The relation between the normal displacement on the surface of a dynamical elliptical crack and the normal stress over the crack surface was studied. The three dimensional elastodynamic equations and Fourier Laplace...The relation between the normal displacement on the surface of a dynamical elliptical crack and the normal stress over the crack surface was studied. The three dimensional elastodynamic equations and Fourier Laplace transforms are used. Based on the influence function and the inversion of integral transforms, one can find that if the distribution of normal displacement on the surface of a dynamic elliptical crack is a polynomial of degree n in x 1 and x 2 , then the normal pressure acting over the ellipse is also a polynomial P n(x 1,x 2) of the same degree in x 1 and x 2 .展开更多
Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are o...Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio v at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle φ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of φ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2 ≤ a/c ≤ 1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded centerelliptical crack from field, and a two-parameter K-Tz principle is proposed.展开更多
According to the constitutive relationship in linear piezoceramics, elliptical crack problems in the impermeable case are reconsidered with the hypersingular integral equation method. Unknown displacement and electric...According to the constitutive relationship in linear piezoceramics, elliptical crack problems in the impermeable case are reconsidered with the hypersingular integral equation method. Unknown displacement and electric potential jumps in the integral equations are approximated with a product of the fundamental density function and polynomials, in which the fundamental density function reflects the singular behavior of electroelastic fields near the crack front and the polynomials can be reduced to a real constant under uniform loading. Ellipsoidal coordinates are cleverly introduced to solve the unknown displacement and electric potential jumps in the integral equations under uniform loading. With the help of these solutions and definitions of electroelastic field intensity factors, exact expressions for mode Ⅰ, mode Ⅱ and mode Ⅲ stress intensity factors as well as the mode Ⅳ electric displacement intensity factor are obtained. The present results under uniform normal loading are the same as the available exact solutions, but those under uniform shear loading have not been found in the literature as yet.展开更多
The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the rat...The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the ratio of the wave speeds on the stressintensity factor. The present method is suitable not only forthree-dimensional dynamic crack, but also for three-dimensionaldynamic contact.展开更多
Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solv...Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.展开更多
This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack...This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack is determined by solving a Fredholm integral equation of the first kind. The results of this paper are very close to those given by the two-dimensional dual integral equation method.展开更多
By means of the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals is investig...By means of the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals is investigated. The solution of the stress intensity factor (SIF) for mode III problem has been found. Under the condition of limitation, both the known results and the SIF solution at the crack tip of a circular hole with two straight cracks and cross crack in one-dimensional hexagonal quasicrystals can be obtained.展开更多
Hierarchical defects are defined as adjacent defects at different length scales.Involved are the two scales where the stress field distribution is interrelated.Based on the complex variable method and conformal mappin...Hierarchical defects are defined as adjacent defects at different length scales.Involved are the two scales where the stress field distribution is interrelated.Based on the complex variable method and conformal mapping,a multiscale framework for solving the problems of hierarchical defects is formulated.The separated representations of mapping function,the governing equations of potentials,and the stress field are subsequently obtained.The proposed multiscale framework can be used to solve a variety of simplified engineering problems.The case in point is the analytical solution of a macroscopic elliptic hole with a microscopic circular edge defect.The results indicate that the microscopic defect aggregates the stress concentration on the macroscopic defect and likely leads to global propagation and rupture.Multiple micro-defects have interactive effects on the distribution of the stress field.The level of stress concentration may be reduced by the coalescence of micro-defects.This work provides a unified method to analytically investigate the influence of edge micro-defects within the scope of multiscale hierarchy.The formulated multiscale approach can also be potentially applied to materials with hierarchical defects,such as additive manufacturing and bio-inspired materials.展开更多
To give an insight into the understanding of damage evolution and crack propagation in rocks,a series of uniaxial and biaxial compression numerical tests are carried out.The investigations show that damage evolution o...To give an insight into the understanding of damage evolution and crack propagation in rocks,a series of uniaxial and biaxial compression numerical tests are carried out.The investigations show that damage evolution occurs firstly in the weak rock,the area around the flaw and the area between the flaw and the neighboring rock layer.Cracks mostly generate as tensile cracks under uniaxial compression and shear cracks under biaxial compression.Crack patterns are classified and divided.The relationship between the accumulated lateral displacement and the short radius(b)is fitted,and the equation of crack path is also established.展开更多
文摘The relation between the normal displacement on the surface of a dynamical elliptical crack and the normal stress over the crack surface was studied. The three dimensional elastodynamic equations and Fourier Laplace transforms are used. Based on the influence function and the inversion of integral transforms, one can find that if the distribution of normal displacement on the surface of a dynamic elliptical crack is a polynomial of degree n in x 1 and x 2 , then the normal pressure acting over the ellipse is also a polynomial P n(x 1,x 2) of the same degree in x 1 and x 2 .
基金The project supported by the National Natural Science Foundation of China (50275073)
文摘Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio v at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle φ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of φ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2 ≤ a/c ≤ 1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded centerelliptical crack from field, and a two-parameter K-Tz principle is proposed.
基金Project supported by the Jiangxi Provincial Natural Science Foundation (No.0112001)the Japan Society for the Promotion of Science Postdoctoral Fellowship (No.P01205).
文摘According to the constitutive relationship in linear piezoceramics, elliptical crack problems in the impermeable case are reconsidered with the hypersingular integral equation method. Unknown displacement and electric potential jumps in the integral equations are approximated with a product of the fundamental density function and polynomials, in which the fundamental density function reflects the singular behavior of electroelastic fields near the crack front and the polynomials can be reduced to a real constant under uniform loading. Ellipsoidal coordinates are cleverly introduced to solve the unknown displacement and electric potential jumps in the integral equations under uniform loading. With the help of these solutions and definitions of electroelastic field intensity factors, exact expressions for mode Ⅰ, mode Ⅱ and mode Ⅲ stress intensity factors as well as the mode Ⅳ electric displacement intensity factor are obtained. The present results under uniform normal loading are the same as the available exact solutions, but those under uniform shear loading have not been found in the literature as yet.
基金the National Natural Science Foundation of China( No.K19672007)
文摘The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the ratio of the wave speeds on the stressintensity factor. The present method is suitable not only forthree-dimensional dynamic crack, but also for three-dimensionaldynamic contact.
基金supported by the National Natural Science Foundation of China (Grant No 10761005)the Inner Mongolia Natural Science Foundation of China (Grant No 200607010104)
文摘Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.
基金The project supported by the National Natural Science Foundation of China (K19672007)
文摘This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack is determined by solving a Fredholm integral equation of the first kind. The results of this paper are very close to those given by the two-dimensional dual integral equation method.
基金Project supported by the National Natural Science Foundation of China(No.10761005)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.200607010104)
文摘By means of the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals is investigated. The solution of the stress intensity factor (SIF) for mode III problem has been found. Under the condition of limitation, both the known results and the SIF solution at the crack tip of a circular hole with two straight cracks and cross crack in one-dimensional hexagonal quasicrystals can be obtained.
基金the National Natural Science Foundation of China(No.51878154)the National Program on Major Research Project of China(No.2016YFC0701301)。
文摘Hierarchical defects are defined as adjacent defects at different length scales.Involved are the two scales where the stress field distribution is interrelated.Based on the complex variable method and conformal mapping,a multiscale framework for solving the problems of hierarchical defects is formulated.The separated representations of mapping function,the governing equations of potentials,and the stress field are subsequently obtained.The proposed multiscale framework can be used to solve a variety of simplified engineering problems.The case in point is the analytical solution of a macroscopic elliptic hole with a microscopic circular edge defect.The results indicate that the microscopic defect aggregates the stress concentration on the macroscopic defect and likely leads to global propagation and rupture.Multiple micro-defects have interactive effects on the distribution of the stress field.The level of stress concentration may be reduced by the coalescence of micro-defects.This work provides a unified method to analytically investigate the influence of edge micro-defects within the scope of multiscale hierarchy.The formulated multiscale approach can also be potentially applied to materials with hierarchical defects,such as additive manufacturing and bio-inspired materials.
基金substantially supported by the National Program on Major Research Project (no.2016YFC0701301-02)Jiangsu Higher Education Institutions for the Priority Academic Development Program (CE021-34)
文摘To give an insight into the understanding of damage evolution and crack propagation in rocks,a series of uniaxial and biaxial compression numerical tests are carried out.The investigations show that damage evolution occurs firstly in the weak rock,the area around the flaw and the area between the flaw and the neighboring rock layer.Cracks mostly generate as tensile cracks under uniaxial compression and shear cracks under biaxial compression.Crack patterns are classified and divided.The relationship between the accumulated lateral displacement and the short radius(b)is fitted,and the equation of crack path is also established.