Liquid storage tanks are essential structures that are often located in residential and industrial areas; thus an assessment of their seismic performance is an important engineering issue. In this paper, the seismic r...Liquid storage tanks are essential structures that are often located in residential and industrial areas; thus an assessment of their seismic performance is an important engineering issue. In this paper, the seismic response ofunanchored steel liquid storage tanks is investigated using the endurance time (ET) dynamic analysis procedure and compared to responses obtained for anchored tanks under actual ground motions and intensifying ET records. In most cases, the results from ground motions are properly obtained with negligible differences using ET records. It is observed that uplifting of the tank base, which is closely related to the tank aspect ratio, has the greatest significance in the responses of the tank and can be predicted with reasonable accuracy by using currently available ET records.展开更多
In endurance time(ET) method structures are subjected to a set of predesigned intensifying excitations. These excitations are produced in a way that their response spectrum, while complying with a specifi ed spectrum,...In endurance time(ET) method structures are subjected to a set of predesigned intensifying excitations. These excitations are produced in a way that their response spectrum, while complying with a specifi ed spectrum, intensifi es with time so they can be used approximately to simulate the average effects of several ground motions scaled to different intensities. In this paper applicability of the ET method for evaluating collapse potential of buildings is investigated. A set of four steel moment frames is used for collapse assessment. The process of using ET method in collapse evaluation is explained and the results are compared with incremental dynamic analysis(IDA) results. It is shown that although the computational effort using the ET method is much less than the IDA analysis, the results of both methods are consistent. Finally collapse fragility curves using ET and IDA methods are produced and it is shown that the probabilities of collapse in different hazard levels are also consistent.展开更多
Probabilistic Seismic Loss Estimation is a methodology used as a quantitative and explicit expression of the performance of buildings using terms that address the interests of both owners and insurance companies. Appl...Probabilistic Seismic Loss Estimation is a methodology used as a quantitative and explicit expression of the performance of buildings using terms that address the interests of both owners and insurance companies. Applying the ATC 58 approach for seismic loss assessment of buildings requires using Incremental Dynamic Analysis (IDA), which needs hundreds of time-consuming analyses, which in turn hinders its wide application. The Endurance Time Method (ETM) is proposed herein as part of a demand propagation prediction procedure and is shown to be an economical alternative to IDA. Various scenarios were considered to achieve this purpose and their appropriateness has been evaluated using statistical methods. The most precise and efficient scenario was validated through comparison against IDA driven response predictions of 34 code conforming benchmark structures and was proven to be sufficiently precise while offering a great deal of efficiency. The loss values were estimated by replacing IDA with the proposed ETM-based procedure in the ATC 58 procedure and it was fotmd that these values suffer from varying inaccuracies, which were attributed to the discretized nature of damage and loss prediction functions provided by ATC 58.展开更多
The endurance time (ET) method is a time history based dynamic analysis in which structures are subjected to gradually intensifying excitations and their performances are judged based on their responses at various exc...The endurance time (ET) method is a time history based dynamic analysis in which structures are subjected to gradually intensifying excitations and their performances are judged based on their responses at various excitation levels. Using this method, the computational effort required for estimating probable seismic demand parameters can be reduced by an order of magnitude. Calculation of the maximum displacement or target displacement is a basic requirement for estimating performance based on structural design. The purpose of this paper is to compare the results of the nonlinear ET method with the nonlinear static pushover (NSP) method of FEMA 356 by evaluating performances and target displacements of steel frames. This study will lead to a deeper insight into the capabilities and limitations of the ET method. The results are further compared with those of the standard nonlinear response history analysis. We conclude that results from the ET analysis are in proper agreement with those from standard procedures.展开更多
文摘Liquid storage tanks are essential structures that are often located in residential and industrial areas; thus an assessment of their seismic performance is an important engineering issue. In this paper, the seismic response ofunanchored steel liquid storage tanks is investigated using the endurance time (ET) dynamic analysis procedure and compared to responses obtained for anchored tanks under actual ground motions and intensifying ET records. In most cases, the results from ground motions are properly obtained with negligible differences using ET records. It is observed that uplifting of the tank base, which is closely related to the tank aspect ratio, has the greatest significance in the responses of the tank and can be predicted with reasonable accuracy by using currently available ET records.
文摘In endurance time(ET) method structures are subjected to a set of predesigned intensifying excitations. These excitations are produced in a way that their response spectrum, while complying with a specifi ed spectrum, intensifi es with time so they can be used approximately to simulate the average effects of several ground motions scaled to different intensities. In this paper applicability of the ET method for evaluating collapse potential of buildings is investigated. A set of four steel moment frames is used for collapse assessment. The process of using ET method in collapse evaluation is explained and the results are compared with incremental dynamic analysis(IDA) results. It is shown that although the computational effort using the ET method is much less than the IDA analysis, the results of both methods are consistent. Finally collapse fragility curves using ET and IDA methods are produced and it is shown that the probabilities of collapse in different hazard levels are also consistent.
文摘Probabilistic Seismic Loss Estimation is a methodology used as a quantitative and explicit expression of the performance of buildings using terms that address the interests of both owners and insurance companies. Applying the ATC 58 approach for seismic loss assessment of buildings requires using Incremental Dynamic Analysis (IDA), which needs hundreds of time-consuming analyses, which in turn hinders its wide application. The Endurance Time Method (ETM) is proposed herein as part of a demand propagation prediction procedure and is shown to be an economical alternative to IDA. Various scenarios were considered to achieve this purpose and their appropriateness has been evaluated using statistical methods. The most precise and efficient scenario was validated through comparison against IDA driven response predictions of 34 code conforming benchmark structures and was proven to be sufficiently precise while offering a great deal of efficiency. The loss values were estimated by replacing IDA with the proposed ETM-based procedure in the ATC 58 procedure and it was fotmd that these values suffer from varying inaccuracies, which were attributed to the discretized nature of damage and loss prediction functions provided by ATC 58.
文摘The endurance time (ET) method is a time history based dynamic analysis in which structures are subjected to gradually intensifying excitations and their performances are judged based on their responses at various excitation levels. Using this method, the computational effort required for estimating probable seismic demand parameters can be reduced by an order of magnitude. Calculation of the maximum displacement or target displacement is a basic requirement for estimating performance based on structural design. The purpose of this paper is to compare the results of the nonlinear ET method with the nonlinear static pushover (NSP) method of FEMA 356 by evaluating performances and target displacements of steel frames. This study will lead to a deeper insight into the capabilities and limitations of the ET method. The results are further compared with those of the standard nonlinear response history analysis. We conclude that results from the ET analysis are in proper agreement with those from standard procedures.