期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Studying the variable energy band structure for energy storage materials in charge/discharge process
1
作者 Xuancheng Chen Yu Huan +5 位作者 Ningqiang Sun Yuanhui Su Xuesong Shen Guoqing Li Jiaqi Zhang Tao Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期584-589,共6页
So far,a clear understanding about the relationship of variable energy band structure with the corresponding charge-discharge process of energy storage materials is still lacking.Here,using optical spectroscopy(red-gr... So far,a clear understanding about the relationship of variable energy band structure with the corresponding charge-discharge process of energy storage materials is still lacking.Here,using optical spectroscopy(red-green-blue(RGB)value,reflectivity,transmittance,UV-vis,XPS,UPS)to studyα-Co(OH)_(2) electrode working in KOH electrolyte as the research object,we provide direct experimental evidence that:(1)The intercalation of OH-ions will reduce the valence/conduction band(VB and CB)and band gap energy(Eg)values;(2)The deintercalation of OH-ions corresponds with the reversion of VB,CB and E_(g) to the initial values;(3)The color of Co(OH)_(2) electrode also exhibit regular variations in RGB value during the charge-discharge process. 展开更多
关键词 Variable energy band structure energy storage materials Charge-discharge process Optical spectroscopy SUPERCAPACITORS
原文传递
Understanding the influence of crystal packing density on electrochemical energy storage materials
2
作者 Wujie Dong Fuqiang Huang 《eScience》 2024年第1期17-56,共40页
Crystal structure determines electrochemical energy storage characteristics;this is the underlying logic of material design.To date,hundreds of electrode materials have been developed to pursue superior performance.Ho... Crystal structure determines electrochemical energy storage characteristics;this is the underlying logic of material design.To date,hundreds of electrode materials have been developed to pursue superior performance.However,it remains a great challenge to understand the fundamental structure–performance relationship and achieve quantitative crystal structure design for efficient energy storage.In this review,we introduce the concept of crystal packing factor(PF),which can quantify crystal packing density.We then present and classify the typical crystal structures of attractive cathode/anode materials.Comparative PF analyses of different materials,including polymorphs,isomorphs,and others,are performed to clarify the influence of crystal packing density on energy storage performance through electronic and ionic conductivities.Notably,the practical electronic/ionic conductivities of energy storage materials are based on their intrinsic characteristics related to the PF yet are also affected by extrinsic factors.The PF provides a novel avenue for understanding the electrochemical performance of pristine materials and may offer guidance on designing better materials.Additional approaches involve size regulation,doping,carbon additives,and other methods.We also propose extended PF concepts to understand charge storage and transport behavior at different scales.Finally,we provide our insights on the major challenges and prospective solutions in this highly exciting field. 展开更多
关键词 Packing density Packing factor energy storage materials Rate capability Crystal structure Structure-activity relationship Electronic conductivity Ionic conductivity
原文传递
Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors 被引量:7
3
作者 Ramyakrishna Pothu Ravi Bolagam +5 位作者 Qing-Hong Wang Wei Ni Jin-Feng Cai Xiao-Xin Peng Yue-Zhan Feng Jian-Min Ma 《Rare Metals》 SCIE EI CAS CSCD 2021年第2期353-373,共21页
Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density,excellent cycle stability and environmental benignity.The performance of supercapacitors is def... Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density,excellent cycle stability and environmental benignity.The performance of supercapacitors is definitively influenced by the electrode materials.Nickel sulfides have attracted extensive interest in recent years due to their specific merits for supercapacitor application.However,the distribution of electrochemically active sites critically limits their electrochemical performance.Notable improvements have been achieved through various strategies such as building synergetic structures with conductive substrates,enhancing the active sites by nanocrystallization and constructing nanohybrid architecture with other electrode materials.This article overviews the progress in the reasonable design and preparation of nickel sulfides and their composite electrodes combined with various bifunctional electric double-layer capacitor(EDLC)-based substances(e.g.,graphene,hollow carbon)and pseudocapacitive materials(e.g.,transition-metal oxides,sulfides,nitrides).Moreover,the corresponding electrochemical performances,reaction mechanisms,emerging challenges and future perspectives are briefly discussed and summarized. 展开更多
关键词 SUPERCAPACITORS Nickel sulfides Hybrid structures energy storage materials PSEUDOCAPACITANCE
原文传递
Preparing and Studying of Phase Change Energy Storage Materials 被引量:4
4
作者 尚建丽 李乔明 +1 位作者 王争军 赵鹏 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第6期668-670,共3页
The thermal energy storage phase change material used for building has been prepared with a few of fatty acids based on the principle of binary low eutectic point. The thermal behaviors such as phase transition temper... The thermal energy storage phase change material used for building has been prepared with a few of fatty acids based on the principle of binary low eutectic point. The thermal behaviors such as phase transition temperature and enthalpy of compound energy storage material are researched through differential scanning calorimeter(DSC) and scanning electron microscope(SEM) . The results show that the thermal energy storage phase change composite material can be used in the wall panels well as its higher latent heat. 展开更多
关键词 binary low eutectic point phase change energy storage material latent heat performance
原文传递
MXene-based materials for electrochemical energy storage 被引量:49
5
作者 Xu Zhang Zihe Zhang Zhen Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期73-85,共13页
Rechargeable batteries and supercapacitors are widely investigated as the most important electrochemical energy storage devices nowadays due to the booming energy demand for electric vehicles and hand-held electronics... Rechargeable batteries and supercapacitors are widely investigated as the most important electrochemical energy storage devices nowadays due to the booming energy demand for electric vehicles and hand-held electronics. The large surface-area-to-volume ratio and internal surface areas endow two-dimensional(2D) materials with high mobility and high energy density; therefore, 2D materials are very promising candidates for Li ion batteries and supercapacitors with comprehensive investigations. In 2011, a new kind of 2D transition metal carbides, nitrides and carbonitrides, MXene, were successfully obtained from MAX phases. Since then about 20 different kinds of MXene have been prepared. Other precursors besides MAX phases and even other methods such as chemical vapor deposition(CVD) were also applied to prepare MXene, opening new doors for the preparation of new MXene. Their 2D nature and good electronic properties ensure the inherent advantages as electrode materials for electrochemical energy storage. In this review, we summarize the recent progress in the development of MXene with emphasis on the applications to electrochemical energy storage. Also, future perspective and challenges of MXene-based materials are briefly discussed regrading electrochemical energy storage. 展开更多
关键词 MXene2D materials Electrochemical energy storage Batteries Supercapacitors
下载PDF
Preface to Special Topic:Graphene and 2D Materials for Energy Storage
6
作者 Zhong-Shuai Wu Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期I0011-I0011,共1页
Graphene, a single layer of graphite, has been one of the first real two dimensional (2D) materials isolated in 2004. Thus, graphene is becoming a cutting edge material that opens up new horizons to a whole family o... Graphene, a single layer of graphite, has been one of the first real two dimensional (2D) materials isolated in 2004. Thus, graphene is becoming a cutting edge material that opens up new horizons to a whole family of 2D materials beyond the limited current applicability of graphene. The unique advantages of graphene and analogue 2D materials, such as atomic-scale thickness, high specific surface area, mechanically flexible robustness, superior storage capacity, endow them as high-performance electrodes lbr electrochemical energy storage devices. Although it is hard to say whether or not graphene and 2D materials will be implemented in future energy technologies, the recent achievements in this field demonstrate that their roles will be noticeable in the near future. 展开更多
关键词 Graphene and 2D materials for energy storage Preface to Special Topic
下载PDF
Development of Sensible Heat Storage Materials Using Sand, Clay and Coal Bottom Ash
7
作者 Boubou Bagre Ibrahim Kolawole Muritala +6 位作者 Tizane Daho Makinta Boukar Yomi Woro Gounkaou Babajide Epe Shari Aissatou Ndiaye Antoine Bere Adamou Rabani 《Materials Sciences and Applications》 CAS 2022年第12期603-626,共24页
In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal ... In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal energy storage (TES). Ceramic balls are developed at 1000&deg;C and 1060&deg;C using sintering or firing method. The obtained ceramics were compressed with a compression machine and thermally analyse using Decagon devise KD2 Pro thermal analyser. A muffle furnace was also used for thermal cycling at 610&deg;C. It was found that the CBA increased the porosity, which resulted in the increase of the axial tensile strength reaching 3.5 MPa for sand-clay and ash ceramic. The ceramic balls with the required tensile strength for TES were selected. Their volumetric heat capacity, and thermal conductivity range respectively from 2.4075 MJ&middot;m-3&middot;&deg;C-1 to 3.426 MJ&middot;m-3&middot;&deg;C-1 and their thermal conductivity from 0.331 Wm-1&middot;K-1, to 1.014 Wm-1&middot;K-1 depending on sand origin, size and firing temperature. The selected formulas have good thermal stability because the most fragile specimens after 60 thermal cycles did not present any cracks. These properties allow envisioning the use of the ceramic balls developed as filler material for thermocline thermal energy storage (structured beds) in Concentrating Solar Power plants. And for other applications like solar cooker and solar dryer. 展开更多
关键词 Ceramic Ball SAND CLAY Coal Bottom Ash Thermal energy storage material THERMOCLINE Concentrating Solar Power Plant
下载PDF
Microencapsulation of stearic acid with polymethylmethacrylate using iron(Ⅲ) chloride as photo-initiator for thermal energy storage 被引量:4
8
作者 Ting Zhang Minmin Chen +1 位作者 Yu Zhang Yi Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1524-1532,共9页
Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoiniti... Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoinitiator,SA/PMMA microcapsules were prepared and various techniques were employed to determine the ignition mechanism,structural characteristics and thermal properties of the composite.The results shown that the microcapsules containing SA with maximum percentage of 52.20 wt% formed by radical mechanism and only physical interactions existed in the components both in the prepared process and subsequent use.The phase change temperatures and latent heats of the microencapsulated SA were measured as 55.3 °C and 102.1 J·g^(-1) for melting,and 48.8 °C and 102.8 J·g^(-1) for freezing,respectively.Thermal gravimetric analysis revealed that SA/PMMA has good thermal durability in working temperature range.The results of accelerated thermal cycling test are all shown that the SA/PMMA have excellent thermal reliability and chemical stability although they were subjected 1000 melting/freezing cycles.In summary,the comparable thermal storage ability and good thermal reliability facilitated SA/PMMA to be considered as a viable candidate for thermal energy storage.The successful fabrication of SA/PMMA capsules indicates that ferric chloride is a prominent candidate for synthesizing PMMA containing PCM composite. 展开更多
关键词 Thermal energy storage Phase change material Microencapsulation Thermodynamic properties Synthesis Photochemistry
下载PDF
Aligned carbon nanostructures based 3D electrodes for energy storage 被引量:1
9
作者 Fengliu Lou De Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第5期559-586,共28页
Electrochemical energy storage systems with high specific energy and power as well as long cyclic stability attract increasing attention in new energy technologies. The principles for rational design of electrodes are... Electrochemical energy storage systems with high specific energy and power as well as long cyclic stability attract increasing attention in new energy technologies. The principles for rational design of electrodes are discussed to reduce the activation, concentration, and resistance overpotentials and improve the active ma- terial efficiency in order to simultaneously achieve high specific energy and power. Three dimensional (3D) nanocomposites are currently considered as promising electrode materials due to their large surface area, reduced electronic and ionic diffusion distances, and synergistic effects. This paper reviews the most recent progress on the synthesis and application of 3D thin film nanoelectrode arrays based on aligned carbon nan- otubes (ACNTs) directly grown on metal foils for energy storages and special attentions are paid on our own representative works. These novel 3D nanoelectrode arrays on metal foil exhibit improved electrochemical performances in terms of specific energy, specific power and cyclic stability due to their unique structures. In this active materials coated ACNTs over conductive substrate structures, each component is tailored to address a different demand. The electrochemical active material is used to store energy, while the ACNTs are employed to provide a large surface area to support the active material and nanocable arrays to facilitate the electron transport. The thin film of active materials can not only reduce ion transport resistance by shorten- ing the diffusion length but also make the film elastic enough to tolerate significant volume changes during charge and discharge cycles. The conductive substrate is used as the current collector and the direct contact of the ACNT arrays with the substrate reduces significantly the contact resistance. The principles obtained from ACNT based electrodes are extended to aligned graphene based electrodes. Similar improvements have been achieved which confirms the reliability of the principles obtained. In addition, we also discuss and view the ongoing trends in development of aligned carbon nanostructures based electrodes for energy storage. 展开更多
关键词 Aligned carbon nanostructureElectrochemical energy storage 3D thin film nanoelectrode arrays Metal foilElectrochemical active material
下载PDF
The mystic role of high-entropy designs in rechargeable metal-ion batteries:A review
10
作者 Yicheng Lin Shaohua Luo +5 位作者 Wei Zhao Qi Sun Jun Cong Pengwei Li Pengyu Li Shengxue Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期441-471,共31页
Rechargeable metal-ion batteries, such as lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs),have raised more attention because of the large demand for energy storage solutions. Undoubtedly, electrode material... Rechargeable metal-ion batteries, such as lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs),have raised more attention because of the large demand for energy storage solutions. Undoubtedly, electrode materials and electrolytes are key parts of batteries, exhibiting critical influence on the reversible capacity and span life of the metal-ion battery. Nonetheless, researchers commonly express concerns regarding the stability of both electrodes and electrolytes. Given its commendable stability attributes,high-entropy materials have garnered widespread acclaim and have been applied in many fields since their inception, notably in energy storage. However, while certain high-entropy designs have achieved substantial breakthroughs, some have failed to meet anticipated outcomes within the high energy density energy storage materials. Moreover, there is a lack of comprehensive summary research on the corresponding mechanisms and design principles of high-entropy designs. This review examines the current high-entropy designs for cathodes, anodes, and electrolytes, aiming to summarize the design principle,potential mechanisms, and electrochemical performance. We focus on their structural characteristics,interface characteristics, and prospective development trends. At last, we provide a fair evaluation along-side succinct development suggestions. 展开更多
关键词 High-entropy materials energy storage materials ELECTRODES Electrolytes Interface
下载PDF
Research advances of magnesium and magnesium alloys globally in 2023
11
作者 Jia She Jing Chen +4 位作者 Xiaoming Xiong Yan Yang Xiaodong Peng Daolun Chen Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3441-3475,共35页
Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 fr... Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 from bibliometric and scientific perspectives.More than 4680 articles on Mg and its alloys were published and indexed in the Web of Science(WoS)Core Collection database last year.The bibliometric analyses show that the traditional structural Mg alloys,functional Mg materials,and corrosion and protection of Mg alloys are still the main research focus.Therefore,this review paper mainly focuses on the research progress of Mg cast alloys,Mg wrought alloys,bio-magnesium alloys,Mg-based energy storage materials,corrosion and protection of Mg alloys in 2023.In addition,future research directions are proposed based on the challenges and obstacles identified throughout this review. 展开更多
关键词 Magnesium alloys BIBLIOMETRICS Cast mg alloys Wrought mg alloys Bio-magnesium alloys Mg-based energy storage materials Corrosion and protection of mg alloys
下载PDF
Research advances of magnesium and magnesium alloys worldwide in 2022 被引量:12
12
作者 Yan Yang Xiaoming Xiong +3 位作者 Jing Chen Xiaodong Peng Daolun Chen Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2611-2654,共44页
More than 4600 papers in the field of Mg and Mg alloys were published and indexed in the Web of Science(WoS)Core Collection database in 2022.The bibliometric analyses indicate that the microstructure,mechanical proper... More than 4600 papers in the field of Mg and Mg alloys were published and indexed in the Web of Science(WoS)Core Collection database in 2022.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys are still the main research focus.Bio-Mg materials,Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Notable contributions to the research and development of magnesium alloys were made by Chongqing University(>200 papers),Chinese Academy of Sciences,Shanghai Jiao Tong University,and Northeastern University(>100 papers)in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the USA,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,and National University of Singapore in Singapore,etc.This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2022.Based on the issues and challenges identified here,some future research directions are suggested. 展开更多
关键词 Magnesium alloys Cast magnesium alloys Wrought magnesium alloys Bio-magnesium alloys Mg-based energy storage materials Processing technologies Corrosion and protection
下载PDF
Machine learning techniques for prediction of capacitance and remaining useful life of supercapacitors: A comprehensive review 被引量:1
13
作者 Vaishali Sawant Rashmi Deshmukh Chetan Awati 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期438-451,I0011,共15页
Supercapacitors are appealing energy storage devices for their promising features like high power density,outstanding cycling stability,and a quick charge–discharge cycle.The exceptional life cycle and ultimate power... Supercapacitors are appealing energy storage devices for their promising features like high power density,outstanding cycling stability,and a quick charge–discharge cycle.The exceptional life cycle and ultimate power capability of supercapacitors are needed in the transportation and renewable energy generation sectors.Hence,predicting the capacitance and lifecycle of supercapacitors is significant for selecting the suitable material and planning replacement intervals for supercapacitors.In addition,system failures can be better addressed by accurately forecasting the lifecycle of SCs.Recently,the use of machine learning for performance prediction of energy storage materials has drawn increasing attention from researchers globally because of its superiority in prediction accuracy,time efficiency,and costeffectiveness.This article presents a detailed review of the progress and advancement of ML techniques for the prediction of capacitance and remaining useful life(RUL)of supercapacitors.The review starts with an introduction to supercapacitor materials and ML applications in energy storage devices,followed by workflow for ML model building for supercapacitor materials.Then,the summary of machine learning applications for the prediction of capacitance and RUL of different supercapacitor materials including EDLCs(carbon based materials),pesudocapacitive(oxides and composites)and hybrid materials is presented.Finally,the general perspective for future directions is also presented. 展开更多
关键词 SUPERCAPACITORS energy storage materials Artificial neural network Machine learning Capacitance prediction Remaining useful life
下载PDF
Carbonate-salt-based composite materials for medium- and high-temperature thermal energy storage 被引量:20
14
作者 Zhiwei Ge Feng Ye +3 位作者 Hui Cao Guanghui Leng Yue Qin Yulong Ding 《Particuology》 SCIE EI CAS CSCD 2014年第4期77-81,共5页
This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and... This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and a high thermal conductivity material. The ceramic material forms a microstructural skeleton for encapsulation of the PCM and structural stability of the composites; the high thermal conductivity material enhances the overall thermal conductivity of the composites. Using a eutectic salt of lithium and sodium carbonates as the PCM, magnesium oxide as the ceramic skeleton, and either graphite flakes or carbon nanotubes as the thermal conductivity enhancer, we produced composites with good physical and chemical stability and high thermal conductivity. We found that the wettability of the molten salt on the ceramic and carbon materials significantly affects the microstructure of the composites. 展开更多
关键词 Thermal energy storage Composite materials Microstructure Thermal conductivity Phase change material
原文传递
Research advances of magnesium and magnesium alloys worldwide in 2021 被引量:38
15
作者 Jiangfeng Song Jing Chen +3 位作者 Xiaoming Xiong Xiaodong Peng Daolun Chen Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第4期863-898,共36页
More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties... More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys still are the main research focus.Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Significant contributions to the research and development of magnesium alloys were made by Chongqing University,Shanghai Jiaotong University,and Chinese Academy of Sciences in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the United States,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,etc..This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2021.Based on the issues and challenges identified here,some future research directions are suggested. 展开更多
关键词 Magnesium alloys Cast magnesium alloys Wrought magnesium alloys Bio-magnesium alloys Mg based energy storage materials Processing technologies Corrosion and protection
下载PDF
Unraveling transition-metal-mediated stability of spinel oxide via in situ neutron scattering
16
作者 Yan Chen Ke An 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期60-70,共11页
The energy materials performance is intrinsically determined by structures from the average lattice structure to the atom arrangement, valence, and distribution of the containing transition metal(TM) elements. Underst... The energy materials performance is intrinsically determined by structures from the average lattice structure to the atom arrangement, valence, and distribution of the containing transition metal(TM) elements. Understanding the mechanism of the structure transition and atom rearrangement via synthesis or processing is key to expediting the exploration of excellent energy materials. In this work, in situ neutron scattering is employed to reveal the real-time structure evolution, including the TM-O bonds, lattice,TM valence and the migration of the high-voltage spinel cathode LiNi_(0.5)Mn_(1.5)O_(4). The transition-metalmediated spinel destabilization under the annealing at the oxygen-deficient atmosphere is pinpointed.The formation of Mn^(3+) is correlated to the TM migration activation, TM disordered rearrangement in the spinel, and the transition to a layered-rocksalt phase. The further TM interdiffusion and Mn^(3+) reduction are also revealed with multi-stage thermodynamics and kinetics. The mechanisms of phase transition and atom migrations as functions of temperature, time and atmosphere present important guidance on the synthesis in various-valence element containing oxides. 展开更多
关键词 In situ neutron diffraction Pair distribution function energy storage material material synthesis High-temperature phase transition Disordering Atomic interdiffusion
下载PDF
The critical role of bulk density of graphene oxide in tuning its defect concentration through microwave-driven annealing
17
作者 Isao Ogino Go Fukazawa +2 位作者 Shunsuke Kamatari Shinichiroh Iwamura Shin R. Mukai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1468-1474,共7页
Controlling the concentration of defects in reduced graphene oxide (rGO) to tailor its electrical and physicochemical properties has remained a significant challenge. We report that extent of microwave (MW)-driven... Controlling the concentration of defects in reduced graphene oxide (rGO) to tailor its electrical and physicochemical properties has remained a significant challenge. We report that extent of microwave (MW)-driven annealing of rGO is influenced significantly by its bulk density, which allows us to vary its defect density and crystallite size over wide ranges by controlling this parameter. Extent of anneal- ing was investigated by multiple techniques including Raman and X-ray photoelectron spectroscopies, and electrical conductivity measurements. Improved corrosion resistance of rGOs upon annealing was ex- amined by cyclic voltammetry in H_2SO_4 electrolyte and temperature-programmed oxidation of rGO. Our results indicate that a low bulk density of rGO facilitates defect annealing, yielding high-quality carbon with 99.3 wt% purity, oxidative resistance as high as graphite powder, and an electrical conductivity of 36,000 S m-1 in the compressed powder form. These results demonstrate a prospective synthesis route for tailor-made nanocarbons from rGO through MW-driven annealing. 展开更多
关键词 Carbon NANOCARBON 2D material Catalyst ELECTRODE energy storage material
下载PDF
Graphene fiber based supercapacitors:Strategies and perspective toward high performances 被引量:3
18
作者 Qiuyan Yang Zhen Xu Chao Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期6-11,共6页
Modern wearable electronics are thirsty for flexible, lightweight energy storage and supply devices. Flexible fiber-shaped supercapacitors, possess good flexibility, high power density, fast charging capability and lo... Modern wearable electronics are thirsty for flexible, lightweight energy storage and supply devices. Flexible fiber-shaped supercapacitors, possess good flexibility, high power density, fast charging capability and long cycle life, becoming a promising option for wearable devices. The past decade has witnessed the emergence of graphene fiber based supercapacitors(GFSCs) as one of the most active vicinity in fiber-supercapactiors, for their excellent properties including high surface area, chemical stability, excellent electrical conductivity, lightweight and mechanical properties. In this perspective, we introduced the basic energy storage mechanisms of GFSCs, followed by the analysis in improving their overall performances, recent advances, and a conclusive discussion on the challenges and opportunities. 展开更多
关键词 Graphene Fiber Two-dimensional materials Supercapacitors energy storage
下载PDF
减缓自由阴离子迁移以缓解浓差极化用于高性能的聚合物锂金属电池
19
作者 崔满营 秦棪阳 +12 位作者 李智超 赵洪洋 刘理民 江智元 曹振江 赵坚蕴 毛博阳 于伟 苏亚琼 RVasant Kumar 丁书江 屈治国 郗凯 《Science Bulletin》 SCIE EI CAS CSCD 2024年第11期1706-1715,共10页
Traditional dual-ion lithium salts have been widely used in solid polymer lithium-metal batteries(LMBs).Nevertheless, concentration polarization caused by uncontrolled migration of free anions has severely caused the ... Traditional dual-ion lithium salts have been widely used in solid polymer lithium-metal batteries(LMBs).Nevertheless, concentration polarization caused by uncontrolled migration of free anions has severely caused the growth of lithium dendrites. Although single-ion conductor polymers(SICP) have been developed to reduce concentration polarization, the poor ionic conductivity caused by low carrier concentration limits their application. Herein, a dual-salt quasi-solid polymer electrolyte(QSPE), containing the SICP network as a salt and traditional dual-ion lithium salt, is designed for retarding the movement of free anions and simultaneously providing sufficient effective carriers to alleviate concentration polarization. The dual salt network of this designed QSPE is prepared through in-situ crosslinking copolymerization of SICP monomer, regular ionic conductor, crosslinker with the presence of the dual-ion lithium salt,delivering a high lithium-ion transference number(0.75) and satisfactory ionic conductivity(1.16 × 10^(-3) S cm^(-1) at 30 ℃). Comprehensive characterizations combined with theoretical calculation demonstrate that polyanions from SICP exerts a potential repulsive effect on the transport of free anions to reduce concentration polarization inhibiting lithium dendrites. As a consequence, the Li||LiFePO_4 cell achieves a long-cycle stability for 2000 cycles and a 90% capacity retention at 30 ℃. This work provides a new perspective for reducing concentration polarization and simultaneously enabling enough lithiumions migration for high-performance polymer LMBs. 展开更多
关键词 Polymer electrolyte Concentration polarization energy storage materials Ion transport regulation Lithium-metal battery
原文传递
Strategies for flame-retardant polymer electrolytes for safe lithiumbased batteries
20
作者 Xiao Ma Yang Lu +4 位作者 Yu Ou Shuaishuai Yan Wenhui Hou Pan Zhou Kai Liu 《Nano Research》 SCIE EI CSCD 2024年第10期8754-8771,共18页
The advancement of lithium-based batteries has spurred anticipation for enhanced energy density,extended cycle life and reduced capacity degradation.However,these benefits are accompanied by potential risks,such as th... The advancement of lithium-based batteries has spurred anticipation for enhanced energy density,extended cycle life and reduced capacity degradation.However,these benefits are accompanied by potential risks,such as thermal runaway and explosions due to higher energy density.Currently,liquid organic electrolytes are the predominant choice for lithium batteries,despite their limitations in terms of mechanical strength and vulnerability to leakage.The development of polymer electrolytes,with their high Young’s modulus and enhanced safety features,offers a potential solution to the drawbacks of traditional liquid electrolytes.Despite these advantages,polymer electrolytes are still susceptible to burning and decomposition.To address this issue,researchers have conducted extensive studies to improve their flame-retardant properties from various perspectives.This review provides a concise overview of the thermal runaway mechanisms,flame-retardant mechanisms and electrochemical performance of polymer electrolytes.It also outlines the advancements in flame-retardant polymer electrolytes through the incorporation of various additives and the selection of inherently flame-retardant matrix.This review aims to offer a comprehensive understanding of flame-retardant polymer electrolytes and serve as a guide for future research in this field. 展开更多
关键词 lithium batteries polymer electrolyte thermal runaway flame-retardant additives energy storage materials
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部