In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the...In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the cell. We have shown in this study that electron mobility is strongly influenced by the thickness of the absorber, since electron velocity is reduced by thickness. The influence of the defect density shows that above 10<sup>16</sup> cm<sup>-3</sup> all the electrical parameters are affected by the defects. The band discontinuity at the interface generally plays a crucial role in the charge transport phenomenon. The importance of this study is to enable the development of good quality perovskite solar cells, while taking into account the parameters that limit solar cell performance.展开更多
The molecular beam epitaxial growth of high quality epilayers on (100) InP substrate using a valve phosphorous cracker cell over a wide range of P/In BEP ratio (2.0-7.0) and growth rate (0.437 and 0. 791μm/h). ...The molecular beam epitaxial growth of high quality epilayers on (100) InP substrate using a valve phosphorous cracker cell over a wide range of P/In BEP ratio (2.0-7.0) and growth rate (0.437 and 0. 791μm/h). Experimental results show that electrical properties exhibit a pronounced dependence on growth parameters,which are growth rate, P/In BEP ratio, cracker zone temperature, and growth temperature. The parameters have been optimized carefully via the results of Hall measurements. For a typical sample, 77K electron mobility of 4.57 × 10^4 cm^2/(V · s) and electron concentration of 1.55×10^15 cm^-3 have been achieved with an epilayer thickness of 2.35μm at a growth temperature of 370℃ by using a cracking zone temperature of 850℃.展开更多
An analytical model of electron mobility for strained-silicon channel nMOSFETs is proposed in this paper. The model deals directly with the strain tensor,and thus is independent of the manufacturing process. It is sui...An analytical model of electron mobility for strained-silicon channel nMOSFETs is proposed in this paper. The model deals directly with the strain tensor,and thus is independent of the manufacturing process. It is suitable for (100〉/ 〈110) channel nMOSFETs under biaxial or (100〉/〈 110 ) uniaxial stress and can be implemented in conventional device simulation tools .展开更多
The Al 0.24Ga 0.76As/In 0.22Ga 0.78As single delta-doped PHEMT (SH-PHEMT) and double delta-doped PHEMT (DH-PHEMT) are fabricated and investigated.Based on the employment of double heterojunction,double del...The Al 0.24Ga 0.76As/In 0.22Ga 0.78As single delta-doped PHEMT (SH-PHEMT) and double delta-doped PHEMT (DH-PHEMT) are fabricated and investigated.Based on the employment of double heterojunction,double delta doped design,the DH-PHEMT can enhance the carrier confinement,increase the electron gas density,and improve the electron gas distribution,which is beneficial to the device performance.A high device linearity,high transconductance over a large gate voltage swing,high current drivability are found in DH-PHEMT.These improvements suggest that DH-PHEMT is more suitable for high linearity applications in microwave power device.展开更多
The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heat...The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heating measurement of the A1GaN/GaN HEMT by pulsed electrical temperature sensitive parameter method. The extracted chip-level and package-level thermal resistances of the packaged multi-finger A1GaN/GaN HEMT with 400μm SiC substrate are 22.5 K/W and 7.2 K/W respectively, which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged A1GaN/GaN HEMTs. It is also experimentally proved that the extraction of the chip- level thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.展开更多
Holographic display has attracted widespread interest because of its ability to show the complete information of the object and bring people an unprecedented sense of presence. The absence of ideal recording materials...Holographic display has attracted widespread interest because of its ability to show the complete information of the object and bring people an unprecedented sense of presence. The absence of ideal recording materials has hampered the realization of their commercial applications. Here we report that the response time of a bismuth and magnesium codoped lithium niobate(LN:Bi,Mg) crystal is shortened to 7.2 ms and a sensitivity as high as 646 cm/J. The crystal was used to demonstrate a real-time holographic display with a refresh rate of 60 Hz, as that of the popular high-definition television. Moreover, the first-principles calculations indicate that the electron mobility while Bi occupying Nb-site is significantly greater than that in Li-site, which directly induces the fast response of LN:Bi,Mg crystals when the concentration of Mg is above its doping threshold.展开更多
An optimized micro-gated terahertz detector with novel triple resonant antenna is presented.The novel resonant antenna operates at room temperature and shows more than a 700% increase in photocurrent response compared...An optimized micro-gated terahertz detector with novel triple resonant antenna is presented.The novel resonant antenna operates at room temperature and shows more than a 700% increase in photocurrent response compared to the conventional bowtie antenna.In finite-difference-time-domain simulations,we found the performance of the self-mixing GaN/AlGaN high electron mobility transistor detector is mainly dependent on the parameters L gs(the gap between the gate and the source/drain antenna) and L w(the gap between the source and drain antenna).With the improved triple resonant antenna,an optimized micrometer-sized AlGaN/GaN high electron mobility transistor detector can achieve a high responsivity of 9.45×102 V/W at a frequency of 903 GHz at room temperature.展开更多
AlGaN/GaN high electron mobility transistors (HEMTs) are fabricated by employing SiN passivation, this paper investigates the degradation due to the high-electric-field stress. After the stress, a recoverable degrad...AlGaN/GaN high electron mobility transistors (HEMTs) are fabricated by employing SiN passivation, this paper investigates the degradation due to the high-electric-field stress. After the stress, a recoverable degradation has been found, consisting of the decrease of saturation drain current IDsat, maximal transconductance gm, and the positive shift of threshold voltage VTH at high drain-source voltage VDS. The high-electric-field stress degrades the electric characteristics of AlGaN/GaN HEMTs because the high field increases the electron trapping at the surface and in AlGaN barrier layer. The SiN passivation of AlGaN/GaN HEMTs decreases the surface trapping and 2DEC depletion a little during the high-electric-field stress. After the hot carrier stress with VDS = 20 V and VGS= 0 V applied to the device for 104 sec, the SiN passivation decreases the stress-induced degradation of IDsat from 36% to 30%. Both on-state and pulse-state stresses produce comparative decrease of IDsat, which shows that although the passivation is effective in suppressing electron trapping in surface states, it does not protect the device from high-electric-field degradation in nature. So passivation in conjunction with other technological solutions like cap layer, prepassivation surface treatments, or field-plate gate to weaken high-electric-field degradation should be adopted.展开更多
A1GaN/GaN high electron mobility transistors (HEMTs) were exposed to 1 MeV neutron irradiation at a neutron ftuence of 1 × 10^15 cm-2. The dc characteristics of the devices, such as the drain saturation current...A1GaN/GaN high electron mobility transistors (HEMTs) were exposed to 1 MeV neutron irradiation at a neutron ftuence of 1 × 10^15 cm-2. The dc characteristics of the devices, such as the drain saturation current and the maximum transconductance, decreased after neutron irradiation. The gate leakage currents increased obviously after neutron irradiation. However, the rf characteristics, such as the cut-off frequency and the maximum frequency, were hardly affected by neutron irradiation. The A1GaN/GaN heterojunctions have been employed for the better understanding of the degradation mechanism. It is shown in the Hall measurements and capacitance voltage tests that the mobility and concentration of two-dimensional electron gas (2DEG) decreased after neutron irradiation. Tbere was no evidence of the full-width at half-maximum of X-ray diffraction (XRD) rocking curve changing after irradiation, so the dislocation was not influenced by neutron irradiation. It is concluded that the point defects induced in A1GaN and GaN by neutron irradiation are the dominant mechanisms responsible for performance degradations of A1GaN/GaN HEMT devices.展开更多
The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are chang...The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are changed and two kinds of methods,i.e.,contrast body doping andδ-doping are used.The samples are analyzed by the Hall measurements at 300 Kand 77 K.The InxGa1-xAs/In0.52Al0.48As 2DEG channel structures with mobilities as high as 10289 cm^2/V·s(300 K)and42040 cm^2/V·s(77 K)are obtained,and the values of carrier concentration(Nc)are 3.465×10^12/cm^2 and 2.502×10^12/cm^2,respectively.The THz response rates of In P-based high electron mobility transistor(HEMT)structures with different gate lengths at 300 K and 77 K temperatures are calculated based on the shallow water wave instability theory.The results provide a reference for the research and preparation of In P-based HEMT THz detectors.展开更多
The electron mobility anisotropy in (Al,Ga)Sb/InAs two-dimensional electron gases with different surface morphology has been investigated.Large electron mobility anisotropy is found for the sample with anisotropic mor...The electron mobility anisotropy in (Al,Ga)Sb/InAs two-dimensional electron gases with different surface morphology has been investigated.Large electron mobility anisotropy is found for the sample with anisotropic morphology,which is mainly induced by the threading dislocations in the InAs layer.For the samples with isotropic morphology,the electron mobility is also anisotropic and could be attributed to the piezoelectric scattering.At low temperature (below transition temperature),the piezoelectric scattering is enhanced with the increase of temperature,leading to the increase of electron mobility anisotropy.At high temperature (above transition temperature),the phonon scattering becomes dominant.Because the phonon scattering is isotropic,the electron mobility anisotropy in all the samples would be reduced.Our results provide useful information for the comprehensive understanding of electron mobility anisotropy in the (Al,Ga)Sb/InAs system.展开更多
The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and grow...The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si ^-doping concentration (Nd) is about 5.0 x 1012 cm-2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission elec- tron microscopy. An InGaAs/InAiAs/InP HEMT device with a gate length of lOOnm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits fT = 249 GHa and fmax 〉 400 GHz.展开更多
In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are...In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are described. The circuit-based Neuro-space mapping (neuro-SM) technique is studied in detail. The EEHEMT model is implemented according to the measurement results of the designed device, which serves as a coarse model. An ANN is proposed to model AIGaN/CaN HEMT based on the coarse model. Its optimization is performed. The simulation results from the model are compared with the measurement results. It is shown that the simulation results obtained from the ANN model of A1GaN/GaN HEMT are more accurate than those obtained from the EEHEMT model.展开更多
In this paper, the influence of a drain field plate (FP) on the forward blocking characteristics of an AlGaN/GaN high electron mobility transistor (HEMT) is investigated. The HEMT with only a gate FP is optimized,...In this paper, the influence of a drain field plate (FP) on the forward blocking characteristics of an AlGaN/GaN high electron mobility transistor (HEMT) is investigated. The HEMT with only a gate FP is optimized, and breakdown voltage VBR is saturated at 1085 V for gate–drain spacing LGD ≥ 8 μm. On the basis of the HEMT with a gate FP, a drain FP is added with LGD=10 μm. For the length of the drain FP LDF ≤ 2 μm, VBR is almost kept at 1085 V, showing no degradation. When LDF exceeds 2 μm, VBR decreases obviously as LDF increases. Moreover, the larger the LDF, the larger the decrease of VBR. It is concluded that the distance between the gate edge and the drain FP edge should be larger than a certain value to prevent the drain FP from affecting the forward blocking voltage and the value should be equal to the LGD at which VBR begins to saturate in the first structure. The electric field and potential distribution are simulated and analyzed to account for the decrease of VBR.展开更多
A high performance InAlN/GaN high electron mobility transistor(HEMT)at low voltage operation(6-10 V drain voltage)has been fabricated.An 8 nm InAlN barrier layer is adopted to generate large 2DEG density thus to reduc...A high performance InAlN/GaN high electron mobility transistor(HEMT)at low voltage operation(6-10 V drain voltage)has been fabricated.An 8 nm InAlN barrier layer is adopted to generate large 2DEG density thus to reduce sheet resistance.Highly scaled lateral dimension(1.2μm source-drain spacing)is to reduce access resistance.Both low sheet resistance of the InAlN/GaN structure and scaled lateral dimension contribute to an high extrinsic transconductance of 550 mS/mm and a large drain current of 2.3 A/mm with low on-resistance(Ron)of 0.9Ω·mm.Small signal measurement shows an fT/fmax of 131 GHz/196 GHz.Large signal measurement shows that the InAlN/GaN HEMT can yield 64.7%-52.7%(Vds=6-10 V)power added efficiency(PAE)associated with 1.6-2.4 W/mm output power density at 8 GHz.These results demonstrate that GaN-based HEMTs not only have advantages in the existing high voltage power and high frequency rf field,but also are attractive for low voltage mobile compatible rf applications.展开更多
A novel A1GaN/GaN high electron mobility transistor (HEMT) with double buried p-type layers (DBPLs) in the GaN buffer layer and its mechanism are studied. The DBPL A1GaN/GaN HEMT is characterized by two equi-long ...A novel A1GaN/GaN high electron mobility transistor (HEMT) with double buried p-type layers (DBPLs) in the GaN buffer layer and its mechanism are studied. The DBPL A1GaN/GaN HEMT is characterized by two equi-long p-type GaN layers which are buried in the GaN buffer layer under the source side. Under the condition of high-voltage blocking state, two reverse p-n junctions introduced by the buried p-type layers will effectively modulate the surface and bulk electric fields. Meanwhile, the buffer leakage is well suppressed in this structure and both lead to a high breakdown voltage. The simulations show that the breakdown voltage of the DBPL structure can reach above 2000 V from 467 V of the conventional structure with the same gate-drain length of 8μm.展开更多
The kink effect is studied in an AlGaN/GaN high electron mobility transistor by measuring DC performance during fresh, short-term stress and recovery cycle with negligible degradation. Vdg plays an assistant role in d...The kink effect is studied in an AlGaN/GaN high electron mobility transistor by measuring DC performance during fresh, short-term stress and recovery cycle with negligible degradation. Vdg plays an assistant role in detrapping electrons and short-term stress results in no creation of new category traps but an increase in number of active traps. A possible mechanism is proposed that electrical stress supplies traps with the electric field for activation and when device is under test field-assisted hot-electrons result in electrons detrapping from traps, thus deteriorating the kink effect. In addition, experiments show that the impact ionization is at a relatively low level, which is not the dominant mechanism compared with trapping effect. We analyse the complicated link between the kink effect and stress bias through groups of electrical stress states: Pals = 0-state, off-state, on-state (on-state with low voltage, high-power state, high field state). Finlly, a conclusion is drawn that electric field brings about more severe kink effect than hot electrons. With the assistance of electric field, hot electrons tend to be possible to modulate the charges in deep-level trap.展开更多
The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional el...The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 10^13 A/m^2 within a very narrow region(about 5 nm).For a current density of 7 × 10^13 A/m62 passing through the 2DEG channel with a 2DEG density of above 1.2 × 10^17 m^-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.展开更多
Direct current (DC) and pulsed measurements are performed to determine the degradation mechanisms of A1GaN/GaN high electron mobility transistors (HEMTs) under high temperature. The degradation of the DC character...Direct current (DC) and pulsed measurements are performed to determine the degradation mechanisms of A1GaN/GaN high electron mobility transistors (HEMTs) under high temperature. The degradation of the DC characteristics is mainly attributed to the reduction in the density and the mobility of the two-dimensional electron gas (2DEG). The pulsed measurements indicate that the trap assisted tunneling is the dominant gate leakage mechanism in the temperature range of interest. The traps in the barrier layer become active as the temperature increases, which is conducive to the electron tunneling between the gate and the channel. The enhancement of the tunneling results in the weakening of the current collapse effects, as the electrons trapped by the barrier traps can escape more easily at the higher temperature.展开更多
InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-D...InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-DEG are measured to be over 8 700 cm^2/V-s with sheet carrier densities larger than 4.6× 10^12 cm^ 2. Transistors with 1.0 μm gate length exhibits transconductance up to 842 mS/ram. Excellent depletion-mode operation, with a threshold voltage of-0.3 V and IDss of 673 mA/mm, is realized. The non-alloyed ohmic contact special resistance is as low as 1.66×10^-8 Ω/cm^2, which is so far the lowest ohmic contact special resistance. The unity current gain cut off frequency (fT) and the maximum oscillation frequency (fmax) are 42.7 and 61.3 GHz, respectively. These results are very encouraging toward manufacturing InP-based HEMT by MOCVD.展开更多
文摘In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the cell. We have shown in this study that electron mobility is strongly influenced by the thickness of the absorber, since electron velocity is reduced by thickness. The influence of the defect density shows that above 10<sup>16</sup> cm<sup>-3</sup> all the electrical parameters are affected by the defects. The band discontinuity at the interface generally plays a crucial role in the charge transport phenomenon. The importance of this study is to enable the development of good quality perovskite solar cells, while taking into account the parameters that limit solar cell performance.
文摘The molecular beam epitaxial growth of high quality epilayers on (100) InP substrate using a valve phosphorous cracker cell over a wide range of P/In BEP ratio (2.0-7.0) and growth rate (0.437 and 0. 791μm/h). Experimental results show that electrical properties exhibit a pronounced dependence on growth parameters,which are growth rate, P/In BEP ratio, cracker zone temperature, and growth temperature. The parameters have been optimized carefully via the results of Hall measurements. For a typical sample, 77K electron mobility of 4.57 × 10^4 cm^2/(V · s) and electron concentration of 1.55×10^15 cm^-3 have been achieved with an epilayer thickness of 2.35μm at a growth temperature of 370℃ by using a cracking zone temperature of 850℃.
文摘An analytical model of electron mobility for strained-silicon channel nMOSFETs is proposed in this paper. The model deals directly with the strain tensor,and thus is independent of the manufacturing process. It is suitable for (100〉/ 〈110) channel nMOSFETs under biaxial or (100〉/〈 110 ) uniaxial stress and can be implemented in conventional device simulation tools .
文摘The Al 0.24Ga 0.76As/In 0.22Ga 0.78As single delta-doped PHEMT (SH-PHEMT) and double delta-doped PHEMT (DH-PHEMT) are fabricated and investigated.Based on the employment of double heterojunction,double delta doped design,the DH-PHEMT can enhance the carrier confinement,increase the electron gas density,and improve the electron gas distribution,which is beneficial to the device performance.A high device linearity,high transconductance over a large gate voltage swing,high current drivability are found in DH-PHEMT.These improvements suggest that DH-PHEMT is more suitable for high linearity applications in microwave power device.
基金supported by the Natural Science Foundation of Beijing,China (Grant No. 4092005)the National High Technology Research and Development Program of China (Grant No. 2009AA032704)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091103110006)
文摘The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heating measurement of the A1GaN/GaN HEMT by pulsed electrical temperature sensitive parameter method. The extracted chip-level and package-level thermal resistances of the packaged multi-finger A1GaN/GaN HEMT with 400μm SiC substrate are 22.5 K/W and 7.2 K/W respectively, which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged A1GaN/GaN HEMTs. It is also experimentally proved that the extraction of the chip- level thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.
基金The National Key Research and Development Program of China(Grant No.2019YFA0705000)National Natural Science Foundation of China(No.12034010)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT_13R29).
文摘Holographic display has attracted widespread interest because of its ability to show the complete information of the object and bring people an unprecedented sense of presence. The absence of ideal recording materials has hampered the realization of their commercial applications. Here we report that the response time of a bismuth and magnesium codoped lithium niobate(LN:Bi,Mg) crystal is shortened to 7.2 ms and a sensitivity as high as 646 cm/J. The crystal was used to demonstrate a real-time holographic display with a refresh rate of 60 Hz, as that of the popular high-definition television. Moreover, the first-principles calculations indicate that the electron mobility while Bi occupying Nb-site is significantly greater than that in Li-site, which directly induces the fast response of LN:Bi,Mg crystals when the concentration of Mg is above its doping threshold.
基金Project supported by the National Basic Research Program of China (Grant No. G2009CB929303)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. Y0BAQ31001)+1 种基金the National Natural Science Foundation of China(Grant Nos. 60871077 and 61107093)the Visiting Professorship for Senior International Scientists of the Chinese Academy of Sciences (Grant No. 2010T2J07)
文摘An optimized micro-gated terahertz detector with novel triple resonant antenna is presented.The novel resonant antenna operates at room temperature and shows more than a 700% increase in photocurrent response compared to the conventional bowtie antenna.In finite-difference-time-domain simulations,we found the performance of the self-mixing GaN/AlGaN high electron mobility transistor detector is mainly dependent on the parameters L gs(the gap between the gate and the source/drain antenna) and L w(the gap between the source and drain antenna).With the improved triple resonant antenna,an optimized micrometer-sized AlGaN/GaN high electron mobility transistor detector can achieve a high responsivity of 9.45×102 V/W at a frequency of 903 GHz at room temperature.
基金Project supported by the State Key Program of National Natural Science Foundation of China (Grant No 60736033)the State Key Development Program (973 Program) for Basic Research of China (Grant No 513270407)the Advanced Research Foundation of China (Grant Nos 51311050112, 51308030102 and 51308040301)
文摘AlGaN/GaN high electron mobility transistors (HEMTs) are fabricated by employing SiN passivation, this paper investigates the degradation due to the high-electric-field stress. After the stress, a recoverable degradation has been found, consisting of the decrease of saturation drain current IDsat, maximal transconductance gm, and the positive shift of threshold voltage VTH at high drain-source voltage VDS. The high-electric-field stress degrades the electric characteristics of AlGaN/GaN HEMTs because the high field increases the electron trapping at the surface and in AlGaN barrier layer. The SiN passivation of AlGaN/GaN HEMTs decreases the surface trapping and 2DEC depletion a little during the high-electric-field stress. After the hot carrier stress with VDS = 20 V and VGS= 0 V applied to the device for 104 sec, the SiN passivation decreases the stress-induced degradation of IDsat from 36% to 30%. Both on-state and pulse-state stresses produce comparative decrease of IDsat, which shows that although the passivation is effective in suppressing electron trapping in surface states, it does not protect the device from high-electric-field degradation in nature. So passivation in conjunction with other technological solutions like cap layer, prepassivation surface treatments, or field-plate gate to weaken high-electric-field degradation should be adopted.
基金Project supported by the Major Program and Key Program of National Natural Science Foundation of China (Grant Nos. 60890191 and 60736033)
文摘A1GaN/GaN high electron mobility transistors (HEMTs) were exposed to 1 MeV neutron irradiation at a neutron ftuence of 1 × 10^15 cm-2. The dc characteristics of the devices, such as the drain saturation current and the maximum transconductance, decreased after neutron irradiation. The gate leakage currents increased obviously after neutron irradiation. However, the rf characteristics, such as the cut-off frequency and the maximum frequency, were hardly affected by neutron irradiation. The A1GaN/GaN heterojunctions have been employed for the better understanding of the degradation mechanism. It is shown in the Hall measurements and capacitance voltage tests that the mobility and concentration of two-dimensional electron gas (2DEG) decreased after neutron irradiation. Tbere was no evidence of the full-width at half-maximum of X-ray diffraction (XRD) rocking curve changing after irradiation, so the dislocation was not influenced by neutron irradiation. It is concluded that the point defects induced in A1GaN and GaN by neutron irradiation are the dominant mechanisms responsible for performance degradations of A1GaN/GaN HEMT devices.
基金Project supported by the Foundation for Scientific Instrument and Equipment Development,Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the National Natural Science Foundation of China(Grant No.61435012)
文摘The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are changed and two kinds of methods,i.e.,contrast body doping andδ-doping are used.The samples are analyzed by the Hall measurements at 300 Kand 77 K.The InxGa1-xAs/In0.52Al0.48As 2DEG channel structures with mobilities as high as 10289 cm^2/V·s(300 K)and42040 cm^2/V·s(77 K)are obtained,and the values of carrier concentration(Nc)are 3.465×10^12/cm^2 and 2.502×10^12/cm^2,respectively.The THz response rates of In P-based high electron mobility transistor(HEMT)structures with different gate lengths at 300 K and 77 K temperatures are calculated based on the shallow water wave instability theory.The results provide a reference for the research and preparation of In P-based HEMT THz detectors.
基金supported by NSFC (Grants No. 11834013 and 12174383)support from the Youth Innovation Promotion Association, Chinese Academy of Sciences (No. 2021110)。
文摘The electron mobility anisotropy in (Al,Ga)Sb/InAs two-dimensional electron gases with different surface morphology has been investigated.Large electron mobility anisotropy is found for the sample with anisotropic morphology,which is mainly induced by the threading dislocations in the InAs layer.For the samples with isotropic morphology,the electron mobility is also anisotropic and could be attributed to the piezoelectric scattering.At low temperature (below transition temperature),the piezoelectric scattering is enhanced with the increase of temperature,leading to the increase of electron mobility anisotropy.At high temperature (above transition temperature),the phonon scattering becomes dominant.Because the phonon scattering is isotropic,the electron mobility anisotropy in all the samples would be reduced.Our results provide useful information for the comprehensive understanding of electron mobility anisotropy in the (Al,Ga)Sb/InAs system.
基金Supported by the National Natural Science Foundation of China under Grant No 61434006
文摘The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si ^-doping concentration (Nd) is about 5.0 x 1012 cm-2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission elec- tron microscopy. An InGaAs/InAiAs/InP HEMT device with a gate length of lOOnm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits fT = 249 GHa and fmax 〉 400 GHz.
基金supported by the National Natural Science Foundation of China (Grant No. 60776052)
文摘In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are described. The circuit-based Neuro-space mapping (neuro-SM) technique is studied in detail. The EEHEMT model is implemented according to the measurement results of the designed device, which serves as a coarse model. An ANN is proposed to model AIGaN/CaN HEMT based on the coarse model. Its optimization is performed. The simulation results from the model are compared with the measurement results. It is shown that the simulation results obtained from the ANN model of A1GaN/GaN HEMT are more accurate than those obtained from the EEHEMT model.
基金Project supported by the Program for New Century Excellent Talents in University,China(Grant No.NCET-12-0915)the National Natural Science Foundation of China(Grant No.61204085)
文摘In this paper, the influence of a drain field plate (FP) on the forward blocking characteristics of an AlGaN/GaN high electron mobility transistor (HEMT) is investigated. The HEMT with only a gate FP is optimized, and breakdown voltage VBR is saturated at 1085 V for gate–drain spacing LGD ≥ 8 μm. On the basis of the HEMT with a gate FP, a drain FP is added with LGD=10 μm. For the length of the drain FP LDF ≤ 2 μm, VBR is almost kept at 1085 V, showing no degradation. When LDF exceeds 2 μm, VBR decreases obviously as LDF increases. Moreover, the larger the LDF, the larger the decrease of VBR. It is concluded that the distance between the gate edge and the drain FP edge should be larger than a certain value to prevent the drain FP from affecting the forward blocking voltage and the value should be equal to the LGD at which VBR begins to saturate in the first structure. The electric field and potential distribution are simulated and analyzed to account for the decrease of VBR.
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2018M640957)the Fundamental Research Funds for the Central Universities,China(Grant No.20101196761)+2 种基金the National Natural Science Foundation of China(Grant No.61904135)the National Defense Pre-Research Foundation of China(Grant No.31513020307)the Natural Science Foundation of Shaanxi Province of China(Grant No.2020JQ-316).
文摘A high performance InAlN/GaN high electron mobility transistor(HEMT)at low voltage operation(6-10 V drain voltage)has been fabricated.An 8 nm InAlN barrier layer is adopted to generate large 2DEG density thus to reduce sheet resistance.Highly scaled lateral dimension(1.2μm source-drain spacing)is to reduce access resistance.Both low sheet resistance of the InAlN/GaN structure and scaled lateral dimension contribute to an high extrinsic transconductance of 550 mS/mm and a large drain current of 2.3 A/mm with low on-resistance(Ron)of 0.9Ω·mm.Small signal measurement shows an fT/fmax of 131 GHz/196 GHz.Large signal measurement shows that the InAlN/GaN HEMT can yield 64.7%-52.7%(Vds=6-10 V)power added efficiency(PAE)associated with 1.6-2.4 W/mm output power density at 8 GHz.These results demonstrate that GaN-based HEMTs not only have advantages in the existing high voltage power and high frequency rf field,but also are attractive for low voltage mobile compatible rf applications.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61334002,61106106,and 61204085the China Postdoctoral Science Foundation Funded Project under Grant No 2015M582610
文摘A novel A1GaN/GaN high electron mobility transistor (HEMT) with double buried p-type layers (DBPLs) in the GaN buffer layer and its mechanism are studied. The DBPL A1GaN/GaN HEMT is characterized by two equi-long p-type GaN layers which are buried in the GaN buffer layer under the source side. Under the condition of high-voltage blocking state, two reverse p-n junctions introduced by the buried p-type layers will effectively modulate the surface and bulk electric fields. Meanwhile, the buffer leakage is well suppressed in this structure and both lead to a high breakdown voltage. The simulations show that the breakdown voltage of the DBPL structure can reach above 2000 V from 467 V of the conventional structure with the same gate-drain length of 8μm.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB309606)
文摘The kink effect is studied in an AlGaN/GaN high electron mobility transistor by measuring DC performance during fresh, short-term stress and recovery cycle with negligible degradation. Vdg plays an assistant role in detrapping electrons and short-term stress results in no creation of new category traps but an increase in number of active traps. A possible mechanism is proposed that electrical stress supplies traps with the electric field for activation and when device is under test field-assisted hot-electrons result in electrons detrapping from traps, thus deteriorating the kink effect. In addition, experiments show that the impact ionization is at a relatively low level, which is not the dominant mechanism compared with trapping effect. We analyse the complicated link between the kink effect and stress bias through groups of electrical stress states: Pals = 0-state, off-state, on-state (on-state with low voltage, high-power state, high field state). Finlly, a conclusion is drawn that electric field brings about more severe kink effect than hot electrons. With the assistance of electric field, hot electrons tend to be possible to modulate the charges in deep-level trap.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60976070)the Excellent Science and Technology Innovation Program from Beijing Jiaotong University,China
文摘The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 10^13 A/m^2 within a very narrow region(about 5 nm).For a current density of 7 × 10^13 A/m62 passing through the 2DEG channel with a 2DEG density of above 1.2 × 10^17 m^-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.
基金supported by the National Natural Science Foundation of China(Grant No.60736033)
文摘Direct current (DC) and pulsed measurements are performed to determine the degradation mechanisms of A1GaN/GaN high electron mobility transistors (HEMTs) under high temperature. The degradation of the DC characteristics is mainly attributed to the reduction in the density and the mobility of the two-dimensional electron gas (2DEG). The pulsed measurements indicate that the trap assisted tunneling is the dominant gate leakage mechanism in the temperature range of interest. The traps in the barrier layer become active as the temperature increases, which is conducive to the electron tunneling between the gate and the channel. The enhancement of the tunneling results in the weakening of the current collapse effects, as the electrons trapped by the barrier traps can escape more easily at the higher temperature.
基金Project(Z132012A001)supported by the Technical Basis Research Program in Science and Industry Bureau of ChinaProject(61201028,60876009)supported by the National Natural Science Foundation of China
文摘InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-DEG are measured to be over 8 700 cm^2/V-s with sheet carrier densities larger than 4.6× 10^12 cm^ 2. Transistors with 1.0 μm gate length exhibits transconductance up to 842 mS/ram. Excellent depletion-mode operation, with a threshold voltage of-0.3 V and IDss of 673 mA/mm, is realized. The non-alloyed ohmic contact special resistance is as low as 1.66×10^-8 Ω/cm^2, which is so far the lowest ohmic contact special resistance. The unity current gain cut off frequency (fT) and the maximum oscillation frequency (fmax) are 42.7 and 61.3 GHz, respectively. These results are very encouraging toward manufacturing InP-based HEMT by MOCVD.