation method for secondary electron emission properties, we analyze the secondary electron yield(SEY) of a metal with rough surfa... Based on the rough surface topography with fractal parameters and the Monte–Carlo simulation method for secondary electron emission properties, we analyze the secondary electron yield(SEY) of a metal with rough surface topography. The results show that when the characteristic length scale of the surface, G, is larger than 1 × 10^(-7), the surface roughness increases with the increasing fractal dimension D. When the surface roughness becomes larger, it is difficult for entered electrons to escape surface. As a result, more electrons are collected and then SEY decreases. When G is less than 1 × 10^(-7),the effect of the surface topography can be ignored, and the SEY almost has no change as the dimension D increases. Then,the multipactor thresholds of a C-band rectangular impedance transfer and an ultrahigh-frequency-band coaxial impedance transfer are predicted by the relationship between the SEY and the fractal parameters. It is verified that for practical microwave devices, the larger the parameter G is, the higher the multipactor threshold is. Also, the larger the value of D,the higher the multipactor threshold. 展开更多
关键词 secondary electron emission yield the fractal method MULTIPACTOR
下载PDF
Characteristics of secondary electron emission from few layer graphene on silicon(111) surface
18
作者 Guo-Bao Feng Yun Li +2 位作者 Xiao-Jun Li Gui-Bai Xie Lu Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期549-562,共14页
As a typical two-dimensional(2D) coating material, graphene has been utilized to effectively reduce secondary electron emission from the surface. Nevertheless, the microscopic mechanism and the dominant factor of seco... As a typical two-dimensional(2D) coating material, graphene has been utilized to effectively reduce secondary electron emission from the surface. Nevertheless, the microscopic mechanism and the dominant factor of secondary electron emission suppression remain controversial. Since traditional models rely on the data of experimental bulk properties which are scarcely appropriate to the 2D coating situation, this paper presents the first-principles-based numerical calculations of the electron interaction and emission process for monolayer and multilayer graphene on silicon(111) substrate. By using the anisotropic energy loss for the coating graphene, the electron transport process can be described more realistically. The real physical electron interactions, including the elastic scattering of electron-nucleus, inelastic scattering of the electron-extranuclear electron, and electron-phonon effect, are considered and calculated by using the Monte Carlo method. The energy level transition theory-based first-principles method and the full Penn algorithm are used to calculate the energy loss function during the inelastic scattering. Variations of the energy loss function and interface electron density differences for 1 to 4 layer graphene coating Go Si are calculated, and their inner electron distributions and secondary electron emissions are analyzed. Simulation results demonstrate that the dominant factor of the inhibiting of secondary electron yield(SEY) of Go Si is to induce the deeper electrons in the internal scattering process. In contrast, a low surface potential barrier due to the positive deviation of electron density difference at monolayer Go Si interface in turn weakens the suppression of secondary electron emission of the graphene layer. Only when the graphene layer number is 3, does the contribution of surface work function to the secondary electron emission suppression appear to be slightly positive. 展开更多
关键词 secondary electron emission graphene on silicon numerical simulation
下载PDF
Effect of Secondary Electron Emission on the Sheath in SPT Chamber
19
作者 薛中华 赵晓云 +3 位作者 王丰 刘金远 刘悦 宫野 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第1期57-61,共5页
A one-dimensional slab model of the plasma sheath in the stationary plasma thruster (SPT) chamber is developed in this study. It is considered that secondary electrons emitted from ceramic walls are partially trappe... A one-dimensional slab model of the plasma sheath in the stationary plasma thruster (SPT) chamber is developed in this study. It is considered that secondary electrons emitted from ceramic walls are partially trapped by the bulk plasma in the SPT chamber; some secondary electrons drift across the sheath where they are generated and the bulk and move towards the opposite sheath. Thus both the secondary electron emission (SEE) from one sheath and the partially trapped secondary electrons from the opposite sheath contribute to this sheath. The results indicate that both the SEE coefficient and trapping coefficient have a significant impact not only on the distributions of both electrons and ions of the SPT sheath but also on the energy flux loss to the SPT wall. When the trapping coefficient increases, the energy flux of electrons deposited to the walls will increase whereas that of ions will decrease. Besides, the critical electron temperature will decrease greatly with the increase of the trapping coefficient. 展开更多
关键词 stationary plasma thruster secondary electron emission SHEATH
下载PDF
Mechanism of Secondary Electron Emission of Cu-Al-Mg Alloy
20
作者 潘奇汉 《Rare Metals》 SCIE EI CAS CSCD 1995年第3期217-222,共6页
The slices of Cu-Al-Mg alloys with thickness of 0.1mm were prepared. Some samples were activated at the temperature of 590°C and 620°C respectively. The secondary electron emission (SEE) factor (σ) was dete... The slices of Cu-Al-Mg alloys with thickness of 0.1mm were prepared. Some samples were activated at the temperature of 590°C and 620°C respectively. The secondary electron emission (SEE) factor (σ) was determined. The composition of surface and the electron binding energy were studied by means of XPS and AES. It is shown that the oxide mainly consisting of Al2O3 and MgO can be formed spontaneously at room temperature. This oxide layer exhibits lower electron binding energy, high σ and satisfactory stability. 展开更多
关键词 Aluminum alloys electron emission Magnesium alloys
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部