Cloud computing provides powerful processing capabilities for large-scale intelligent Internet of things(IoT)terminals.However,the massive realtime data processing requirements challenge the existing cloud computing m...Cloud computing provides powerful processing capabilities for large-scale intelligent Internet of things(IoT)terminals.However,the massive realtime data processing requirements challenge the existing cloud computing model.The edge server is closer to the data source.The end-edge-cloud collaboration offloads the cloud computing tasks to the edge environment,which solves the shortcomings of the cloud in resource storage,computing performance,and energy consumption.IoT terminals and sensors have caused security and privacy challenges due to resource constraints and exponential growth.As the key technology of IoT,Radio-Frequency Identification(RFID)authentication protocol tremendously strengthens privacy protection and improves IoT security.However,it inevitably increases system overhead while improving security,which is a major blow to low-cost RFID tags.The existing RFID authentication protocols are difficult to balance overhead and security.This paper designs an ultra-lightweight encryption function and proposes an RFID authentication scheme based on this function for the end-edge-cloud collaborative environment.The BAN logic proof and protocol verification tools AVISPA formally verify the protocol’s security.We use VIVADO to implement the encryption function and tag’s overhead on the FPGA platform.Performance evaluation indicates that the proposed protocol balances low computing costs and high-security requirements.展开更多
Edge computing, which migrates compute-intensive tasks to run on the storage resources of edge devices, efficiently reduces data transmission loss and protects data privacy. However, due to limited computing resources...Edge computing, which migrates compute-intensive tasks to run on the storage resources of edge devices, efficiently reduces data transmission loss and protects data privacy. However, due to limited computing resources and storage capacity, edge devices fail to support real-time streaming data query and processing. To address this challenge, first, we propose a Long Short-Term Memory (LSTM) network-based adaptive approach in the intelligent end-edge-cloud system. Specifically, we maximize the Quality of Experience (QoE) of users by automatically adapting their resource requirements to the storage capacity of edge devices through an event mechanism. Second, to reduce the uncertainty and non-complete adaption of the edge device towards the user’s requirements, we use the LSTM network to analyze the storage capacity of the edge device in real time. Finally, the storage features of the edge devices are aggregated to the cloud to re-evaluate the comprehensive capability of the edge devices and ensure the fast response of the user devices during the dynamic adaptation matching process. A series of experimental results show that the proposed approach has superior performance compared with traditional centralized and matrix decomposition based approaches.展开更多
Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis wi...Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis with deep learning,linking control and optimization with prediction,and integrating decision-making with control.This method,which consists of setpoint control,self-optimized tuning,and tracking control,ensures that the energy consumption per tonne is as low as possible,while remaining within the target range.An intelligent control system for low-carbon operation is developed by adopting the end-edge-cloud collaboration technology of the Industrial Internet.The system is successfully applied to a fused magnesium furnace and achieves remarkable results in reducing carbon emissions.展开更多
With the exponential growth of intelligent Internet of Things(IoT)applications,Cloud-Edge(CE)paradigm is emerging as a solution that facilitates resource-efficient and timely services.However,it remains an underlying ...With the exponential growth of intelligent Internet of Things(IoT)applications,Cloud-Edge(CE)paradigm is emerging as a solution that facilitates resource-efficient and timely services.However,it remains an underlying issue that frequent end-edgecloud communication is over a public or adversarycontrolled channel.Additionally,with the presence of resource-constrained devices,it’s imperative to conduct the secure communication mechanism,while still guaranteeing efficiency.Physical unclonable functions(PUF)emerge as promising lightweight security primitives.Thus,we first construct a PUF-based security mechanism for vulnerable IoT devices.Further,a provably secure and PUF-based authentication key agreement scheme is proposed for establishing the secure channel in end-edge-cloud empowered IoT,without requiring pre-loaded master keys.The security of our scheme is rigorously proven through formal security analysis under the random oracle model,and security verification using AVISPA tool.The comprehensive security features are also elaborated.Moreover,the numerical results demonstrate that the proposed scheme outperforms existing related schemes in terms of computational and communication efficiency.展开更多
An intelligent battery management system is a crucial enabler for energy storage systems with high power output,increased safety and long lifetimes.With recent developments in cloud computing and the proliferation of ...An intelligent battery management system is a crucial enabler for energy storage systems with high power output,increased safety and long lifetimes.With recent developments in cloud computing and the proliferation of big data,machine learning approaches have begun to deliver invaluable insights,which drives adaptive control of battery management systems(BMS)with improved performance.In this paper,a general framework utilizing an end-edge-cloud architecture for a cloud-based BMS is proposed,with the composition and function of each link described.Cloud-based BMS leverages from the Cyber Hierarchy and Interactional Network(CHAIN)framework to provide multi-scale insights,more advanced and efficient algorithms can be used to realize the state-of-X es-timation,thermal management,cell balancing,fault diagnosis and other functions of traditional BMS system.The battery intelligent monitoring and management platform can visually present battery performance,store working-data to help in-depth understanding of the microscopic evolutionary law,and provide support for the development of control strategies.Currently,the cloud-based BMS requires more effects on the multi-scale inte-grated modeling methods and remote upgrading capability of the controller,these two aspects are very important for the precise management and online upgrade of the system.The utility of this approach is highlighted not only for automotive applications,but for any battery energy storage system,providing a holistic framework for future intelligent and connected battery management.展开更多
基金supported in part by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (Grant No. 2022C03174)the National Natural Science Foundation of China (No. 92067103)+4 种基金the Key Research and Development Program of Shaanxi (No.2021ZDLGY06- 02)the Natural Science Foundation of Shaanxi Province (No.2019ZDLGY12-02)the Shaanxi Innovation Team Project (No.2018TD007)the Xi’an Science and technology Innovation Plan (No.201809168CX9JC10)National 111 Program of China B16037
文摘Cloud computing provides powerful processing capabilities for large-scale intelligent Internet of things(IoT)terminals.However,the massive realtime data processing requirements challenge the existing cloud computing model.The edge server is closer to the data source.The end-edge-cloud collaboration offloads the cloud computing tasks to the edge environment,which solves the shortcomings of the cloud in resource storage,computing performance,and energy consumption.IoT terminals and sensors have caused security and privacy challenges due to resource constraints and exponential growth.As the key technology of IoT,Radio-Frequency Identification(RFID)authentication protocol tremendously strengthens privacy protection and improves IoT security.However,it inevitably increases system overhead while improving security,which is a major blow to low-cost RFID tags.The existing RFID authentication protocols are difficult to balance overhead and security.This paper designs an ultra-lightweight encryption function and proposes an RFID authentication scheme based on this function for the end-edge-cloud collaborative environment.The BAN logic proof and protocol verification tools AVISPA formally verify the protocol’s security.We use VIVADO to implement the encryption function and tag’s overhead on the FPGA platform.Performance evaluation indicates that the proposed protocol balances low computing costs and high-security requirements.
文摘Edge computing, which migrates compute-intensive tasks to run on the storage resources of edge devices, efficiently reduces data transmission loss and protects data privacy. However, due to limited computing resources and storage capacity, edge devices fail to support real-time streaming data query and processing. To address this challenge, first, we propose a Long Short-Term Memory (LSTM) network-based adaptive approach in the intelligent end-edge-cloud system. Specifically, we maximize the Quality of Experience (QoE) of users by automatically adapting their resource requirements to the storage capacity of edge devices through an event mechanism. Second, to reduce the uncertainty and non-complete adaption of the edge device towards the user’s requirements, we use the LSTM network to analyze the storage capacity of the edge device in real time. Finally, the storage features of the edge devices are aggregated to the cloud to re-evaluate the comprehensive capability of the edge devices and ensure the fast response of the user devices during the dynamic adaptation matching process. A series of experimental results show that the proposed approach has superior performance compared with traditional centralized and matrix decomposition based approaches.
基金supported by the Science and Technology Major Project 2020 of Liaoning Province,China(2020JH1/10100008)National Natural Science Foundation of China(61991404 and 61991400)111 Project 2.0(B08015)。
文摘Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis with deep learning,linking control and optimization with prediction,and integrating decision-making with control.This method,which consists of setpoint control,self-optimized tuning,and tracking control,ensures that the energy consumption per tonne is as low as possible,while remaining within the target range.An intelligent control system for low-carbon operation is developed by adopting the end-edge-cloud collaboration technology of the Industrial Internet.The system is successfully applied to a fused magnesium furnace and achieves remarkable results in reducing carbon emissions.
基金supported by the National Key Research and Development Program of China,“Joint Research of IoT Security System and Key Technologies Based on Quantum Key,”under project number 2020YFE0200600.
文摘With the exponential growth of intelligent Internet of Things(IoT)applications,Cloud-Edge(CE)paradigm is emerging as a solution that facilitates resource-efficient and timely services.However,it remains an underlying issue that frequent end-edgecloud communication is over a public or adversarycontrolled channel.Additionally,with the presence of resource-constrained devices,it’s imperative to conduct the secure communication mechanism,while still guaranteeing efficiency.Physical unclonable functions(PUF)emerge as promising lightweight security primitives.Thus,we first construct a PUF-based security mechanism for vulnerable IoT devices.Further,a provably secure and PUF-based authentication key agreement scheme is proposed for establishing the secure channel in end-edge-cloud empowered IoT,without requiring pre-loaded master keys.The security of our scheme is rigorously proven through formal security analysis under the random oracle model,and security verification using AVISPA tool.The comprehensive security features are also elaborated.Moreover,the numerical results demonstrate that the proposed scheme outperforms existing related schemes in terms of computational and communication efficiency.
基金This work was supported by National Key R&D Program of China(2016YFB0100300)the EPSRC Faraday Institution’s Multi-Scale Mod-elling Project(EP/S003053/1,grant number FIRG003).
文摘An intelligent battery management system is a crucial enabler for energy storage systems with high power output,increased safety and long lifetimes.With recent developments in cloud computing and the proliferation of big data,machine learning approaches have begun to deliver invaluable insights,which drives adaptive control of battery management systems(BMS)with improved performance.In this paper,a general framework utilizing an end-edge-cloud architecture for a cloud-based BMS is proposed,with the composition and function of each link described.Cloud-based BMS leverages from the Cyber Hierarchy and Interactional Network(CHAIN)framework to provide multi-scale insights,more advanced and efficient algorithms can be used to realize the state-of-X es-timation,thermal management,cell balancing,fault diagnosis and other functions of traditional BMS system.The battery intelligent monitoring and management platform can visually present battery performance,store working-data to help in-depth understanding of the microscopic evolutionary law,and provide support for the development of control strategies.Currently,the cloud-based BMS requires more effects on the multi-scale inte-grated modeling methods and remote upgrading capability of the controller,these two aspects are very important for the precise management and online upgrade of the system.The utility of this approach is highlighted not only for automotive applications,but for any battery energy storage system,providing a holistic framework for future intelligent and connected battery management.