期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Modified Elite Opposition-Based Artificial Hummingbird Algorithm for Designing FOPID Controlled Cruise Control System 被引量:2
1
作者 Laith Abualigah Serdar Ekinci +1 位作者 Davut Izci Raed Abu Zitar 《Intelligent Automation & Soft Computing》 2023年第11期169-183,共15页
Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-... Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area. 展开更多
关键词 Cruise control system FOPID controller artificial hummingbird algorithm elite opposition-based learning
下载PDF
基于EG-SSMA-DELM的数控铣床刀具RUL预测研究 被引量:4
2
作者 张天骁 谷艳玲 安文杰 《机电工程》 CAS 北大核心 2023年第9期1464-1470,共7页
在工件的加工过程中,刀具失效会造成工件报废和关键部件损坏等问题,为此,提出了一种基于精英反向学习与黄金正弦优化黏菌算法结合深度极限学习机(EG-SSMA-DELM)的刀具磨损剩余寿命预测模型。首先,在黏菌算法(SMA)中,采用精英反向学习(EO... 在工件的加工过程中,刀具失效会造成工件报废和关键部件损坏等问题,为此,提出了一种基于精英反向学习与黄金正弦优化黏菌算法结合深度极限学习机(EG-SSMA-DELM)的刀具磨损剩余寿命预测模型。首先,在黏菌算法(SMA)中,采用精英反向学习(EOBL)与黄金正弦(GSA)算法优化初始黏菌种群,提高了初始种群的多样性,改进了初始SMA搜索个体位置的更新方式,提高了算法的收敛速度与全局搜索能力,得到了最优参数;然后,利用改进的SMA算法,对深度极限学习机(DELM)中编码器的偏置与输入权重进行了联合优化,定义了不同数量的隐藏层神经元,利用ReLU激活函数对DELM的参数进行了理想排列;最后,根据最优参数,将投影特征输入DELM中进行了训练和预测,从而对刀具进行了剩余使用寿命预测。研究结果表明:相比于经典的深度极限学习机方法,EG-SSMA-DELM方法的均方根误差(RMSE)平均下降了19.60%,预测精度提高了16.00%;与其他深度学习算法相比,该算法模型具有更好的可行性、单调性和更强的鲁棒性。该算法模型对实际工程刀具磨损剩余寿命研究有一定的应用价值。 展开更多
关键词 剩余使用寿命 刀具寿命预测 精英反向学习 黄金正弦算法 黏菌算法 深度极限学习机
下载PDF
基于精英反向学习的烟花爆炸式免疫遗传算法 被引量:6
3
作者 韩江 闵杰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2020年第4期433-437,共5页
针对移动机器人的路径规划中存在的避障和路径搜索等问题,文章提出了一种基于精英反向学习(elite opposition-based learning,EOBL)的烟花爆炸式免疫遗传算法(fireworks explosive immune genetic algorithm,FEIGA)。在FEIGA算法的基础... 针对移动机器人的路径规划中存在的避障和路径搜索等问题,文章提出了一种基于精英反向学习(elite opposition-based learning,EOBL)的烟花爆炸式免疫遗传算法(fireworks explosive immune genetic algorithm,FEIGA)。在FEIGA算法的基础上,引入EOBL机制扩大全局搜索,即在进行爆炸操作时,对当前最佳个体执行反向学习,生成其搜索边界内的反向搜索种群,引导算法向包含全局最优的解空间逼近,以提高算法的平衡和探索能力。函数优化结果表明,与其他算法相比,EOBL-FEIGA收敛速度更快,搜索精度更高,有效地解决了免疫遗传算法(immune genetic algorithm,IGA)存在的局部搜索能力弱、易早熟收敛的问题,克服了FEIGA算法易陷入局部最优解的不足。路径规划结果表明,在不同的复杂环境下,EOBL-FEIGA能实现机器人的最优路径搜索和避障,有较强的搜索能力和鲁棒性。 展开更多
关键词 移动机器人 路径规划 精英反向学习(eobl) 烟花爆炸算法 免疫遗传算法(IGA)
下载PDF
基于改进共生生物搜索算法的林火图像多阈值分割 被引量:5
4
作者 贾鹤鸣 李瑶 +1 位作者 姜子超 孙康健 《计算机应用》 CSCD 北大核心 2021年第5期1465-1470,共6页
针对传统多阈值分割方法计算复杂度随着阈值个数的增加而增长,以及对给定图像进行多阈值分割操作时效率很低等问题,提出了一种基于共生生物搜索(SOS)算法结合Kapur熵的多阈值分割方法。首先将精英反策略(EOBL)引入到SOS算法的共栖阶段,... 针对传统多阈值分割方法计算复杂度随着阈值个数的增加而增长,以及对给定图像进行多阈值分割操作时效率很低等问题,提出了一种基于共生生物搜索(SOS)算法结合Kapur熵的多阈值分割方法。首先将精英反策略(EOBL)引入到SOS算法的共栖阶段,从而改善传统SOS算法处理复杂优化问题时易陷入局部最优的问题;然后引入莱维飞行策略扩大SOS算法的的搜索范围,增强其搜索轨迹的随机性;最终将得到的改进共生生物搜索(MSOS)算法应用到林火图像最佳阈值的选取问题上。实验结果表明,与粒子群优化算法、和声搜索算法、蝙蝠算法等对比算法相比,所提算法能更好地分割图像,在实际工程问题中具有一定的实用性和价值。 展开更多
关键词 图像多阈值分割 共生生物搜索算法 精英反策略 莱维飞行 林火识别
下载PDF
BEESO:Multi-strategy Boosted Snake-Inspired Optimizer for Engineering Applications 被引量:3
5
作者 Gang Hu Rui Yang +1 位作者 Muhammad Abbas Guo Wei 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第4期1791-1827,共37页
This paper presents an efficient enhanced snake optimizer termed BEESO for global optimization and engineering applications.As a newly mooted meta-heuristic algorithm,snake optimizer(SO)mathematically models the matin... This paper presents an efficient enhanced snake optimizer termed BEESO for global optimization and engineering applications.As a newly mooted meta-heuristic algorithm,snake optimizer(SO)mathematically models the mating characteristics of snakes to find the optimal solution.SO has a simple structure and offers a delicate balance between exploitation and exploration.However,it also has some shortcomings to be improved.The proposed BEESO consequently aims to lighten the issues of lack of population diversity,convergence slowness,and the tendency to be stuck in local optima in SO.The presentation of Bi-Directional Search(BDS)is to approach the global optimal value along the direction guided by the best and the worst individuals,which makes the convergence speed faster.The increase in population diversity in BEESO benefits from Modified Evolutionary Population Dynamics(MEPD),and the replacement of poorer quality individuals improves population quality.The Elite Opposition-Based Learning(EOBL)provides improved local exploitation ability of BEESO by utilizing solid solutions with good performance.The performance of BEESO is illustrated by comparing its experimental results with several algorithms on benchmark functions and engineering designs.Additionally,the results of the experiment are analyzed again from a statistical point of view using the Friedman and Wilcoxon rank sum tests.The findings show that these introduced strategies provide some improvements in the performance of SO,and the accuracy and stability of the optimization results provided by the proposed BEESO are competitive among all algorithms.To conclude,the proposed BEESO offers a good alternative to solving optimization issues. 展开更多
关键词 Snake optimizer Bi-Directional Search Evolutionary Population Dynamics elite opposition-based learning Strategy Mechanical optimization design
原文传递
Improved sparrow search algorithm for RFID network planning
6
作者 Zhang Jiangbo Zheng Jiali +2 位作者 Quan Yixuan Lin Zihan Xie Xiaode 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2023年第1期93-102,共10页
To solve the problem that the performance of the coverage,interference rate,load balance andweak power in the radio frequency identification(RFID)network planning.This paper proposes an elite opposition-based learning... To solve the problem that the performance of the coverage,interference rate,load balance andweak power in the radio frequency identification(RFID)network planning.This paper proposes an elite opposition-based learning and Lévy flight sparrow search algorithm(SSA),which is named elite opposition-based learning and Levy flight SSA(ELSSA).First,the algorithm initializes the population by an elite opposed-based learning strategy to enhance the diversity of the population.Second,Lévy flight is introduced into the scrounger’s position update formula to solve the situation that the algorithm falls into the local optimal solution.It has a probability that the current position is changed by Lévy flight.This method can jump out of the local optimal solution.In the end,the proposed method is compared with particle swarm optimization(PSO)algorithm,grey wolf optimzer(GWO)algorithm and SSA in the multiple simulation tests.The simulated results showed that,under the same number of readers,the average fitness of the ELSSA is improved respectively by 3.36%,5.67%and 18.45%.By setting the different number of readers,ELSSA uses fewer readers than other algorithms.The conclusion shows that the proposed method can ensure a satisfying coverage by using fewer readers and achieving higher comprehensive performance. 展开更多
关键词 RADIO frequency identification network PLANNING SPARROW search algorithm elite opposition-based learning LEVY FLIGHT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部