期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effect of parallel resonance on the electron energy distribution function in a 60 MHz capacitively coupled plasma 被引量:1
1
作者 You HE Yeong-Min LIM +3 位作者 Jun-Ho LEE Ju-Ho KIM Moo-Young LEE Chin-Wook CHUNG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期69-78,共10页
In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit ... In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit is applied to improve the power transfer efficiency at high RF power,and the effect of the parallel resonance on the electron energy distribution function(EEDF)is investigated in a 60 MHz CCP.The CCP consists of a power feed line,the electrodes,and plasma.The reactance of the CCP is positive at 60 MHz and acts like an inductive load.A vacuum variable capacitor(VVC)is connected in parallel with the inductive load,and then the parallel resonance between the VVC and the inductive load can be achieved.As the capacitance of the VVC approaches the parallel resonance condition,the equivalent resistance of the parallel circuit is considerably larger than that without the VVC,and the current flowing through the matching network is greatly reduced.Therefore,the power transfer efficiency of the discharge is improved from 76%,70%,and 68%to 81%,77%,and 76%at RF powers of 100 W,150 W,and 200 W,respectively.At parallel resonance conditions,the electron heating in bulk plasma is enhanced,which cannot be achieved without the VVC even at the higher RF powers.This enhancement of electron heating results in the evolution of the shape of the EEDF from a biMaxwellian distribution to a distribution with the smaller temperature difference between high-energy electrons and low-energy electrons.Due to the parallel resonance effect,the electron density increases by approximately 4%,18%,and 21%at RF powers of 100 W,150 W,and 200 W,respectively. 展开更多
关键词 capacitively coupled plasma parallel resonance electron energy distribution function
下载PDF
Analysis of electron energy distribution function in a magnetically filtered complex plasma
2
作者 M K Deka H Bailung N C Adhikary 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期324-329,共6页
The electron energy distribution function (EEDF) for a magnetically filtered dusty plasma is studied in a dusty double plasma device where the electron energy can be varied from 0.15 eV to ~ 2.8 eV and plasma densi... The electron energy distribution function (EEDF) for a magnetically filtered dusty plasma is studied in a dusty double plasma device where the electron energy can be varied from 0.15 eV to ~ 2.8 eV and plasma density from 10 6 cm-3 to 10 9cm-3 . The characteristics of EEDF for these ranges of plasma parameters are investigated in a pristine plasma as well as in a dusty plasma. The results show that in the presence of dust, there is a drastic modification in EEDF patterns in a plasma with higher electron temperature and density than those in a low temperature and low density plasma produced by the magnetic filter. 展开更多
关键词 dusty plasma magnetic filter electron energy distribution function
下载PDF
A New Insight into Energy Distribution of Electrons in Fuel-Rod Gap in VVER-1000 Nuclear Reactor
3
作者 Fereshteh GOLIAN Ali PAZIRANDEH Saeed MOHAMMADI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第6期441-447,共7页
In order to calculate the electron energy distribution in the fuel rod gap of a VVER- 1000 nuclear reactor, the Fokker-Planck equation (FPE) governing the non-equilibrium behavior of electrons passing through the fu... In order to calculate the electron energy distribution in the fuel rod gap of a VVER- 1000 nuclear reactor, the Fokker-Planck equation (FPE) governing the non-equilibrium behavior of electrons passing through the fuel-rod gap as an absorber has been solved in this paper. Besides, the Monte Carlo Geant4 code was employed to simulate the electron migration in the fuel-rod gap and the energy distribution of electrons was found. As for the results, the accuracy of the FPE was compared to the Geant4 code outcomes and a satisfactory agreement was found. Also, different percentage of the volatile and noble gas fission fragments produced in fission reactions in fuel rod, i.e. Krypton, Xenon, Iodine, Bromine, Rubidium and Cesium were employed so as to investigate their effects on the electrons' energy distribution. The present results show that most of the electrons in the fuel rod's gap were within the thermal energy limitation and the tail of the electron energy distribution was far from a Maxwellian distribution. The interesting outcome was that the electron energy distribution is slightly increased due to the accumulation of fission fragments in the gap. It should be noted that solving the FPE for the energy straggling electrons that are penetrating into the fuel-rod gap in the VVER-1000 nuclear reactor has been carried out for the first time using an analytical approach. 展开更多
关键词 plasma electron energy distribution function Langevin approach based onFokker-Planck equation Geant4 Monte Carlo code
下载PDF
Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source 被引量:3
4
作者 金逸舟 杨涓 +2 位作者 汤明杰 罗立涛 冯冰冰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第7期744-750,共7页
The ion source of the electron cyclotron resonance ion thruster (ECRIT) extracts ions from its ECR plasma to generate thrust, and has the property of low gas consumption (2 seem, standard-state cubic centimeter per... The ion source of the electron cyclotron resonance ion thruster (ECRIT) extracts ions from its ECR plasma to generate thrust, and has the property of low gas consumption (2 seem, standard-state cubic centimeter per minute) and high durability. Due to the indispensable effects of the primary electron in gas discharge, it is important to experimentally clarify the electron energy structure within the ion source of the ECRIT through analyzing the electron energy distribution function (EEDF) of the plasma inside the thruster. In this article the Langmuir probe diagnosing method was used to diagnose the EEDF, from which the effective electron temperature, plasma density and the electron energy probability function (EEPF) were deduced. The experimental results show that the magnetic field influences the curves of EEDF and EEPF and make the effective plasma parameter nonuniform. The diagnosed electron temperature and density from sample points increased from 4 eV/2 ×10^16 m-3 to 10 eV/4×10^16 m-3 with increasing distances from both the axis and the screen grid of the ion source. Electron temperature and density peaking near the wall coincided with the discharge process. However, a double Maxwellian electron distribution was unexpectedly observed at the position near the axis of the ion source and about 30 mm from the screen grid. Besides, the double Maxwellian electron distribution was more likely to emerge at high power and a low gas flow rate. These phenomena were believed to relate to the arrangements of the gas inlets and the magnetic field where the double Maxwellian electron distribution exits. The results of this research may enhance the understanding of the plasma generation process in the ion source of this type and help to improve its performance. 展开更多
关键词 ion source plasma diagnostic electron energy distribution function
下载PDF
Validity of the two-term Boltzmann approximation employed in the fluid model for high-power microwave breakdown in gas 被引量:2
5
作者 赵朋程 廖成 +1 位作者 杨丹 钟选明 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期380-384,共5页
The electron energy distribution function (EEDF), predicted by the Boltzmann equation solver BOLSIG+ based on the two-term approximation, is introduced into the fluid model for simulating the high-power microwave ... The electron energy distribution function (EEDF), predicted by the Boltzmann equation solver BOLSIG+ based on the two-term approximation, is introduced into the fluid model for simulating the high-power microwave (HPM) breakdown in argon, nitrogen, and air, and its validity is examined by comparing with the results of particle-in-cell Monte Carlo collision (PIC/MCC) simulations as well as the experimental data. Numerical results show that, the breakdown time of the fluid model with the Maxwellian EEDF matches that of the PIC/MCC simulations in nitrogen; however, in argon under high pressures, the results from the Maxwellian EEDF were poor. This is due to an overestimation of the energy tail of the Maxwellian EEDF in argon breakdown. The prediction of the fluid model with the BOLSIG+ EEDF, however, agrees very well with the PIC/MCC prediction in nitrogen and argon over a wide range of pressures. The accuracy of the fluid model with the BOLSIG+ EEDF is also verified by the experimental results of the air breakdown. 展开更多
关键词 fluid model electron energy distribution function gas breakdown particle-in-cell Monte Carlocollision (PIC/MCC) simulation
下载PDF
Short-pulse high-power microwave breakdown at high pressures
6
作者 赵朋程 廖成 冯菊 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期282-286,共5页
The fluid model is proposed to investigate the gas breakdown driven by a short-pulse(such as a Gaussian pulse) highpower microwave at high pressures.However,the fluid model requires specification of the electron ene... The fluid model is proposed to investigate the gas breakdown driven by a short-pulse(such as a Gaussian pulse) highpower microwave at high pressures.However,the fluid model requires specification of the electron energy distribution function(EEDF);the common assumption of a Maxwellian EEDF can result in the inaccurate breakdown prediction when the electrons are not in equilibrium.We confirm that the influence of the incident pulse shape on the EEDF is tiny at high pressures by using the particle-in-cell Monte Carlo collision(PIC-MCC) model.As a result,the EEDF for a rectangular microwave pulse directly derived from the Boltzmann equation solver Bolsig+ is introduced into the fluid model for predicting the breakdown threshold of the non-rectangular pulse over a wide range of pressures,and the obtained results are very well matched with those of the PIC-MCC simulations.The time evolution of a non-rectangular pulse breakdown in gas,obtained by the fluid model with the EEDF from Bolsig+,is presented and analyzed at different pressures.In addition,the effect of the incident pulse shape on the gas breakdown is discussed. 展开更多
关键词 fluid model electron energy distribution function gas breakdown short-pulse high-power microwave
下载PDF
Optimization of Langmuir Probe System Parameters in a Stationary Laboratory Plasma
7
作者 朱颖 曹金祥 +3 位作者 牛田野 王亮 王艳 王舸 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第6期639-643,共5页
In order to obtain creditable data an applicable method to optimize parameters of the Langmuir probes and circuits in a stationary laboratory device is investigated and an experimental criterion of the probe dimension... In order to obtain creditable data an applicable method to optimize parameters of the Langmuir probes and circuits in a stationary laboratory device is investigated and an experimental criterion of the probe dimension is developed. To obtain the electron temperature and density the Electron Energy Distribution Function (EEDF) approach with less computing time and more accurate results is applied, instead of the conventional slope approach. Moreover the influence of the vessel wall materials on the plasma density is discussed briefly, indicating that the dielectric wall is helpful to enhancing the electron density. 展开更多
关键词 Langmuir probe electron density electron temperature electron energy distribution function
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部