Welding joint of GH4169 alloy with a good formation was obtained. No macroscopic defects occurred in the joint. The weld had mainly a dendritic structure; the base metal was a solid solution of Ni, Cr, and Fe, and the...Welding joint of GH4169 alloy with a good formation was obtained. No macroscopic defects occurred in the joint. The weld had mainly a dendritic structure; the base metal was a solid solution of Ni, Cr, and Fe, and the strengthening-phase particles such as Ni3Nb were dispersively distributed along the grain boundary. The average tensile strength of the joint reached 743.7 MPa, and the Vickers hardness of the weld exceeded HV 300. Because of the segregation of the low-melting compound Ni3Nb at the grain boundary of the fusion zone, liquid cracks tended to occur as a result of welding stress. The formation of liquid cracks was inhibited by adding an alloying element, Mn, to the welding bath, because Mn diffused to the fusion zone and the high-melting phase Mn2Nb formed, and thus the overall properties of the joint were improved.展开更多
A new method for determining proximity parameters α,β ,and η in electron beam lithography is introduced on the assumption that the point exposure spread function is composed of two Gaussians.A single line i...A new method for determining proximity parameters α,β ,and η in electron beam lithography is introduced on the assumption that the point exposure spread function is composed of two Gaussians.A single line is used as test pattern to determine proximity effect parameters and the normalization approach is adopted in experimental data transaction in order to eliminate the need of measuring exposure clearing dose of the resist.Furthermore,the parameters acquired by this method are successfully used for proximity effect correction in electron beam lithography on the same experimental conditions.展开更多
Silicon crystal-facet-dependent nanostructures have been successfully fabricated on a (100)-oriented silicon-oninsulator wafer using electron-beam lithography and the silicon anisotropic wet etching technique. This ...Silicon crystal-facet-dependent nanostructures have been successfully fabricated on a (100)-oriented silicon-oninsulator wafer using electron-beam lithography and the silicon anisotropic wet etching technique. This technique takes advantage of the large difference in etching properties for different crystallographic planes in alkaline solution. The minimum size of the trapezoidal top for those Si nanostructures can be reduced to less than 10nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations indicate that the etched nanostructures have controllable shapes and smooth surfaces.展开更多
An experimental investigation were performed on the effect of the impulse electron-beam irradiation upon microstruc-ture of the surface layer and on wear resistance of a cutting tool for sintered TiC/NiCr cermet. The ...An experimental investigation were performed on the effect of the impulse electron-beam irradiation upon microstruc-ture of the surface layer and on wear resistance of a cutting tool for sintered TiC/NiCr cermet. The results showed that the surface electron-beam treatment of the TiC/NiCr cermet is an efficient method for investigating the mi-crostructure and phase composition in the surface layer of the powder composite and there are optimal regimes of electron-beam treatment, which ensure a substantial increase in the resistance of the cermet to wear during cutting of metals.展开更多
The character of structural changes in the surface layer of titanium carbide (TiC) with Ni-Cr alloy binder was investigated theoretically and experimentally after electron-beam treatment of the material surface. The...The character of structural changes in the surface layer of titanium carbide (TiC) with Ni-Cr alloy binder was investigated theoretically and experimentally after electron-beam treatment of the material surface. The thermal influence of the electron-beam irradiation on the surface layer microstructure of the composite fine-grained material was mathematically analyzed. Quantitative estimations of the depth of the zone in microstructural phase transformations were carried out. The microstructure and concentration profile of Ti distribution in the metallic binder over the cross section of the surface layer with microstructural phase transformations after electron-pulse treatment of the hard metal surface were experimentally investigated.展开更多
This paper provides a review of the compact intense electron-beam accelerators (IEBAs) based on liquid pulse forming lines (PFLs) that havebeen developed at the National University of Defense Technology (NUDT) in Chin...This paper provides a review of the compact intense electron-beam accelerators (IEBAs) based on liquid pulse forming lines (PFLs) that havebeen developed at the National University of Defense Technology (NUDT) in China. The history and roadmap of the compact IEBAs used todrive high-power microwave (HPM) devices at NUDT are reviewed. The properties of both de-ionized water and glycerin as energy storagemedia are presented. Research into the breakdown properties of liquid dielectrics and the desire to maximize energy storage have resulted in theinvention of several coaxial PFLs with different electromagnetic structures, which are detailed in this paper. These high energy density liquidPFLs have been used to increase the performance of IEBA subsystems, based on which the SPARK (Single Pulse Accelerator with spark gaps)and HEART (High Energy-density Accelerator with Repetitive Transformer) series of IEBAs were constructed. This paper also discusses howthese compact IEBAs have been used to drive typical HPM devices and concludes by summarizing the associated achievements and theconclusions that can be drawn from the results.展开更多
A visual sensing system was developed. The system is suitable for titanium-alloy electron-beam welding, and senses and detects molten-pool dynamic processes. A suite of processing programs for colored molten-pool imag...A visual sensing system was developed. The system is suitable for titanium-alloy electron-beam welding, and senses and detects molten-pool dynamic processes. A suite of processing programs for colored molten-pool images in titanium-alloy electron-beam welding was developed using Matlab software; molten-pool edge images are completely obtained using the program. The Matlab software was used to write a program which could extract the molten-pool width. The functional relationship between the molten-pool width and penetration under the experimental conditions was obtained by a curve-fitting method, and provided the theoretical basis for further penetration control.展开更多
The time evolution of the argon electron-beam plasma at intermediate pressure and low electron beam intensily was presented.By applying the amplitude modulation with the frequency of 20 Hz on the stable beam current,t...The time evolution of the argon electron-beam plasma at intermediate pressure and low electron beam intensily was presented.By applying the amplitude modulation with the frequency of 20 Hz on the stable beam current,the plasma evolution was studied.A Faraday cup was used for the measurement of the electron beam current and a single electrostatic probe was used for the measurement of the ion current.Experimental results indicated that the ion current was in phase with the electron beam current in the pressure range from 200 Pa to 3000 Pa and in the beam current range lower than 20 mA,the residual density increased approximately linearly with the maximum density in the log-log plot and the fitting coefficient was irrelative to the pressure.And then three kinds of kinetic models were developed and the simulated results given by the kinetic model,without the consideration of the excited atoms,mostly approached to the experimental results.This indicated that the effect of the excited atoms on the plasma density can be ignored at intermediate pressure and low electron beam current intensity,which can greatly simplify the kinetic model.In the end.the decrease of the plasma density when the beam current was suddenly off was studied based on the simplified model and it was found that the decease characteristic at intermediate pressure was approximate to the one at high pressure at low electron beam intensity,which was in good accordance with the experimental results.展开更多
Focused ion-beam-induced deposition (FIBID) and focused electron-beam-induced deposition (FEBID) are conve- nient and useful in nanodevice fabrication. Since the deposition is from the organometallic platinum prec...Focused ion-beam-induced deposition (FIBID) and focused electron-beam-induced deposition (FEBID) are conve- nient and useful in nanodevice fabrication. Since the deposition is from the organometallic platinum precursor, the con- ductive lines directly written by focused ion-beam (FIB) and focused electron-beam (FEB) are carbon-rich materials. We discuss an alternative approach to enhancing the platinum content and improving the conductivity of the conductive leads produced by FIBID and FEBID, namely an annealing treatment. Annealing in pure oxygen at 500 ℃ for 30 min enhances the platinum content values from ~ 18% to 30% and ~ 50% to 90% of FIBID and FEBID, respectively. Moreover, we find that thin films will be formed in the FIBID and FEBID processes. The annealing treatment is helpful to avoid the current leakage caused by these thin films. A single electron transistor is fabricated by FEBID and the current-voltage curve shows the Coulomb blockade effect.展开更多
This paper provides insight into the application of electron-beam welding in pellet mold preparation,highlighting the importance of the combination of electron-beam welding and pellet mold preparation in the fields of...This paper provides insight into the application of electron-beam welding in pellet mold preparation,highlighting the importance of the combination of electron-beam welding and pellet mold preparation in the fields of microstructure joining and micro-and nanostructure preparation.Precise material joining and microstructure fabrication can be achieved by the precise control of electron-beam welding and the shape adjustment of pellet molds.These applications hold significant potential in the modern industrial field,providing robust support for the development of new materials and the growth of the petrochemical industry.This paper asserts that in the future,the ongoing development of electron-beam welding and pelletizing template technology will unlock new possibilities in the field of petrochemicals,fostering progress in science and technology.展开更多
This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argu...This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argument for the optimal parameter combination is presented.Electron-beam welding technology offers several advantages,including high energy density and the ability to create fine weld seams.However,it also presents certain challenges,such as the complexity of welding parameters and the potential generation of brittle phases.The analysis conducted in this paper holds significant importance in enhancing the quality and efficiency of dissimilar material welding processes.展开更多
While the high-energy radiation effects on polypropylene, which are crucial for the cable industry for nuclear power plants, have been thoroughly studied, the property changes of PP at low-dose-rate electron-beam irra...While the high-energy radiation effects on polypropylene, which are crucial for the cable industry for nuclear power plants, have been thoroughly studied, the property changes of PP at low-dose-rate electron-beam irradiation are far from elucidated. Herein, the influence of electron-beam irradiation on the structure and properties of PP was examined. The static EB irradiation conditions were 1.2 MeV at a low dose rate of 20 kGy/h to achieve absorbed doses ranging from 45, to 60, 100, and 200 kGy.The molecular structure was first evaluated by measuring the carboxyl index and the relative radical concentrations via Fourier transform infrared spectroscopy and electron spin resonance, respectively. Mechanical, differential scanning colorimetric, and rheological tests were carried out to further investigate the changes in the properties(tensile, crystalizing, and viscoelastic properties) of irradiated PP, which showed good agreement with the structural analysis results. We found that radio-oxidative degradation(chain scission) was predominant, which can be due to the low dose rate facilitating oxygen diffusion into the PP matrix during electron-beam irradiation.展开更多
The weldability of the ZhS6U nickel-based superalloy, which is prone to solidification cracking during electron-beam welding(EBW) repair processes, was investigated. The effects of two different pre-weld heat-treatmen...The weldability of the ZhS6U nickel-based superalloy, which is prone to solidification cracking during electron-beam welding(EBW) repair processes, was investigated. The effects of two different pre-weld heat-treatment cycles on the final microstructure before and after welding were examined. Welds were made on flat coupons using an EBW machine, and the two heat-treatment cycles were designed to reduce γ′ liquation before welding. Microstructural features were also examined by optical and scanning electron microscopy. The results showed that the change in the morphology and size of the γ′ precipitates in the pre-weld heat-treatment cycles changed the ability of the superalloy to release the tensile stresses caused by the matrix phase cooling after EBW. The high hardness in the welded coupons subjected to the first heat-treatment cycle resulted in greater resistance to stress release by the base alloy, and the concentration of stress in the base metal caused liquation cracks in the heat-affected zone and solidification cracks in the weld area.展开更多
As electron-beam generating plasma is widely applied, the software tool EGS4 (Electron-Gamma Shower) was used to simulate the transmission and energy deposition of electron-beam in air. The simulation results indica...As electron-beam generating plasma is widely applied, the software tool EGS4 (Electron-Gamma Shower) was used to simulate the transmission and energy deposition of electron-beam in air. The simulation results indicated that the range of the electron-beam was inversely proportional to the gas pressure in a wide range of gas pressure, and the electron-beam of 200 keV could generate a plasma with a density 10^11 cm^-3 in air of latm. In addition, the energy distribution of the beam-electron and plasma density profile produced by the beam were achieved.展开更多
Nitriding of surface of aluminum alloys was carried out with using an electron-beam-excited-plasma (EBEP) technique. The EBEP is sustained by electron impact ionization with energetic electron beam. Two kinds of subst...Nitriding of surface of aluminum alloys was carried out with using an electron-beam-excited-plasma (EBEP) technique. The EBEP is sustained by electron impact ionization with energetic electron beam. Two kinds of substrates, aluminum alloys AA5052 and AA5083, were exposed to the down flow of EBEP source at 843 K for 45min. The specimens were characterized with respect to following properties: crystallographic structure (XRD), morphology (SEM) and the cross sectional microstructures of the nitrided layer was observed using a scanning electron microscopy (SEM). There are some A12O3 particles on the surface of the nitrided AA5052 and AA5083. The A1N layers were formed on the substrates with the thickness of 4.5 fi m for AA5052 and 0.5 /z m for AA5083 . A relatively uniform nitrided surface layer composed of A1N can be observed on the AA5052 substrate. The grains size near the interfaces between the substrate and A1N layer were smaller than that near the surface. On the surface of A1N layer, the concentration of nitrogen was high and in the middle of A1N layer it had a constant concentration like the aluminum and the concentration was decreased with approaching to the interface. On the surface of nitrided AA5083, a uniform A1N layer was not formed as the reason for the high nitriding temperature.展开更多
Based on Langmuir equation and thermodynamic properties of iron-silicon binary alloy, a mathematical model about the process of electron-beam evaporated binary alloy Fe-6.5%Si was established. Variation of the composi...Based on Langmuir equation and thermodynamic properties of iron-silicon binary alloy, a mathematical model about the process of electron-beam evaporated binary alloy Fe-6.5%Si was established. Variation of the composition of molten pool, vapor and deposit with time, length of transient time and the composition of molten pool, deposit under the steady condition were presented according to the numerical model. The experimental results on the composition of deposit were compared to the data calculated through the model. The results show that the model is applicable, after evaporating for about 50min, the compositions of the deposit are equal to those of the ingot.展开更多
This research explores the prospect of fabricating a face-centered cubic(fcc) Ni-base alloy cladding(Inconel 690) on an fcc Fe-base alloy(316 L stainless-steel) having improved mechanical properties and reduced sensit...This research explores the prospect of fabricating a face-centered cubic(fcc) Ni-base alloy cladding(Inconel 690) on an fcc Fe-base alloy(316 L stainless-steel) having improved mechanical properties and reduced sensitivity to corrosion through grain boundary and microstructure engineering concepts enabled by additive manufacturing(AM) utilizing electron-beam powder bed fusion(EPBF). The unique solidification and associated constitutional supercooling phenomena characteristic of EPBF promotes[100] textured and extended columnar grains having lower energy grain boundaries as opposed to random, high-angle grain boundaries, but no coherent {111} twin boundaries characteristic of conventional thermo-mechanically processed fcc metals and alloys, including Inconel 690 and 316 L stainless-steel.In addition to [100] textured grains, columnar grains were produced by EPBF fabrication of Inconel 690 claddings on 316 L stainless-steel substrates. Also, irregular 2–3 μm diameter, low energy subgrains were formed along with dislocation densities varying from 108 to 109 cm^2, and a homogeneous distribution of Cr_(23)C_6 precipitates. Precipitates were formed within the grains(with ~3 μm interparticle spacing),but not in the subgrain or columnar grain boundaries. These inclusive, hierarchical microstructures produced a tensile yield strength of 0.527 GPa, elongation of 21%, and Vickers microindentation hardness of 2.33 GPa for the Inconel 690 cladding in contrast to a tensile yield strength of 0.327 GPa, elongation of 53%, and Vickers microindentation hardness of 1.78 GPa, respectively for the wrought 316 L stainlesssteel substrate. Aging of both the Inconel 690 cladding and the 316 L stainless-steel substrate at 685?C for50 h precipitated Cr_(23)C_6 carbides in the Inconel 690 columnar grain boundaries, but not in the low-angle(and low energy) subgrain boundaries. In contrast, Cr_(23)C_6 carbides precipitated in the 316 L stainless-steel grain boundaries, but not in the low energy coherent {111} twin boundaries. Consequently, the Inconel690 subgrain boundaries essentially serve as surrogates for coherent twin boundaries with regard to avoiding carbide precipitation and corrosion sensitization.展开更多
A detailed microstructural characterisation of the emerging weld-line grain structure,for bead-upon-plate welds in Ti-6Al-4V(Ti64)of differing plate thickness,was performed.The microstructure studied was formed during...A detailed microstructural characterisation of the emerging weld-line grain structure,for bead-upon-plate welds in Ti-6Al-4V(Ti64)of differing plate thickness,was performed.The microstructure studied was formed during both steady state and non-steady state sections within the weld path,with the non-steady state portion being taken from the end of the plate as the weld bead and heat source overhang the edge of the plate.This allows for the effects of welding process conditions on the microstructural evolution to be determined.The weld pool geometry and 3D tomography of the weld-induced defects have been investigated.Detailed characterisation of microstructure and texture for different welding parameters and for steady and non-steady states have been used to identify physical parameters for the microstructure predictions that are difficult to obtain otherwise.The different states significantly affect the weld crown shape and formation,weld toe,weld bead depth and width.However,the heat affected zone(HAZ)re-mains unchanged.Regarding the microstructural evolution,both the steady and non-steady states have similar microstructure and texture.No defects were observed in the steady state section of welds,but sub-surface spherical pores have been observed in the non-steady state section of a weld.Finite element modelling to simulate the thermal-metallurgical-mechanical fields within the steady and non-steady state sections of the welds was considered,and the cooling rates predicted within steady state and non-steady sections were interrogated to improve the theoretical understanding of the microstructure and defect formation differences in these Ti64 EB weld regions.展开更多
IN an ordinary way the grafting induced by electron and gamma preirradiations widely used for improving the compatibility of polymers in composites gives rise to an enhancement of their mechanical properties. However,...IN an ordinary way the grafting induced by electron and gamma preirradiations widely used for improving the compatibility of polymers in composites gives rise to an enhancement of their mechanical properties. However, very few have been reported in the flame retardancy of polymers using these sorts of techniques. Wilkie investigated the flame retardancy of photo-initiation grafted polymers. An attempt is made in this paper to try to use the EB preirradiation on EVA copolymers with different VA contents and the subsequent grafting with saponification under atmosphere and to expedite the charring of polymers upon heating. Characterization of the flammability of the preirradiated EVA copolymers grafted with acrylic monomers indicates that this approach turns out to be a promising way and worthy of doing.展开更多
基金Project(HIT.NSRIF.2014007)supported by the Fundamental Research Funds for the Central Universities,China
文摘Welding joint of GH4169 alloy with a good formation was obtained. No macroscopic defects occurred in the joint. The weld had mainly a dendritic structure; the base metal was a solid solution of Ni, Cr, and Fe, and the strengthening-phase particles such as Ni3Nb were dispersively distributed along the grain boundary. The average tensile strength of the joint reached 743.7 MPa, and the Vickers hardness of the weld exceeded HV 300. Because of the segregation of the low-melting compound Ni3Nb at the grain boundary of the fusion zone, liquid cracks tended to occur as a result of welding stress. The formation of liquid cracks was inhibited by adding an alloying element, Mn, to the welding bath, because Mn diffused to the fusion zone and the high-melting phase Mn2Nb formed, and thus the overall properties of the joint were improved.
文摘A new method for determining proximity parameters α,β ,and η in electron beam lithography is introduced on the assumption that the point exposure spread function is composed of two Gaussians.A single line is used as test pattern to determine proximity effect parameters and the normalization approach is adopted in experimental data transaction in order to eliminate the need of measuring exposure clearing dose of the resist.Furthermore,the parameters acquired by this method are successfully used for proximity effect correction in electron beam lithography on the same experimental conditions.
文摘Silicon crystal-facet-dependent nanostructures have been successfully fabricated on a (100)-oriented silicon-oninsulator wafer using electron-beam lithography and the silicon anisotropic wet etching technique. This technique takes advantage of the large difference in etching properties for different crystallographic planes in alkaline solution. The minimum size of the trapezoidal top for those Si nanostructures can be reduced to less than 10nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations indicate that the etched nanostructures have controllable shapes and smooth surfaces.
文摘An experimental investigation were performed on the effect of the impulse electron-beam irradiation upon microstruc-ture of the surface layer and on wear resistance of a cutting tool for sintered TiC/NiCr cermet. The results showed that the surface electron-beam treatment of the TiC/NiCr cermet is an efficient method for investigating the mi-crostructure and phase composition in the surface layer of the powder composite and there are optimal regimes of electron-beam treatment, which ensure a substantial increase in the resistance of the cermet to wear during cutting of metals.
文摘The character of structural changes in the surface layer of titanium carbide (TiC) with Ni-Cr alloy binder was investigated theoretically and experimentally after electron-beam treatment of the material surface. The thermal influence of the electron-beam irradiation on the surface layer microstructure of the composite fine-grained material was mathematically analyzed. Quantitative estimations of the depth of the zone in microstructural phase transformations were carried out. The microstructure and concentration profile of Ti distribution in the metallic binder over the cross section of the surface layer with microstructural phase transformations after electron-pulse treatment of the hard metal surface were experimentally investigated.
基金This work was supported by the National Natural Science Foundation of China under Grant No.51677190the Hunan Provincial Natural Science Foundation of China under Grant No.2017JJ1005.
文摘This paper provides a review of the compact intense electron-beam accelerators (IEBAs) based on liquid pulse forming lines (PFLs) that havebeen developed at the National University of Defense Technology (NUDT) in China. The history and roadmap of the compact IEBAs used todrive high-power microwave (HPM) devices at NUDT are reviewed. The properties of both de-ionized water and glycerin as energy storagemedia are presented. Research into the breakdown properties of liquid dielectrics and the desire to maximize energy storage have resulted in theinvention of several coaxial PFLs with different electromagnetic structures, which are detailed in this paper. These high energy density liquidPFLs have been used to increase the performance of IEBA subsystems, based on which the SPARK (Single Pulse Accelerator with spark gaps)and HEART (High Energy-density Accelerator with Repetitive Transformer) series of IEBAs were constructed. This paper also discusses howthese compact IEBAs have been used to drive typical HPM devices and concludes by summarizing the associated achievements and theconclusions that can be drawn from the results.
文摘A visual sensing system was developed. The system is suitable for titanium-alloy electron-beam welding, and senses and detects molten-pool dynamic processes. A suite of processing programs for colored molten-pool images in titanium-alloy electron-beam welding was developed using Matlab software; molten-pool edge images are completely obtained using the program. The Matlab software was used to write a program which could extract the molten-pool width. The functional relationship between the molten-pool width and penetration under the experimental conditions was obtained by a curve-fitting method, and provided the theoretical basis for further penetration control.
文摘The time evolution of the argon electron-beam plasma at intermediate pressure and low electron beam intensily was presented.By applying the amplitude modulation with the frequency of 20 Hz on the stable beam current,the plasma evolution was studied.A Faraday cup was used for the measurement of the electron beam current and a single electrostatic probe was used for the measurement of the ion current.Experimental results indicated that the ion current was in phase with the electron beam current in the pressure range from 200 Pa to 3000 Pa and in the beam current range lower than 20 mA,the residual density increased approximately linearly with the maximum density in the log-log plot and the fitting coefficient was irrelative to the pressure.And then three kinds of kinetic models were developed and the simulated results given by the kinetic model,without the consideration of the excited atoms,mostly approached to the experimental results.This indicated that the effect of the excited atoms on the plasma density can be ignored at intermediate pressure and low electron beam current intensity,which can greatly simplify the kinetic model.In the end.the decrease of the plasma density when the beam current was suddenly off was studied based on the simplified model and it was found that the decease characteristic at intermediate pressure was approximate to the one at high pressure at low electron beam intensity,which was in good accordance with the experimental results.
基金Project supported by the Research Project of National University of Defense Technology,China(Grant No.JC13-02-14)the National Natural Science Foundation of China(Grant No.11104349)
文摘Focused ion-beam-induced deposition (FIBID) and focused electron-beam-induced deposition (FEBID) are conve- nient and useful in nanodevice fabrication. Since the deposition is from the organometallic platinum precursor, the con- ductive lines directly written by focused ion-beam (FIB) and focused electron-beam (FEB) are carbon-rich materials. We discuss an alternative approach to enhancing the platinum content and improving the conductivity of the conductive leads produced by FIBID and FEBID, namely an annealing treatment. Annealing in pure oxygen at 500 ℃ for 30 min enhances the platinum content values from ~ 18% to 30% and ~ 50% to 90% of FIBID and FEBID, respectively. Moreover, we find that thin films will be formed in the FIBID and FEBID processes. The annealing treatment is helpful to avoid the current leakage caused by these thin films. A single electron transistor is fabricated by FEBID and the current-voltage curve shows the Coulomb blockade effect.
文摘This paper provides insight into the application of electron-beam welding in pellet mold preparation,highlighting the importance of the combination of electron-beam welding and pellet mold preparation in the fields of microstructure joining and micro-and nanostructure preparation.Precise material joining and microstructure fabrication can be achieved by the precise control of electron-beam welding and the shape adjustment of pellet molds.These applications hold significant potential in the modern industrial field,providing robust support for the development of new materials and the growth of the petrochemical industry.This paper asserts that in the future,the ongoing development of electron-beam welding and pelletizing template technology will unlock new possibilities in the field of petrochemicals,fostering progress in science and technology.
文摘This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argument for the optimal parameter combination is presented.Electron-beam welding technology offers several advantages,including high energy density and the ability to create fine weld seams.However,it also presents certain challenges,such as the complexity of welding parameters and the potential generation of brittle phases.The analysis conducted in this paper holds significant importance in enhancing the quality and efficiency of dissimilar material welding processes.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Science(No.XDA02040300)the National Natural Science Foundation of China(No.11575277)
文摘While the high-energy radiation effects on polypropylene, which are crucial for the cable industry for nuclear power plants, have been thoroughly studied, the property changes of PP at low-dose-rate electron-beam irradiation are far from elucidated. Herein, the influence of electron-beam irradiation on the structure and properties of PP was examined. The static EB irradiation conditions were 1.2 MeV at a low dose rate of 20 kGy/h to achieve absorbed doses ranging from 45, to 60, 100, and 200 kGy.The molecular structure was first evaluated by measuring the carboxyl index and the relative radical concentrations via Fourier transform infrared spectroscopy and electron spin resonance, respectively. Mechanical, differential scanning colorimetric, and rheological tests were carried out to further investigate the changes in the properties(tensile, crystalizing, and viscoelastic properties) of irradiated PP, which showed good agreement with the structural analysis results. We found that radio-oxidative degradation(chain scission) was predominant, which can be due to the low dose rate facilitating oxygen diffusion into the PP matrix during electron-beam irradiation.
文摘The weldability of the ZhS6U nickel-based superalloy, which is prone to solidification cracking during electron-beam welding(EBW) repair processes, was investigated. The effects of two different pre-weld heat-treatment cycles on the final microstructure before and after welding were examined. Welds were made on flat coupons using an EBW machine, and the two heat-treatment cycles were designed to reduce γ′ liquation before welding. Microstructural features were also examined by optical and scanning electron microscopy. The results showed that the change in the morphology and size of the γ′ precipitates in the pre-weld heat-treatment cycles changed the ability of the superalloy to release the tensile stresses caused by the matrix phase cooling after EBW. The high hardness in the welded coupons subjected to the first heat-treatment cycle resulted in greater resistance to stress release by the base alloy, and the concentration of stress in the base metal caused liquation cracks in the heat-affected zone and solidification cracks in the weld area.
基金supported in part by the National Natural Science Foundation of China(Nos.10275065,10333030)
文摘As electron-beam generating plasma is widely applied, the software tool EGS4 (Electron-Gamma Shower) was used to simulate the transmission and energy deposition of electron-beam in air. The simulation results indicated that the range of the electron-beam was inversely proportional to the gas pressure in a wide range of gas pressure, and the electron-beam of 200 keV could generate a plasma with a density 10^11 cm^-3 in air of latm. In addition, the energy distribution of the beam-electron and plasma density profile produced by the beam were achieved.
文摘Nitriding of surface of aluminum alloys was carried out with using an electron-beam-excited-plasma (EBEP) technique. The EBEP is sustained by electron impact ionization with energetic electron beam. Two kinds of substrates, aluminum alloys AA5052 and AA5083, were exposed to the down flow of EBEP source at 843 K for 45min. The specimens were characterized with respect to following properties: crystallographic structure (XRD), morphology (SEM) and the cross sectional microstructures of the nitrided layer was observed using a scanning electron microscopy (SEM). There are some A12O3 particles on the surface of the nitrided AA5052 and AA5083. The A1N layers were formed on the substrates with the thickness of 4.5 fi m for AA5052 and 0.5 /z m for AA5083 . A relatively uniform nitrided surface layer composed of A1N can be observed on the AA5052 substrate. The grains size near the interfaces between the substrate and A1N layer were smaller than that near the surface. On the surface of A1N layer, the concentration of nitrogen was high and in the middle of A1N layer it had a constant concentration like the aluminum and the concentration was decreased with approaching to the interface. On the surface of nitrided AA5083, a uniform A1N layer was not formed as the reason for the high nitriding temperature.
文摘Based on Langmuir equation and thermodynamic properties of iron-silicon binary alloy, a mathematical model about the process of electron-beam evaporated binary alloy Fe-6.5%Si was established. Variation of the composition of molten pool, vapor and deposit with time, length of transient time and the composition of molten pool, deposit under the steady condition were presented according to the numerical model. The experimental results on the composition of deposit were compared to the data calculated through the model. The results show that the model is applicable, after evaporating for about 50min, the compositions of the deposit are equal to those of the ingot.
基金Support for this project was provided by US Department of Energy grant DE-SC0011826
文摘This research explores the prospect of fabricating a face-centered cubic(fcc) Ni-base alloy cladding(Inconel 690) on an fcc Fe-base alloy(316 L stainless-steel) having improved mechanical properties and reduced sensitivity to corrosion through grain boundary and microstructure engineering concepts enabled by additive manufacturing(AM) utilizing electron-beam powder bed fusion(EPBF). The unique solidification and associated constitutional supercooling phenomena characteristic of EPBF promotes[100] textured and extended columnar grains having lower energy grain boundaries as opposed to random, high-angle grain boundaries, but no coherent {111} twin boundaries characteristic of conventional thermo-mechanically processed fcc metals and alloys, including Inconel 690 and 316 L stainless-steel.In addition to [100] textured grains, columnar grains were produced by EPBF fabrication of Inconel 690 claddings on 316 L stainless-steel substrates. Also, irregular 2–3 μm diameter, low energy subgrains were formed along with dislocation densities varying from 108 to 109 cm^2, and a homogeneous distribution of Cr_(23)C_6 precipitates. Precipitates were formed within the grains(with ~3 μm interparticle spacing),but not in the subgrain or columnar grain boundaries. These inclusive, hierarchical microstructures produced a tensile yield strength of 0.527 GPa, elongation of 21%, and Vickers microindentation hardness of 2.33 GPa for the Inconel 690 cladding in contrast to a tensile yield strength of 0.327 GPa, elongation of 53%, and Vickers microindentation hardness of 1.78 GPa, respectively for the wrought 316 L stainlesssteel substrate. Aging of both the Inconel 690 cladding and the 316 L stainless-steel substrate at 685?C for50 h precipitated Cr_(23)C_6 carbides in the Inconel 690 columnar grain boundaries, but not in the low-angle(and low energy) subgrain boundaries. In contrast, Cr_(23)C_6 carbides precipitated in the 316 L stainless-steel grain boundaries, but not in the low energy coherent {111} twin boundaries. Consequently, the Inconel690 subgrain boundaries essentially serve as surrogates for coherent twin boundaries with regard to avoiding carbide precipitation and corrosion sensitization.
基金support under the Manufacturing Portfolio collaborative project between Rolls-Royce plc,Partnership for Research in Simulation of Manufacturing and Materials (PRISM2),the University of Birmingham
文摘A detailed microstructural characterisation of the emerging weld-line grain structure,for bead-upon-plate welds in Ti-6Al-4V(Ti64)of differing plate thickness,was performed.The microstructure studied was formed during both steady state and non-steady state sections within the weld path,with the non-steady state portion being taken from the end of the plate as the weld bead and heat source overhang the edge of the plate.This allows for the effects of welding process conditions on the microstructural evolution to be determined.The weld pool geometry and 3D tomography of the weld-induced defects have been investigated.Detailed characterisation of microstructure and texture for different welding parameters and for steady and non-steady states have been used to identify physical parameters for the microstructure predictions that are difficult to obtain otherwise.The different states significantly affect the weld crown shape and formation,weld toe,weld bead depth and width.However,the heat affected zone(HAZ)re-mains unchanged.Regarding the microstructural evolution,both the steady and non-steady states have similar microstructure and texture.No defects were observed in the steady state section of welds,but sub-surface spherical pores have been observed in the non-steady state section of a weld.Finite element modelling to simulate the thermal-metallurgical-mechanical fields within the steady and non-steady state sections of the welds was considered,and the cooling rates predicted within steady state and non-steady sections were interrogated to improve the theoretical understanding of the microstructure and defect formation differences in these Ti64 EB weld regions.
文摘IN an ordinary way the grafting induced by electron and gamma preirradiations widely used for improving the compatibility of polymers in composites gives rise to an enhancement of their mechanical properties. However, very few have been reported in the flame retardancy of polymers using these sorts of techniques. Wilkie investigated the flame retardancy of photo-initiation grafted polymers. An attempt is made in this paper to try to use the EB preirradiation on EVA copolymers with different VA contents and the subsequent grafting with saponification under atmosphere and to expedite the charring of polymers upon heating. Characterization of the flammability of the preirradiated EVA copolymers grafted with acrylic monomers indicates that this approach turns out to be a promising way and worthy of doing.