Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-...Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area.展开更多
This paper presents an efficient enhanced snake optimizer termed BEESO for global optimization and engineering applications.As a newly mooted meta-heuristic algorithm,snake optimizer(SO)mathematically models the matin...This paper presents an efficient enhanced snake optimizer termed BEESO for global optimization and engineering applications.As a newly mooted meta-heuristic algorithm,snake optimizer(SO)mathematically models the mating characteristics of snakes to find the optimal solution.SO has a simple structure and offers a delicate balance between exploitation and exploration.However,it also has some shortcomings to be improved.The proposed BEESO consequently aims to lighten the issues of lack of population diversity,convergence slowness,and the tendency to be stuck in local optima in SO.The presentation of Bi-Directional Search(BDS)is to approach the global optimal value along the direction guided by the best and the worst individuals,which makes the convergence speed faster.The increase in population diversity in BEESO benefits from Modified Evolutionary Population Dynamics(MEPD),and the replacement of poorer quality individuals improves population quality.The Elite Opposition-Based Learning(EOBL)provides improved local exploitation ability of BEESO by utilizing solid solutions with good performance.The performance of BEESO is illustrated by comparing its experimental results with several algorithms on benchmark functions and engineering designs.Additionally,the results of the experiment are analyzed again from a statistical point of view using the Friedman and Wilcoxon rank sum tests.The findings show that these introduced strategies provide some improvements in the performance of SO,and the accuracy and stability of the optimization results provided by the proposed BEESO are competitive among all algorithms.To conclude,the proposed BEESO offers a good alternative to solving optimization issues.展开更多
To solve the problem that the performance of the coverage,interference rate,load balance andweak power in the radio frequency identification(RFID)network planning.This paper proposes an elite opposition-based learning...To solve the problem that the performance of the coverage,interference rate,load balance andweak power in the radio frequency identification(RFID)network planning.This paper proposes an elite opposition-based learning and Lévy flight sparrow search algorithm(SSA),which is named elite opposition-based learning and Levy flight SSA(ELSSA).First,the algorithm initializes the population by an elite opposed-based learning strategy to enhance the diversity of the population.Second,Lévy flight is introduced into the scrounger’s position update formula to solve the situation that the algorithm falls into the local optimal solution.It has a probability that the current position is changed by Lévy flight.This method can jump out of the local optimal solution.In the end,the proposed method is compared with particle swarm optimization(PSO)algorithm,grey wolf optimzer(GWO)algorithm and SSA in the multiple simulation tests.The simulated results showed that,under the same number of readers,the average fitness of the ELSSA is improved respectively by 3.36%,5.67%and 18.45%.By setting the different number of readers,ELSSA uses fewer readers than other algorithms.The conclusion shows that the proposed method can ensure a satisfying coverage by using fewer readers and achieving higher comprehensive performance.展开更多
文摘Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area.
基金supported by the National Natural Science Foundation of China (Grant No.51875454).
文摘This paper presents an efficient enhanced snake optimizer termed BEESO for global optimization and engineering applications.As a newly mooted meta-heuristic algorithm,snake optimizer(SO)mathematically models the mating characteristics of snakes to find the optimal solution.SO has a simple structure and offers a delicate balance between exploitation and exploration.However,it also has some shortcomings to be improved.The proposed BEESO consequently aims to lighten the issues of lack of population diversity,convergence slowness,and the tendency to be stuck in local optima in SO.The presentation of Bi-Directional Search(BDS)is to approach the global optimal value along the direction guided by the best and the worst individuals,which makes the convergence speed faster.The increase in population diversity in BEESO benefits from Modified Evolutionary Population Dynamics(MEPD),and the replacement of poorer quality individuals improves population quality.The Elite Opposition-Based Learning(EOBL)provides improved local exploitation ability of BEESO by utilizing solid solutions with good performance.The performance of BEESO is illustrated by comparing its experimental results with several algorithms on benchmark functions and engineering designs.Additionally,the results of the experiment are analyzed again from a statistical point of view using the Friedman and Wilcoxon rank sum tests.The findings show that these introduced strategies provide some improvements in the performance of SO,and the accuracy and stability of the optimization results provided by the proposed BEESO are competitive among all algorithms.To conclude,the proposed BEESO offers a good alternative to solving optimization issues.
基金supported by the National Natural Science Foundation of China(61761004)。
文摘To solve the problem that the performance of the coverage,interference rate,load balance andweak power in the radio frequency identification(RFID)network planning.This paper proposes an elite opposition-based learning and Lévy flight sparrow search algorithm(SSA),which is named elite opposition-based learning and Levy flight SSA(ELSSA).First,the algorithm initializes the population by an elite opposed-based learning strategy to enhance the diversity of the population.Second,Lévy flight is introduced into the scrounger’s position update formula to solve the situation that the algorithm falls into the local optimal solution.It has a probability that the current position is changed by Lévy flight.This method can jump out of the local optimal solution.In the end,the proposed method is compared with particle swarm optimization(PSO)algorithm,grey wolf optimzer(GWO)algorithm and SSA in the multiple simulation tests.The simulated results showed that,under the same number of readers,the average fitness of the ELSSA is improved respectively by 3.36%,5.67%and 18.45%.By setting the different number of readers,ELSSA uses fewer readers than other algorithms.The conclusion shows that the proposed method can ensure a satisfying coverage by using fewer readers and achieving higher comprehensive performance.