Optimizing the intrinsic activity of non-noble metal by precisely tailoring electronic structure offers an appealing way to construct cost-effective catalysts for selective biomass valorization.Herein,we reported a P-...Optimizing the intrinsic activity of non-noble metal by precisely tailoring electronic structure offers an appealing way to construct cost-effective catalysts for selective biomass valorization.Herein,we reported a P-doping bifunctional catalyst(Ni-P/mSiO_(2))that achieved 96.6%yield for the hydrogenation rearrangement of furfural to cyclopentanone at mild conditions(1 MPaH_(2),150°C).The turnover frequency of Ni-P/mSiO_(2)was 411.9 h^(-1),which was 3.2-fold than that of Ni/mSiO_(2)(127.2 h^(-1)).Detailed characterizations and differential charge density calculations revealed that the electron-deficient Niδ+species were generated by the electron transfer from Ni to P,which promoted the ring rearrangement reaction.Density functional theory calculations illustrated that the presence of P atoms endowed furfural tilted adsorb on the Ni surface by the C=O group and facilitated the desorption of cyclopentanone.This work unraveled the connection between the localized electronic structures and the catalytic properties,so as to provide a promising reference for designing advanced catalysts for biomass valorization.展开更多
Balancing electron transfer and intermediate adsorption ability of bifunctional catalysts via tailoring electronic structures is crucial for green hydrogen production,while it still remains challenging due to lacking ...Balancing electron transfer and intermediate adsorption ability of bifunctional catalysts via tailoring electronic structures is crucial for green hydrogen production,while it still remains challenging due to lacking efficient strategies.Herein,one efficient and universal strategy is developed to greatly regulate electronic structures of the metallic Ni-Fe-P catalysts via in-situ introducing the rare earth(RE)atoms(Ni-Fe-RE-P,RE=La,Ce,Pr,and Nd).Accordingly,the as-prepared optimal Ni-Fe-Ce-P/CC self-supported bifunctional electrodes exhibited superior electrocatalytic activity and excellent stability with the low overpotentials of 247 and 331 mV at 100 mA cm^(-2) for HER and OER,respectively.In the assembled electrolyzer,the Ni-Fe-Ce-P/CC as bifunctional electrodes displayed low operation potential of 1.49 V to achieve a current density of 10 mA cm^(-2),and the catalytic performance can be maintained for 100 h.Experimental results combined with density functional theory(DFT)calculation reveal that Ce doping leads to electron decentralization and crystal structure distortion,which can tailor the band structures and d-band center of Ni-Fe-P,further increasing conductivity and optimizing intermediate adsorption energy.Our work not only proposes a valuable strategy to regulate the electron transfer and intermediate adsorption of electrocatalysts via RE atoms doping,but also provides a deep under-standing of regulation mechanism of metallic electrocatalysts for enhanced water splitting.展开更多
In semiconductor photocatalysts,the easy recombination of photogenerated carriers seriously affects the application of photocatalytic materials in water treatment.To solve the serious problem of electron−hole pair rec...In semiconductor photocatalysts,the easy recombination of photogenerated carriers seriously affects the application of photocatalytic materials in water treatment.To solve the serious problem of electron−hole pair recombination in perylene diimide(PDI)organic semiconductors,we loaded ferric hydroxyl oxide(FeOOH)on PDI materials,successfully prepared novel FeOOH@PDI photocatalytic materials,and constructed a photo-Fenton system.The system was able to achieve highly efficient degradation of BPA under visible light,with a degradation rate of 0.112 min^(−1)that was 20 times higher than the PDI system,and it also showed universal degradation performances for a variety of emerging organic pollutants and anti-interference ability.The mechanism research revealed that the FeOOH has the electron trapping property,which can capture the photogenerated electrons on the surface of PDI,effectively reducing the compounding rate of photogenerated carriers of PDI and accelerating the iron cycling and H2O2 activation on the surface of FeOOH at the same time.This work provides new insights and methods for solving the problem of easy recombination of carriers in semiconductor photocatalysts and degrading emerging organic pollutants.展开更多
Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer betwe...Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications.展开更多
Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using model...Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using modeled ZnFe_(2-x)Ni_xO_(4)(0 ≤ x ≤ 0.4) spinel oxides, we aim to develop better OER electrocatalyst through combining the construction of ferromagnetic(FM) ordering channels and generation of highly active reconstructed species. The number of symmetry-breaking Fe–O–Ni structure links to the formation of FM ordering electron transfer channels. Meanwhile, as the number of Ni^(3+)increases, more ligand holes are formed, beneficial for redirecting surface reconstruction. The electro-activated ZnFe_(1.6)Ni_(0.4)O_(4) shows the highest specific activity, which is 13 and 2.5 times higher than that of ZnFe_(2)O_(4) and unactivated ZnFe_(1.6)Ni_(0.4)O_(4), and even superior to the benchmark IrO_(2) under the overpotential of 350 mV. Applying external magnetic field can make electron spin more aligned, and the activity can be further improved to 39 times of ZnFe_(2)O_(4). We propose that intriguing FM exchange-field interaction at FM/paramagnetic interfaces can penetrate FM ordering channels into reconstructed oxyhydroxide layers, thereby activating oxyhydroxide layers as spin-filter to accelerate spin-selective electron transfer. This work provides a new guideline to develop highly efficient spintronic catalysts for water oxidation and other spin-forbidden reactions.展开更多
Conventional chemical oxidation of aldehydes such as furfural to corresponding acids by molecular oxygen usually needs high pressure to increase the solubility of oxygen in aqueous phase,while electrochemical oxidatio...Conventional chemical oxidation of aldehydes such as furfural to corresponding acids by molecular oxygen usually needs high pressure to increase the solubility of oxygen in aqueous phase,while electrochemical oxidation needs input of external electric energy.Herein,we developed a liquid flow fuel cell(LFFC)system to achieve oxidation of furfural in anode for furoic acid production with co-production of hydrogen gas.By controlling the electron transfer in cathode for reduction of oxygen,efficient generation of electricity or production of H_(2)O_(2)were achieved.Metal oxides especially Ag_(2)O have been screened as the efficient catalyst to promote the oxidation of aldehydes,while liquid redox couples were used for promoting the kinetics of oxygen reduction.A novel alkaline-acidic asymmetric design was also used for anolyte and catholyte,respectively,to promote the efficiency of electron transfer.Such an LFFC system achieves efficient conversion of chemical energy of aldehyde oxidation to electric energy and makes full use the transferred electrons for high-value added products without input of external energy.With(VO_(2))_(2)SO_(4)as the electron carrier in catholyte for four-electron reduction of oxygen,the peak output power density(Pmax)at room temperature reached 261 mW/cm^(2)with furoic acid and H_(2)yields of 90%and 0.10 mol/mol furfural,respectively.With anthraquinone-2-sulfonate(AQS)as the cathodic electron carrier,Pmaxof 60 mW/cm^(2)and furoic acid,H_(2)and H_(2)O_(2)yields of 0.88,0.15 and 0.41 mol/mol furfural were achieved,respectively.A new reaction mechanism on furfural oxidation on Ag_(2)O anode was proposed,referring to one-electron and two-electron reaction pathways depending on the fate of adsorbed hydrogen atom transferred from furfural aldehyde group.展开更多
With tunable local electronic environment,high mass density of MN4sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative...With tunable local electronic environment,high mass density of MN4sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative to the well-known M-N-C electrocatalysts.Herein,the coordination reaction between Cu^(2+)and 1,2,4,5-tetraaminobenzene(TAB) was conducted on the surface of metallic Cu nanowires,forming a thin layer of CuN4-based CCP(Cu-TAB) on the Cu nanowire.More importantly,interfacial transfer of electrons from Cu core to the CuN4-based CCP nanoshell was observed within the resulting CuTAB@Cu,which was found to enrich the local electronic density of the CuN4sites.As such,the CuTAB@Cu demonstrates much improved affinity to the*COOH intermediate formed from the rate determining step;the energy barrier for C-C coupling,which is critical to convert CO_(2)into C2products,is also decreased.Accordingly,it delivers a current density of-9.1 mA cm^(-2)at a potential as high as 0.558 V(vs.RHE) in H-type cell and a Faraday efficiency of 46.4% for ethanol.This work emphasizes the profound role of interfacial interaction in tuning the local electronic structure and activating the CuN4-based CCPs for efficient electroreduction of CO_(2).展开更多
2, 9, 16, 23-tetracarboxy zinc phthalocyanine (ZnTCPc) is synthesized and characterized by physicochemical and theoretical methods and it is used as a photosensitizer in dye-sensitized solar cells (DSSC). The exci...2, 9, 16, 23-tetracarboxy zinc phthalocyanine (ZnTCPc) is synthesized and characterized by physicochemical and theoretical methods and it is used as a photosensitizer in dye-sensitized solar cells (DSSC). The excited lifetime, band gap and frontier orbital distribution of ZnTCPc are investigated by fluorescence spectra, cyclic voltammetry and quantum calculation. The results show that the excited lifetime and band gap are 0. 1 ns and 1.81 eV, respectively. Moreover, it is found that the highest occupied molecular orbital (HOMO) location is not shared by both the zinc metal and the isoindoline ligands, and the lowest unoccupied molecular orbital(LUMO) location does not strengthen the interaction coupling between ZnTCPc and TiO:. As a result, the ZnTCPc-DSSC gains a short-circuit current density of 0. 147 mA/cm2, an open-circuit photovoltage of 277 mV, a fill factor of 0. 51 and an overall conversion efficiency of 0. 021%.展开更多
A lipid_depleted cytochrome b 6f (Cyt b 6f) preparation was obtained from spinach (Spinacia oleracea L.) chloroplasts. Upon reconstitution of this preparation with the membrane lipids purified from spinach thylakoid...A lipid_depleted cytochrome b 6f (Cyt b 6f) preparation was obtained from spinach (Spinacia oleracea L.) chloroplasts. Upon reconstitution of this preparation with the membrane lipids purified from spinach thylakoid, the effects of different membrane lipids on the electron transfer activity were studied. The results show that the electron transfer activity of Cyt b 6f is obviously stimulated to different extents, respectively, by monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), phosphatidylcholine (PC), phosphatidylglycerol (PG) and sulfoquinovosyldiacylglycerol (SQDG), and that the extents of stimulation may be closely related to the charge of the membrane lipids. The stimulation of non_charged lipids (MGDG, DGDG) and neutrally_charged lipid (PC) was high with a maximum enhancement of 89%, 75% and 77%, respectively; but the stimulation of two kinds of negatively_charged lipid (PG and SQDG) was relatively low with a maximum enhancement of 43% and 26%, respectively.展开更多
Pentachlorophenol, a widespread environmental pollutant that is possibly carcinogenic to humans, is metabolically oxidized to tetrachloroquinone (TCBQ) which can result in DNA damage. We have investigated the photoc...Pentachlorophenol, a widespread environmental pollutant that is possibly carcinogenic to humans, is metabolically oxidized to tetrachloroquinone (TCBQ) which can result in DNA damage. We have investigated the photochemical reaction dynamics of TCBQ with two pyrimidine type nucleobases (thymine and uracil) upon UVA (355 ran) excitation using the technique of nanosecond time-resolved laser flash photolysis. It has been found that 355 nm excitation populates TCBQ molecules to their triplet state 3TCBQ*, which are highly reactive towards thymine or uracil and undergo two parallel reactions, the hydrogen abstraction and electron transfer, leading to the observed photoproducts of TCBQH. and TCBQ.- in transient absorption spectra. The concomitantly produced nucleobase radicals and radical cations are expected to induce a series of oxidative or strand cleavage damage to DNA afterwards. By characterizing the photochemical hydrogen abstraction and electron transfer reactions, our results provide potentially important molecular reaction mechanisms for understanding the carcinogenic effects of pentachlorophenol and its metabolites TCBQ.展开更多
Searching new structured black phosphorus(BP)and exploring intriguing functions and applications have become a hot topic so far.Here,we introduce a novel Iso-type black phosphorus heterostructure guided by first princ...Searching new structured black phosphorus(BP)and exploring intriguing functions and applications have become a hot topic so far.Here,we introduce a novel Iso-type black phosphorus heterostructure guided by first principle calculation,which features unique heterointerface and electronic coupling interaction via stacking assembly of exfoliated black phosphorus(EBP)and amine-functionalized EBP(N-EBP).Inspired by the theoretical results,we constructed the Iso-type heterostructure comprising of ultrathin exfoliated few-layered EBP and N-EBP,both of which were derived from identical bulk BP.The purposive amine-functionalization not only creates positively-charged P atoms on N-EBP as effective active sites via N-induced intramolecular electron transfer(IET)but also endows N-EBP with lower work function relative to EBP,while the unique EBP/N-EBP Iso-type heterostructure engenders directional heterointerfacial electron transfer(HET).The coupled IET/HET effects optimize the charge redistribution to afford favorable O_(2)adsorption.In this case,our unique strategy for the first time exploits the inherent catalytic capability of BP toward the oxygen reduction reaction(ORR)and enables the first use of BP as metal-free ORR catalysts for Zn-air cells.The newly-designed heterostructure facilitates a 4-e^(-)transfer ORR relative to inactive EBP or N-EBP.Importantly,the polymer-shielded heterostructure acts as efficient air electrodes to endow a primary Zn-air cell with high stability,large capacity and high energy density—superior to the commercial Pt/C-enabled cell.This study as the first report on metal-free BP-based ORR catalysts and air electrodes not only extends BP's application scopes but also renders new insight toward design of electronically-coupled superstructures for energy-related applications.展开更多
Photo-induced electron transfer versus molecular structure of acceptors is investigated using ultrafast time-resolved transient grating spectroscopy. Typical laser dyes Rhodamine 101 (Rh101) and Rhodamine 6G (Rh6G) in...Photo-induced electron transfer versus molecular structure of acceptors is investigated using ultrafast time-resolved transient grating spectroscopy. Typical laser dyes Rhodamine 101 (Rh101) and Rhodamine 6G (Rh6G) in electron donor solvent-aniline are adopted as the objects. The forward electron transfer time constant from aniline to the excited singlet state of two Rhodamine dyes and subsequent back electron transfer from two dyes to aniline are measured. The experimental results denote that Rh6G presents faster electron transfer rates with aniline in both forward electron transfer and back electron transfer processes. With chemical calculation and qualitative analysis, it is found that the flexible molecular geometry of Rh6G leads to stronger electron coupling with donor solvent and further gives rise to larger electron transfer rates.展开更多
To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice stra...To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice straw with CaOLFD pretreatment was optimal in different pretreatment methods of the CaO+LFD,CaOLFD,LFD+CaO,CaO,and LFD.The maximum methane yield(314 ml(g VS)^(-1))and the highest VFAs concentration(14851 mg·L^(-1) on day 3)of the CaOLFD pretreatment group were 81%and 118%higher than that of the control group,respectively.Under the action of solid alkaline CaO,the bacteria of Clostridium,Atopostipes,Sphaerochaeta,Tissierella,Thiopseudomonas,Rikenellaceae,and Sedimentibacter could build up co-cultures with the archaeal of Methanosaeta,Methanobacterium,and Methanosarcina performing direct interspecies electron transfer(DIET)and improving AD performance of rice straw.Therefore,the combined pretreatment using CaO and LFD could not only pretreat rice straw but also stimulate co-cultures of microorganism to establish DIET enhancing AD efficiency.展开更多
The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(P...The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(PtNi_(2))have an enhanced HOR activity compared with single component Pt catalyst.While,the interface electron-transfer kinetics of PtNi_(2)catalyst exhibits a very wide electron-transfer speed distribution.When combined with carbon dots(CDs),the interface charge transfer of PtNi_(2)-CDs composite is optimized,and then the PtNi_(2)-5 mg CDs exhibits about 2.67 times and 4.04 times higher mass and specific activity in 0.1 M KOH than that of 20%commercial Pt/C.In this system,CDs also contribute to trapping H^(+)and H_(2)O generated during HOR,tuning hydrogen binding energy(HBE),and regulating interface electron transfer.This work provides a deep understanding of the interface catalytic kinetics of Pt-based alloys towards highly efficient HOR catalysts design.展开更多
Engineering unique electronic structure of catalyst to boost catalytic performance is of prime scientific and industrial importance.Herein,the identification of intrinsic electronic sensitivity for direct propene epox...Engineering unique electronic structure of catalyst to boost catalytic performance is of prime scientific and industrial importance.Herein,the identification of intrinsic electronic sensitivity for direct propene epoxidation was first achieved over highly stable Au/wormhole-like TS-1 catalyst.Results show that the electron transfer of Au species can be regulated by manipulating the dynamic evolutions and contents of Au valence states,thus resulting in different catalytic performance in 100 h time-on-stream.By DFT calculations,kinetic analysis and multicharacterizations,it is found that the Au^(0) species with higher electronic population can easily transfer more electrons to activate surface O_(2) compared with Au^(1+) and Au^(3+) species.Moreover,there is a positive correlation between Au^(0) content and activity.Based on this correlation,a facile strategy is further proposed to boost Au^(0) percentage,resulting in the reported highest PO formation rate without adding promoters.This work harbors tremendous guiding significance to the design of highly efficient Au/Ti-containing catalyst for propene epoxidation with H_(2) and O_(2).展开更多
Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during pract...Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during practical hydrogen evolution is not clearly elucidated.Herein,Pt-nanoparticle-decorated CdS nanorods(CdS/Pt)are utilized as the model system to analyze the electron transfer kinetics in CdS/Pt heterojunction.Through femtosecond transient absorption spectroscopy,three dominating exciton quenching pathways are observed and assigned to the trapping of photogenerated electrons at shallow states,recombination of free electrons and trapped holes,and radiative recombination of locally photogenerated electron-hole pairs.The introduction of Pt cocatalyst can release the electrons trapped at the shallow states and construct an ultrafast electron transfer tunnel at the CdS/Pt interface.When CdS/Pt is dispersed in acetonitrile,the lifetime and rate for interfacial electron transfer are respectively calculated to be~5.5 ps and~3.5×10^(10) s^(−1).The CdS/Pt is again dispersed in water to simulate photocatalytic water splitting.The lifetime of the interfacial electron transfer decreases to~5.1 ps and the electron transfer rate increases to~4.9×10^(10) s^(−1),confirming that Pt nanoparticles serve as the main active sites of hydrogen evolution.This work reveals the role of Pt cocatalysts in enhancing the photocatalytic performance of CdS from the perspective of electron transfer kinetics.展开更多
The SET mechanism between chlorine dioxide (ClO2) and phenol was studied by using ab initio method at 4-31G* level. Geometries of the reactants, intermediate and products of the reaction were optimized and the singl...The SET mechanism between chlorine dioxide (ClO2) and phenol was studied by using ab initio method at 4-31G* level. Geometries of the reactants, intermediate and products of the reaction were optimized and the single point energy calculations of the species were performed. The relative structure data of the reactants, intermediate and products are given.The SET mechanism between ClO2and phenol was confirmed by ab initio calculations. The reaction is exothermic about 200 88 kJ/mol.展开更多
Cost-effective 3d transition metal(TM) based single atom catalysts(SACs) for oxygen reduction reaction(ORR) are potential alternatives for Pt-based electrocatalysts in fuel cells and metal-air batteries.Understanding ...Cost-effective 3d transition metal(TM) based single atom catalysts(SACs) for oxygen reduction reaction(ORR) are potential alternatives for Pt-based electrocatalysts in fuel cells and metal-air batteries.Understanding the effects of SACs’ properties and active site composition on the catalytic performance is significant to construct highly efficient catalysts. Here, we successfully promote the activity of cobalt single atoms decorated on N-doped carbon nanosheets via tuning the content of different nitrogen components, which outperforms most reported cobalt SACs. The activity and kinetics show positive correlation trends with the content of Co-Nxand graphitic N, serving as the main active sites.Furthermore, ORR kinetics in alkaline media can be positively affected by the conductivity of catalysts while no similar relation is observed in acidic media. The slight loss of Co-Nxsites engenders a mild change of performance in alkaline media, while the decrease of Co-Nxsite activity due to chemical oxidation of carbon support and the loss of Co-Nxsites in acidic media exacerbate the degradation of performance. Our work provides an insight into the relation between ORR electron transfer kinetics and active sites in 3d TM based SACs.展开更多
The rate and cycling performances of the electrode materials are affected by many factors in a practical complicated electrode process. Learning about the limiting step in a practical electrochemical reaction is very ...The rate and cycling performances of the electrode materials are affected by many factors in a practical complicated electrode process. Learning about the limiting step in a practical electrochemical reaction is very important to effectively improve the electrochemical performances of the electrode materials. Li4Ti5O12, as a zero-strain material, has been considered as a promising anode material for long life Li-ion batteries. In this study, our results show that the Li4Ti5O12 pasted on Cu or graphite felt current collector exhibits unexpectedly higher rate performance than on A1 current collector. For Li4Ti5O12, the electron transfer between current collector and active material is the critical factor that affects its rate and cycling performances.展开更多
The effect of an adsorbed anionic surfactant sodium dodecyl benzene sulfonate (SDBS) on electron transfer (ET) reaction between ferricyanide aqueous solution and decamethylferrocene (DMFc) located on the adjacen...The effect of an adsorbed anionic surfactant sodium dodecyl benzene sulfonate (SDBS) on electron transfer (ET) reaction between ferricyanide aqueous solution and decamethylferrocene (DMFc) located on the adjacent organic phase was investigated for the first time by thin layer method. The adsorption of SDBS at the interface resulted in a decay in the cathodic plateau current of bimolecular reaction with increasing concentrations of SDBS in aqueous phase. However, the rate constant of electron transfer (ket) increased monotonically as the SDBS concentrations increased from 0 to 200 p, moFL. The experimental results showed that SDBS formed patches on the interface and influenced the structure of electrical double layer. 2009 Xiao Quan Lu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
基金supported by the National Key R&D Program of China(2023YFD1701504)the 2115 Talent Development Program of China Agricultural University Fund(1011-00109018)the Beijing Innovation Team of the Modern Agricultural Research System(BAIC08-2023-FQ02)。
文摘Optimizing the intrinsic activity of non-noble metal by precisely tailoring electronic structure offers an appealing way to construct cost-effective catalysts for selective biomass valorization.Herein,we reported a P-doping bifunctional catalyst(Ni-P/mSiO_(2))that achieved 96.6%yield for the hydrogenation rearrangement of furfural to cyclopentanone at mild conditions(1 MPaH_(2),150°C).The turnover frequency of Ni-P/mSiO_(2)was 411.9 h^(-1),which was 3.2-fold than that of Ni/mSiO_(2)(127.2 h^(-1)).Detailed characterizations and differential charge density calculations revealed that the electron-deficient Niδ+species were generated by the electron transfer from Ni to P,which promoted the ring rearrangement reaction.Density functional theory calculations illustrated that the presence of P atoms endowed furfural tilted adsorb on the Ni surface by the C=O group and facilitated the desorption of cyclopentanone.This work unraveled the connection between the localized electronic structures and the catalytic properties,so as to provide a promising reference for designing advanced catalysts for biomass valorization.
基金support from the National Key Technology R&D Program of China(2021YFB3500801,2022YFC3901503,2022YFB3504302)the Natural Science Foundation and Overseas Talent Projects of Jiangxi Province(20232BAB214025,20232BCJ25044).
文摘Balancing electron transfer and intermediate adsorption ability of bifunctional catalysts via tailoring electronic structures is crucial for green hydrogen production,while it still remains challenging due to lacking efficient strategies.Herein,one efficient and universal strategy is developed to greatly regulate electronic structures of the metallic Ni-Fe-P catalysts via in-situ introducing the rare earth(RE)atoms(Ni-Fe-RE-P,RE=La,Ce,Pr,and Nd).Accordingly,the as-prepared optimal Ni-Fe-Ce-P/CC self-supported bifunctional electrodes exhibited superior electrocatalytic activity and excellent stability with the low overpotentials of 247 and 331 mV at 100 mA cm^(-2) for HER and OER,respectively.In the assembled electrolyzer,the Ni-Fe-Ce-P/CC as bifunctional electrodes displayed low operation potential of 1.49 V to achieve a current density of 10 mA cm^(-2),and the catalytic performance can be maintained for 100 h.Experimental results combined with density functional theory(DFT)calculation reveal that Ce doping leads to electron decentralization and crystal structure distortion,which can tailor the band structures and d-band center of Ni-Fe-P,further increasing conductivity and optimizing intermediate adsorption energy.Our work not only proposes a valuable strategy to regulate the electron transfer and intermediate adsorption of electrocatalysts via RE atoms doping,but also provides a deep under-standing of regulation mechanism of metallic electrocatalysts for enhanced water splitting.
基金supported by the National Natural Science Foundation of China(No.22306178 and 22176155)Outstanding Youth Talents of Sichuan Science and Technology Program(No.22JCQN0061)+1 种基金National Natural Science Foundation of China(No.22306012)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110578).
文摘In semiconductor photocatalysts,the easy recombination of photogenerated carriers seriously affects the application of photocatalytic materials in water treatment.To solve the serious problem of electron−hole pair recombination in perylene diimide(PDI)organic semiconductors,we loaded ferric hydroxyl oxide(FeOOH)on PDI materials,successfully prepared novel FeOOH@PDI photocatalytic materials,and constructed a photo-Fenton system.The system was able to achieve highly efficient degradation of BPA under visible light,with a degradation rate of 0.112 min^(−1)that was 20 times higher than the PDI system,and it also showed universal degradation performances for a variety of emerging organic pollutants and anti-interference ability.The mechanism research revealed that the FeOOH has the electron trapping property,which can capture the photogenerated electrons on the surface of PDI,effectively reducing the compounding rate of photogenerated carriers of PDI and accelerating the iron cycling and H2O2 activation on the surface of FeOOH at the same time.This work provides new insights and methods for solving the problem of easy recombination of carriers in semiconductor photocatalysts and degrading emerging organic pollutants.
基金supported by the National Natural Science Foundation of China (21825703, 21927814)the National Key R&D Program of China (2019YFA0405600, 2019YFA0706900, 2021YFA1200104, 2022YFC3400500)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDB0540200, XDB37040201)Plans for Major Provincial Science&Technology Projects (202303a07020004)Basic Research Program Based on Major Scientific Infrastructures,CAS (JZHKYPT-2021-05)the Youth Innovation Promotion Association,CAS (2022455)
文摘Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications.
基金supported by the National Key R&D Program of China (2020YFA0710000)the National Natural Science Foundation of China (22278307, 22008170, 21978200, 22161142002, and 22121004)+2 种基金the Applied Basic Research Program of Qinghai Province (2023-ZJ-701)the Haihe Laboratory of Sustainable Chemical Transformationsthe Tianjin Research Innovation Project for Postgraduate Students (2022BKYZ035)。
文摘Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using modeled ZnFe_(2-x)Ni_xO_(4)(0 ≤ x ≤ 0.4) spinel oxides, we aim to develop better OER electrocatalyst through combining the construction of ferromagnetic(FM) ordering channels and generation of highly active reconstructed species. The number of symmetry-breaking Fe–O–Ni structure links to the formation of FM ordering electron transfer channels. Meanwhile, as the number of Ni^(3+)increases, more ligand holes are formed, beneficial for redirecting surface reconstruction. The electro-activated ZnFe_(1.6)Ni_(0.4)O_(4) shows the highest specific activity, which is 13 and 2.5 times higher than that of ZnFe_(2)O_(4) and unactivated ZnFe_(1.6)Ni_(0.4)O_(4), and even superior to the benchmark IrO_(2) under the overpotential of 350 mV. Applying external magnetic field can make electron spin more aligned, and the activity can be further improved to 39 times of ZnFe_(2)O_(4). We propose that intriguing FM exchange-field interaction at FM/paramagnetic interfaces can penetrate FM ordering channels into reconstructed oxyhydroxide layers, thereby activating oxyhydroxide layers as spin-filter to accelerate spin-selective electron transfer. This work provides a new guideline to develop highly efficient spintronic catalysts for water oxidation and other spin-forbidden reactions.
基金supported by the National Natural Science Foundation of China(No.2187817622178197)。
文摘Conventional chemical oxidation of aldehydes such as furfural to corresponding acids by molecular oxygen usually needs high pressure to increase the solubility of oxygen in aqueous phase,while electrochemical oxidation needs input of external electric energy.Herein,we developed a liquid flow fuel cell(LFFC)system to achieve oxidation of furfural in anode for furoic acid production with co-production of hydrogen gas.By controlling the electron transfer in cathode for reduction of oxygen,efficient generation of electricity or production of H_(2)O_(2)were achieved.Metal oxides especially Ag_(2)O have been screened as the efficient catalyst to promote the oxidation of aldehydes,while liquid redox couples were used for promoting the kinetics of oxygen reduction.A novel alkaline-acidic asymmetric design was also used for anolyte and catholyte,respectively,to promote the efficiency of electron transfer.Such an LFFC system achieves efficient conversion of chemical energy of aldehyde oxidation to electric energy and makes full use the transferred electrons for high-value added products without input of external energy.With(VO_(2))_(2)SO_(4)as the electron carrier in catholyte for four-electron reduction of oxygen,the peak output power density(Pmax)at room temperature reached 261 mW/cm^(2)with furoic acid and H_(2)yields of 90%and 0.10 mol/mol furfural,respectively.With anthraquinone-2-sulfonate(AQS)as the cathodic electron carrier,Pmaxof 60 mW/cm^(2)and furoic acid,H_(2)and H_(2)O_(2)yields of 0.88,0.15 and 0.41 mol/mol furfural were achieved,respectively.A new reaction mechanism on furfural oxidation on Ag_(2)O anode was proposed,referring to one-electron and two-electron reaction pathways depending on the fate of adsorbed hydrogen atom transferred from furfural aldehyde group.
基金The National Key Research and Development Program of China(2021YFA1502000 and 2022YFA1505300)the National Natural Science Foundation of China (22288102, 22072124)+1 种基金support from Beijing Synchrotron Radiation Facility (1W1B, BSRF)China Scholarship Council for the financial support。
文摘With tunable local electronic environment,high mass density of MN4sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative to the well-known M-N-C electrocatalysts.Herein,the coordination reaction between Cu^(2+)and 1,2,4,5-tetraaminobenzene(TAB) was conducted on the surface of metallic Cu nanowires,forming a thin layer of CuN4-based CCP(Cu-TAB) on the Cu nanowire.More importantly,interfacial transfer of electrons from Cu core to the CuN4-based CCP nanoshell was observed within the resulting CuTAB@Cu,which was found to enrich the local electronic density of the CuN4sites.As such,the CuTAB@Cu demonstrates much improved affinity to the*COOH intermediate formed from the rate determining step;the energy barrier for C-C coupling,which is critical to convert CO_(2)into C2products,is also decreased.Accordingly,it delivers a current density of-9.1 mA cm^(-2)at a potential as high as 0.558 V(vs.RHE) in H-type cell and a Faraday efficiency of 46.4% for ethanol.This work emphasizes the profound role of interfacial interaction in tuning the local electronic structure and activating the CuN4-based CCPs for efficient electroreduction of CO_(2).
基金The National Natural Science Foundation of China(No.21173042)the National Basic Research Program of China(973 Program)(No.2007CB936300)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK201123694)Foundation of Jiangsu Key Laboratory of Environmental Material and Environmental Engineering(No.JHCG201012)Foundation of Key Laboratory of Novel Thin Film Solar Cells of Chinese Academy of Sciences(No.KF200902)Science and Technology Founda-tion of Southeast University(No.KJ2010429)
文摘2, 9, 16, 23-tetracarboxy zinc phthalocyanine (ZnTCPc) is synthesized and characterized by physicochemical and theoretical methods and it is used as a photosensitizer in dye-sensitized solar cells (DSSC). The excited lifetime, band gap and frontier orbital distribution of ZnTCPc are investigated by fluorescence spectra, cyclic voltammetry and quantum calculation. The results show that the excited lifetime and band gap are 0. 1 ns and 1.81 eV, respectively. Moreover, it is found that the highest occupied molecular orbital (HOMO) location is not shared by both the zinc metal and the isoindoline ligands, and the lowest unoccupied molecular orbital(LUMO) location does not strengthen the interaction coupling between ZnTCPc and TiO:. As a result, the ZnTCPc-DSSC gains a short-circuit current density of 0. 147 mA/cm2, an open-circuit photovoltage of 277 mV, a fill factor of 0. 51 and an overall conversion efficiency of 0. 021%.
基金The State Key Basic Research and Development Plan(G1998010100)Innovative Foundation of Laboratory of Photosynthesis Basic Research Insitute of Botany,The Chinese Academy of Sciences
文摘A lipid_depleted cytochrome b 6f (Cyt b 6f) preparation was obtained from spinach (Spinacia oleracea L.) chloroplasts. Upon reconstitution of this preparation with the membrane lipids purified from spinach thylakoid, the effects of different membrane lipids on the electron transfer activity were studied. The results show that the electron transfer activity of Cyt b 6f is obviously stimulated to different extents, respectively, by monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), phosphatidylcholine (PC), phosphatidylglycerol (PG) and sulfoquinovosyldiacylglycerol (SQDG), and that the extents of stimulation may be closely related to the charge of the membrane lipids. The stimulation of non_charged lipids (MGDG, DGDG) and neutrally_charged lipid (PC) was high with a maximum enhancement of 89%, 75% and 77%, respectively; but the stimulation of two kinds of negatively_charged lipid (PG and SQDG) was relatively low with a maximum enhancement of 43% and 26%, respectively.
基金This work was supported by the National Natural Science Foundation of China (No.20903104, No.2107320L and No.20733005) and the Chinese Academy of Sciences.
文摘Pentachlorophenol, a widespread environmental pollutant that is possibly carcinogenic to humans, is metabolically oxidized to tetrachloroquinone (TCBQ) which can result in DNA damage. We have investigated the photochemical reaction dynamics of TCBQ with two pyrimidine type nucleobases (thymine and uracil) upon UVA (355 ran) excitation using the technique of nanosecond time-resolved laser flash photolysis. It has been found that 355 nm excitation populates TCBQ molecules to their triplet state 3TCBQ*, which are highly reactive towards thymine or uracil and undergo two parallel reactions, the hydrogen abstraction and electron transfer, leading to the observed photoproducts of TCBQH. and TCBQ.- in transient absorption spectra. The concomitantly produced nucleobase radicals and radical cations are expected to induce a series of oxidative or strand cleavage damage to DNA afterwards. By characterizing the photochemical hydrogen abstraction and electron transfer reactions, our results provide potentially important molecular reaction mechanisms for understanding the carcinogenic effects of pentachlorophenol and its metabolites TCBQ.
基金financial support from the National Natural Science Foundation of China(Grant Nos.51973240,51833011 and 52003303)the China Postdoctoral Science Foundation(Grant Nos.2019M653176 and 2020M672932)+2 种基金the Guang-dong Provincial Basic and Applied Basic Research Fund Natural Science Foundation(Grant No.2020A1515111095)the Fundamental Research Funds for the Central Universities(Grant No.191-gpy117)the Guangdong YangFan Innovative&Entrepreneurial Research Team Program(Grant No.2016YT03C077)。
文摘Searching new structured black phosphorus(BP)and exploring intriguing functions and applications have become a hot topic so far.Here,we introduce a novel Iso-type black phosphorus heterostructure guided by first principle calculation,which features unique heterointerface and electronic coupling interaction via stacking assembly of exfoliated black phosphorus(EBP)and amine-functionalized EBP(N-EBP).Inspired by the theoretical results,we constructed the Iso-type heterostructure comprising of ultrathin exfoliated few-layered EBP and N-EBP,both of which were derived from identical bulk BP.The purposive amine-functionalization not only creates positively-charged P atoms on N-EBP as effective active sites via N-induced intramolecular electron transfer(IET)but also endows N-EBP with lower work function relative to EBP,while the unique EBP/N-EBP Iso-type heterostructure engenders directional heterointerfacial electron transfer(HET).The coupled IET/HET effects optimize the charge redistribution to afford favorable O_(2)adsorption.In this case,our unique strategy for the first time exploits the inherent catalytic capability of BP toward the oxygen reduction reaction(ORR)and enables the first use of BP as metal-free ORR catalysts for Zn-air cells.The newly-designed heterostructure facilitates a 4-e^(-)transfer ORR relative to inactive EBP or N-EBP.Importantly,the polymer-shielded heterostructure acts as efficient air electrodes to endow a primary Zn-air cell with high stability,large capacity and high energy density—superior to the commercial Pt/C-enabled cell.This study as the first report on metal-free BP-based ORR catalysts and air electrodes not only extends BP's application scopes but also renders new insight toward design of electronically-coupled superstructures for energy-related applications.
基金supported by the Science Challenge Project(No.TZ2016001)the National Natural Science Foundation of China(No.21673211)
文摘Photo-induced electron transfer versus molecular structure of acceptors is investigated using ultrafast time-resolved transient grating spectroscopy. Typical laser dyes Rhodamine 101 (Rh101) and Rhodamine 6G (Rh6G) in electron donor solvent-aniline are adopted as the objects. The forward electron transfer time constant from aniline to the excited singlet state of two Rhodamine dyes and subsequent back electron transfer from two dyes to aniline are measured. The experimental results denote that Rh6G presents faster electron transfer rates with aniline in both forward electron transfer and back electron transfer processes. With chemical calculation and qualitative analysis, it is found that the flexible molecular geometry of Rh6G leads to stronger electron coupling with donor solvent and further gives rise to larger electron transfer rates.
基金supported by the National Key Research&Development Program of Ministry of Science and Technology of the People’s Republic of China(grant number 2018YFC1900901).
文摘To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice straw with CaOLFD pretreatment was optimal in different pretreatment methods of the CaO+LFD,CaOLFD,LFD+CaO,CaO,and LFD.The maximum methane yield(314 ml(g VS)^(-1))and the highest VFAs concentration(14851 mg·L^(-1) on day 3)of the CaOLFD pretreatment group were 81%and 118%higher than that of the control group,respectively.Under the action of solid alkaline CaO,the bacteria of Clostridium,Atopostipes,Sphaerochaeta,Tissierella,Thiopseudomonas,Rikenellaceae,and Sedimentibacter could build up co-cultures with the archaeal of Methanosaeta,Methanobacterium,and Methanosarcina performing direct interspecies electron transfer(DIET)and improving AD performance of rice straw.Therefore,the combined pretreatment using CaO and LFD could not only pretreat rice straw but also stimulate co-cultures of microorganism to establish DIET enhancing AD efficiency.
基金supported by the National Key R&D Program of China(2020YFA0406104,2020YFA0406101)the National MCF Energy R&D Program of China(2018YFE0306105)+5 种基金the Innovative Research Group Project of the National Natural Science Foundation of China(51821002)the National Natural Science Foundation of China(51725204,21771132,51972216,52041202)the Natural Science Foundation of Jiangsu Province(BK20190041)the Key-Area Research and Development Program of Guang Dong Province(2019B010933001)the Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 Project。
文摘The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(PtNi_(2))have an enhanced HOR activity compared with single component Pt catalyst.While,the interface electron-transfer kinetics of PtNi_(2)catalyst exhibits a very wide electron-transfer speed distribution.When combined with carbon dots(CDs),the interface charge transfer of PtNi_(2)-CDs composite is optimized,and then the PtNi_(2)-5 mg CDs exhibits about 2.67 times and 4.04 times higher mass and specific activity in 0.1 M KOH than that of 20%commercial Pt/C.In this system,CDs also contribute to trapping H^(+)and H_(2)O generated during HOR,tuning hydrogen binding energy(HBE),and regulating interface electron transfer.This work provides a deep understanding of the interface catalytic kinetics of Pt-based alloys towards highly efficient HOR catalysts design.
基金supported by the Natural Science Foundation of China(21978325,21776312,22078364)Key research and development plan of Shandong Province(2019RKE28003,2018GGX107005)Fundamental Research Funds for the Central Universities(18CX02014A).
文摘Engineering unique electronic structure of catalyst to boost catalytic performance is of prime scientific and industrial importance.Herein,the identification of intrinsic electronic sensitivity for direct propene epoxidation was first achieved over highly stable Au/wormhole-like TS-1 catalyst.Results show that the electron transfer of Au species can be regulated by manipulating the dynamic evolutions and contents of Au valence states,thus resulting in different catalytic performance in 100 h time-on-stream.By DFT calculations,kinetic analysis and multicharacterizations,it is found that the Au^(0) species with higher electronic population can easily transfer more electrons to activate surface O_(2) compared with Au^(1+) and Au^(3+) species.Moreover,there is a positive correlation between Au^(0) content and activity.Based on this correlation,a facile strategy is further proposed to boost Au^(0) percentage,resulting in the reported highest PO formation rate without adding promoters.This work harbors tremendous guiding significance to the design of highly efficient Au/Ti-containing catalyst for propene epoxidation with H_(2) and O_(2).
文摘Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during practical hydrogen evolution is not clearly elucidated.Herein,Pt-nanoparticle-decorated CdS nanorods(CdS/Pt)are utilized as the model system to analyze the electron transfer kinetics in CdS/Pt heterojunction.Through femtosecond transient absorption spectroscopy,three dominating exciton quenching pathways are observed and assigned to the trapping of photogenerated electrons at shallow states,recombination of free electrons and trapped holes,and radiative recombination of locally photogenerated electron-hole pairs.The introduction of Pt cocatalyst can release the electrons trapped at the shallow states and construct an ultrafast electron transfer tunnel at the CdS/Pt interface.When CdS/Pt is dispersed in acetonitrile,the lifetime and rate for interfacial electron transfer are respectively calculated to be~5.5 ps and~3.5×10^(10) s^(−1).The CdS/Pt is again dispersed in water to simulate photocatalytic water splitting.The lifetime of the interfacial electron transfer decreases to~5.1 ps and the electron transfer rate increases to~4.9×10^(10) s^(−1),confirming that Pt nanoparticles serve as the main active sites of hydrogen evolution.This work reveals the role of Pt cocatalysts in enhancing the photocatalytic performance of CdS from the perspective of electron transfer kinetics.
文摘The SET mechanism between chlorine dioxide (ClO2) and phenol was studied by using ab initio method at 4-31G* level. Geometries of the reactants, intermediate and products of the reaction were optimized and the single point energy calculations of the species were performed. The relative structure data of the reactants, intermediate and products are given.The SET mechanism between ClO2and phenol was confirmed by ab initio calculations. The reaction is exothermic about 200 88 kJ/mol.
基金financial support from the Natural Science Foundation of Beijing Municipality (2191001)the National Natural Science Foundation of China (51631001, 51672010 and 52001007)+1 种基金the National Key R&D Program of China(2017YFA0206301)the China Postdoctoral Science Foundation (2020M670038)。
文摘Cost-effective 3d transition metal(TM) based single atom catalysts(SACs) for oxygen reduction reaction(ORR) are potential alternatives for Pt-based electrocatalysts in fuel cells and metal-air batteries.Understanding the effects of SACs’ properties and active site composition on the catalytic performance is significant to construct highly efficient catalysts. Here, we successfully promote the activity of cobalt single atoms decorated on N-doped carbon nanosheets via tuning the content of different nitrogen components, which outperforms most reported cobalt SACs. The activity and kinetics show positive correlation trends with the content of Co-Nxand graphitic N, serving as the main active sites.Furthermore, ORR kinetics in alkaline media can be positively affected by the conductivity of catalysts while no similar relation is observed in acidic media. The slight loss of Co-Nxsites engenders a mild change of performance in alkaline media, while the decrease of Co-Nxsite activity due to chemical oxidation of carbon support and the loss of Co-Nxsites in acidic media exacerbate the degradation of performance. Our work provides an insight into the relation between ORR electron transfer kinetics and active sites in 3d TM based SACs.
基金supported by the "Hundred Talent Project" of the Chinese Academy of Sciencesthe National High Technology Research and Development Program of China(Grant No.2009AA033101)+3 种基金the National Basic Research Program of China(Grant Nos.2007CB936500 and 2010CB833102)the National Natural Science Foundation of China(Grant No.50972164)the Science and Technology Planning Project of Guangdong Province,China(Grant No.2010A090602001)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KJCX2-YW-W26)
文摘The rate and cycling performances of the electrode materials are affected by many factors in a practical complicated electrode process. Learning about the limiting step in a practical electrochemical reaction is very important to effectively improve the electrochemical performances of the electrode materials. Li4Ti5O12, as a zero-strain material, has been considered as a promising anode material for long life Li-ion batteries. In this study, our results show that the Li4Ti5O12 pasted on Cu or graphite felt current collector exhibits unexpectedly higher rate performance than on A1 current collector. For Li4Ti5O12, the electron transfer between current collector and active material is the critical factor that affects its rate and cycling performances.
基金supported by the National Science Foundation of China(No.20775060 and No.20875077)the National Science Foundation of Gansu(No.0701RJZA109 and No.0803RJZA105)and the Key Laboratory of Polymer Materials of Gansu Province
文摘The effect of an adsorbed anionic surfactant sodium dodecyl benzene sulfonate (SDBS) on electron transfer (ET) reaction between ferricyanide aqueous solution and decamethylferrocene (DMFc) located on the adjacent organic phase was investigated for the first time by thin layer method. The adsorption of SDBS at the interface resulted in a decay in the cathodic plateau current of bimolecular reaction with increasing concentrations of SDBS in aqueous phase. However, the rate constant of electron transfer (ket) increased monotonically as the SDBS concentrations increased from 0 to 200 p, moFL. The experimental results showed that SDBS formed patches on the interface and influenced the structure of electrical double layer. 2009 Xiao Quan Lu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.