Recently,Multicore systems use Dynamic Voltage/Frequency Scaling(DV/FS)technology to allow the cores to operate with various voltage and/or frequencies than other cores to save power and enhance the performance.In thi...Recently,Multicore systems use Dynamic Voltage/Frequency Scaling(DV/FS)technology to allow the cores to operate with various voltage and/or frequencies than other cores to save power and enhance the performance.In this paper,an effective and reliable hybridmodel to reduce the energy and makespan in multicore systems is proposed.The proposed hybrid model enhances and integrates the greedy approach with dynamic programming to achieve optimal Voltage/Frequency(Vmin/F)levels.Then,the allocation process is applied based on the availableworkloads.The hybrid model consists of three stages.The first stage gets the optimum safe voltage while the second stage sets the level of energy efficiency,and finally,the third is the allocation stage.Experimental results on various benchmarks show that the proposed model can generate optimal solutions to save energy while minimizing the makespan penalty.Comparisons with other competitive algorithms show that the proposed model provides on average 48%improvements in energy-saving and achieves an 18%reduction in computation time while ensuring a high degree of system reliability.展开更多
Residential energy-efficiency measures, besides energy savings, provide opportunities for improvement of thermal comfort, air quality, lighting quality, and operation. However, all these benefits sometimes are not eno...Residential energy-efficiency measures, besides energy savings, provide opportunities for improvement of thermal comfort, air quality, lighting quality, and operation. However, all these benefits sometimes are not enough to convince a homeowner to pay the incremental cost associated with the energy-efficiency measure. The objective of this work is to develop a methodology for the economic evaluation of residential energy-efficiency measures that can simplify the economic analysis for the homeowner while taking into consideration all factors associated with the purchase, ownership, and selling of the house with the energy-efficiency measure. The methodology accounts for direct and indirect economic parameters associated to an energy-efficiency measure;direct parameters such as the mortgage interest and fuel price escalation rate, and indirect parameters such as savings account interest and marginal income tax rate. The methodology also considers different cases based on the service life of the energy-efficiency measure and loss of efficiency through a derating factor. To estimate the market value, the methodology uses the future energy cost savings instead of the cost of the EEM. Results from the methodology offer to homeowner annual net savings and net assets. The annual net savings gives the homeowner a measure of the annual positive cash flow that can be obtained from an energy-efficiency project;but more important, the net assets offer a measure of the added net wealth. To simplify and increase the use of the methodology by homeowners, the methodology has been implemented in an Excel tool that can be downloaded from the TxAIRE’s website.展开更多
This paper investigates the tradeoff between energy-efficiency capacity and spectrum sensing under hybrid spectrum sharing model, where the spectrum sharing method is based on sensing results of secondary user (SU)....This paper investigates the tradeoff between energy-efficiency capacity and spectrum sensing under hybrid spectrum sharing model, where the spectrum sharing method is based on sensing results of secondary user (SU). The metric 'bits per joule', which captures the effect of energy overhead in spectrum sensing, is adopted to evaluate energy-efficiency capacity. We first formulize the tradeoff between energy-efficiency capacity and spectrum sensing as an optimization problem with mixture constraint of sensing time and detection threshold. Under some certain condition on the domain of detection threshold, i.e. in which we can't improve energy-efficiency capacity through increasing the detection probability, the original optimization problem can be reduced to a new unconstrained one, which only relates to sensing time. Then the existence and uniqueness of optimal sensing time to achieve maximum energy-efficiency capacity are discussed and a low-complexity algorithm is proposed to obtain the optimal solution. Finally, numerical simulation is performed to verify the theoretical analysis results. The simulation results indicate that hybrid spectrum sharing is remarkably beneficial to energy-efficient transmission in cognitive radio networks (CRN). And the proposed algorithm can quickly converge to the optimal solution.展开更多
Financial and environment considerations present new trends in wireless network known as green communication. As one of the most promising network architectures, the device-to-device (D2D) communication should take ...Financial and environment considerations present new trends in wireless network known as green communication. As one of the most promising network architectures, the device-to-device (D2D) communication should take seriously account to the energy-efficiency. Most of the existing work in the area of D2D communication only focus on the direct communication, however, the direct link D2D communication has to be limited in practice because of long distance, poor propagation medium and cellular interference, etc. A new energy-efficient multi-hop routing algorithm was investigated for multi-hop D2D system by jointly optimizing channel reusing and power allocation. Firstly, the energy-efficient multi-hop routing problem was formulated as a combinatorial optimization problem. Secondly, to obtain a desirable solution with reasonable computation cost, a heuristic multi-hop routing algorithm was presented to solve the formulated problem and to achieve a satisfactory energy-efficiency performance. Simulation shows the effectiveness of the proposed routing algorithm.展开更多
The energy-efficiency(EE)optimization problem was studied for resource allocation in an uplink single-cell network,in which multiple mobile users with different quality of service(QoS)requirements operate under a non-...The energy-efficiency(EE)optimization problem was studied for resource allocation in an uplink single-cell network,in which multiple mobile users with different quality of service(QoS)requirements operate under a non-orthogonal multiple access(NOMA)scheme.Firstly,a multi-user feasible power allocation region is derived as a multidimensional body that provides an efficient scheme to determine the feasibility of original channel and power assignment problem.Then,the size of feasible power allocation region was first introduced as utility function of the subchannel-user matching game in order to get high EE of the system and fairness among the users.Moreover,the power allocation optimization to the EE maximization is proved to be a monotonous decline function.The simulation results show that compared with the conventional schemes,the network connectivity of the proposed scheme is significantly enhanced and besides,for low rate massive connectivity networks,the proposed scheme obtains performance gains in the EE of the system.展开更多
In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper st...In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed(DHPFSP-VPS),considering both the minimum makespan and total energy consumption(TEC)as objectives.A discrete multi-objective squirrel search algorithm(DMSSA)is proposed to solve the DHPFSPVPS.DMSSA makes four improvements based on the squirrel search algorithm.Firstly,in terms of the population initialization strategy,four hybrid initialization methods targeting different objectives are proposed to enhance the quality of initial solutions.Secondly,enhancements are made to the population hierarchy system and position updating methods of the squirrel search algorithm,making it more suitable for discrete scheduling problems.Additionally,regarding the search strategy,six local searches are designed based on problem characteristics to enhance search capability.Moreover,a dynamic predator strategy based on Q-learning is devised to effectively balance DMSSA’s capability for global exploration and local exploitation.Finally,two speed control energy-efficient strategies are designed to reduce TEC.Extensive comparative experiments are conducted in this paper to validate the effectiveness of the proposed strategies.The results of comparing DMSSA with other algorithms demonstrate its superior performance and its potential for efficient solving of the DHPFSP-VPS problem.展开更多
The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and mai...The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and maintenance,greatly increasing network delay and control overhead.A energyefficient routing method based on the discrete timeaggregated graph(TAG)theory is proposed since UAV formation is a defined time-varying network.The network is characterized using the TAG,which utilizes the prior knowledge in UAV formation.An energyefficient routing algorithm is designed based on TAG,considering the link delay,relative mobility,and residual energy of UAVs.The routing path is determined with global network information before requesting communication.Simulation results demonstrate that the routing method can improve the end-to-end delay,packet delivery ratio,routing control overhead,and residual energy.Consequently,introducing timevarying graphs to design routing algorithms is more effective for UAV formation.展开更多
The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruisi...The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.展开更多
Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consu...Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consumption.An energy audit is used to predict the weak points of a building’s energy use system.Various factors influence building energy consumption,which can be modified to achieve more energy-efficient strategies.In this study,an existing hotel building in Central Taiwan is evaluated by simulating several scenarios using energy modeling over a year.Energy modeling is conducted by using Autodesk Revit 2025.It was discovered from the results that arranging the lighting schedule based on the ASHRAE Standard 90.1 could save up to 8.22%of energy consumption.And then the results also revealed that changing the glazing of the building into double-layer lowemissivity glass could reduce energy consumption by 14.58%.While the energy consumption of the building could also be decreased to 7.20%by changing the building orientation to the north.Meanwhile,moving the building location to Northern Taiwan could also minimize the energy consumption of the building by 3.23%.The results revealed that the double layer offers better thermal insulation,and low-emissivity glass can lower energy consumption,electricity costs,and CO_(2)emissions by up to 15.27%annually.While adjusting orientation and location can enhance energy performance,this approach is impractical for existing buildings,but this could be considered for designing new buildings.The results showed the relevancy of energy performance to CO_(2)emission production and electricity expenses.展开更多
An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their level...An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.展开更多
In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user syste...In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.展开更多
Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications...Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications.However,the broader use of the Cloud services,the rapid increase in the size,and the capacity of Cloud data centers bring a remarkable rise in energy consumption leading to a significant rise in the system provider expenses and carbon emissions in the environment.Besides this,users have become more demanding in terms of Quality-of-service(QoS)expectations in terms of execution time,budget cost,utilization,and makespan.This situation calls for the design of task scheduling policy,which ensures efficient task sequencing and allocation of computing resources to tasks to meet the trade-off between QoS promises and service provider requirements.Moreover,the task scheduling in the Cloud is a prevalent NP-Hard problem.Motivated by these concerns,this paper introduces and implements a QoS-aware Energy-Efficient Scheduling policy called as CSPSO,for scheduling tasks in Cloud systems to reduce the energy consumption of cloud resources and minimize the makespan of workload.The proposed multi-objective CSPSO policy hybridizes the search qualities of two robust metaheuristics viz.cuckoo search(CS)and particle swarm optimization(PSO)to overcome the slow convergence and lack of diversity of standard CS algorithm.A fitness-aware resource allocation(FARA)heuristic was developed and used by the proposed policy to allocate resources to tasks efficiently.A velocity update mechanism for cuckoo individuals is designed and incorporated in the proposed CSPSO policy.Further,the proposed scheduling policy has been implemented in the CloudSim simulator and tested with real supercomputing workload traces.The comparative analysis validated that the proposed scheduling policy can produce efficient schedules with better performance over other well-known heuristics and meta-heuristics scheduling policies.展开更多
This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration...This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration of the UAV and the information-causality constraints into consideration,the energy-efficiency of the system under investigation is maximized by jointly optimizing the UAV’s trajectory and the individual transmit power levels of the source and the UAV relay nodes.The optimization problem is non-convex and thus cannot be solved directly.Therefore,it is decoupled into two subproblems.One sub-problem is for the transmit power control at the source and the UAV relay nodes,and the other aims at optimizing the UAV s flight trajectory.By using the Lagrangian dual and Dinkelbach methods,the two sub-problems are solved,leading to an iterative algorithm for the joint design of transmit power control and trajectory optimization.Computer simulations demonstrated that by conducting the proposed algorithm,the flight trajectory of the UAV and the individual transmit power levels of the nodes can be flexibly adjusted according to the system conditions,and the proposed algorithm can achieve signiflcantly higher energy efficiency as compared with the other benchmark schemes.展开更多
The Internet of Things (IoT) represents a radical shifting paradigm fortechnological innovations as it can play critical roles in cyberspace applications invarious sectors, such as security, monitoring, medical, and e...The Internet of Things (IoT) represents a radical shifting paradigm fortechnological innovations as it can play critical roles in cyberspace applications invarious sectors, such as security, monitoring, medical, and environmental sectors,and also in control and industrial applications. The IoT in E-medicine unleashedthe design space for new technologies to give instant treatment to patients whilealso monitoring and tracking health conditions. This research presents a systemlevel architecture approach for IoT energy efficiency and security. The proposedarchitecture includes functional components that provide privacy managementand system security. Components in the security function group provide securecommunications through Multi-Authority Ciphertext-Policy Attributes-BasedEncryption (MA-CPABE). Because MA-CPABE is assigned to unlimited devices,presuming that the devices are reliable, the user encodes data with AdvancedEncryption Standard (AES) and protects the ABE approach using the solutionsof symmetric key. The Johnson’s algorithm with a new computation measure isused to increase network lifetime since an individual sensor node with limitedenergy represents the inevitable constraints for the broad usage of wireless sensornetworks. The optimal route from a source to destination turns out as the cornerstone for longevity of network and its sustainability. To reduce the energy consumption of networks, the evaluation measures consider the node’s residualenergy, the number of neighbors, their distance, and the link dependability. Theexperiment results demonstrate that the proposed model increases network lifeby about 12.25% (27.73%) compared to Floyd–Warshall’s, Bellman–Ford’s,and Dijkstra’s algorithms, lowering consumption of energy by eliminating thenecessity for re-routing the message as a result of connection failure.展开更多
In this paper, we provide a comprehensive survey of key energy-efficient Medium Access Control (MAC) protocols for Wireless Body Area Networks (WBANs). At the outset, we outline the crucial attributes of a good MAC pr...In this paper, we provide a comprehensive survey of key energy-efficient Medium Access Control (MAC) protocols for Wireless Body Area Networks (WBANs). At the outset, we outline the crucial attributes of a good MAC protocol for WBAN. Several sources that contribute to the energy inefficiency of WBAN are identified, and features of the various MAC protocols qualitatively compared. Then, we further investigate some representative TDMA-based energy-efficient MAC protocols for WBAN by emphasizing their strengths and weaknesses. Finally, we conclude with a number of open research issues with regard to WBAN MAC layer.展开更多
The goal of this study is to determine specific guidelines for Iraqi architects to contribute to the design and composition of energy-efficient housing units within the limits of a normal budget, locally available mat...The goal of this study is to determine specific guidelines for Iraqi architects to contribute to the design and composition of energy-efficient housing units within the limits of a normal budget, locally available materials and technologies. These units can provide comfort despite the current energy situation in Iraq. The study is based on a computer simulation for a reference building in Baghdad, which has been selected according to the urban conditions, building legislations, housing market and statistics. The final results displayed the main recommendations and the possibility to achieve up to 50% energy reduction with a pay-back period not exceeding two years in some cases. There are some measures that have big energy saving potential. Yet, some of the measures may require big investment or have some bad environmental impacts. Some other good measures are already being implemented.展开更多
UAV cooperative control has been applied in many complex UAV communication networks. It remains challenging to develop UAV cooperative coverage and UAV energy-efficient communication technology. In this paper, we inve...UAV cooperative control has been applied in many complex UAV communication networks. It remains challenging to develop UAV cooperative coverage and UAV energy-efficient communication technology. In this paper, we investigate current works about UAV coverage problem and propose a multi-UAV coverage model based on energy-efficient communication. The proposed model is decomposed into two steps: coverage maximization and power control, both are proved to be exact potential games(EPG) and have Nash equilibrium(NE) points. Then the multi-UAV energy-efficient coverage deployment algorithm based on spatial adaptive play(MUECD-SAP) is adopted to perform coverage maximization and power control, which guarantees optimal energy-efficient coverage deployment. Finally, simulation results show the effectiveness of our proposed approach, and confirm the reliability of proposed model.展开更多
Mobile Edge Computing(MEC)is promising to alleviate the computation and storage burdens for terminals in wireless networks.The huge energy consumption of MEC servers challenges the establishment of smart cities and th...Mobile Edge Computing(MEC)is promising to alleviate the computation and storage burdens for terminals in wireless networks.The huge energy consumption of MEC servers challenges the establishment of smart cities and their service time powered by rechargeable batteries.In addition,Orthogonal Multiple Access(OMA)technique cannot utilize limited spectrum resources fully and efficiently.Therefore,Non-Orthogonal Multiple Access(NOMA)-based energy-efficient task scheduling among MEC servers for delay-constraint mobile applications is important,especially in highly-dynamic vehicular edge computing networks.The various movement patterns of vehicles lead to unbalanced offloading requirements and different load pressure for MEC servers.Self-Imitation Learning(SIL)-based Deep Reinforcement Learning(DRL)has emerged as a promising machine learning technique to break through obstacles in various research fields,especially in time-varying networks.In this paper,we first introduce related MEC technologies in vehicular networks.Then,we propose an energy-efficient approach for task scheduling in vehicular edge computing networks based on DRL,with the purpose of both guaranteeing the task latency requirement for multiple users and minimizing total energy consumption of MEC servers.Numerical results demonstrate that the proposed algorithm outperforms other methods.展开更多
Recently,backscatter communication(BC)has been introduced as a green paradigm for Internet of Things(IoT).Meanwhile,unmanned aerial vehicles(UAVs)can serve as aerial base stations(BSs)to enhance the performance of BC ...Recently,backscatter communication(BC)has been introduced as a green paradigm for Internet of Things(IoT).Meanwhile,unmanned aerial vehicles(UAVs)can serve as aerial base stations(BSs)to enhance the performance of BC system thanks to their high mobility and flexibility.In this paper,we investigate the problem of energy efficiency(EE)for an energy-limited backscatter communication(BC)network,where backscatter devices(BDs)on the ground harvest energy from the wireless signal of a flying rotary-wing quadrotor.Specifically,we first reformulate the EE optimization problem as a Markov decision process(MDP)and then propose a deep reinforcement learning(DRL)algorithm to design the UAV trajectory with the constraints of the BD scheduling,the power reflection coefficients,the transmission power,and the fairness among BDs.Simulation results show the proposed DRL algorithm achieves close-to-optimal performance and significant EE gains compared to the benchmark schemes.展开更多
In the coexisted world of 3G,4G,5G and many other specialized wireless communication systems,billions of connections could be existing for various information transmission types.Unluckily,data show that the increase o...In the coexisted world of 3G,4G,5G and many other specialized wireless communication systems,billions of connections could be existing for various information transmission types.Unluckily,data show that the increase of network capacity is heavily more than the increase of the network energy efficiency in recent years,which could lead to more energy consumption per transmitted bit in the future network.As basic units in mobile communication systems,microwave/RF components and modules play key roles展开更多
文摘Recently,Multicore systems use Dynamic Voltage/Frequency Scaling(DV/FS)technology to allow the cores to operate with various voltage and/or frequencies than other cores to save power and enhance the performance.In this paper,an effective and reliable hybridmodel to reduce the energy and makespan in multicore systems is proposed.The proposed hybrid model enhances and integrates the greedy approach with dynamic programming to achieve optimal Voltage/Frequency(Vmin/F)levels.Then,the allocation process is applied based on the availableworkloads.The hybrid model consists of three stages.The first stage gets the optimum safe voltage while the second stage sets the level of energy efficiency,and finally,the third is the allocation stage.Experimental results on various benchmarks show that the proposed model can generate optimal solutions to save energy while minimizing the makespan penalty.Comparisons with other competitive algorithms show that the proposed model provides on average 48%improvements in energy-saving and achieves an 18%reduction in computation time while ensuring a high degree of system reliability.
文摘Residential energy-efficiency measures, besides energy savings, provide opportunities for improvement of thermal comfort, air quality, lighting quality, and operation. However, all these benefits sometimes are not enough to convince a homeowner to pay the incremental cost associated with the energy-efficiency measure. The objective of this work is to develop a methodology for the economic evaluation of residential energy-efficiency measures that can simplify the economic analysis for the homeowner while taking into consideration all factors associated with the purchase, ownership, and selling of the house with the energy-efficiency measure. The methodology accounts for direct and indirect economic parameters associated to an energy-efficiency measure;direct parameters such as the mortgage interest and fuel price escalation rate, and indirect parameters such as savings account interest and marginal income tax rate. The methodology also considers different cases based on the service life of the energy-efficiency measure and loss of efficiency through a derating factor. To estimate the market value, the methodology uses the future energy cost savings instead of the cost of the EEM. Results from the methodology offer to homeowner annual net savings and net assets. The annual net savings gives the homeowner a measure of the annual positive cash flow that can be obtained from an energy-efficiency project;but more important, the net assets offer a measure of the added net wealth. To simplify and increase the use of the methodology by homeowners, the methodology has been implemented in an Excel tool that can be downloaded from the TxAIRE’s website.
基金supported by the National Basic Research Program of China (2009CB320401)the National Key Scientific and Technological Project of China (2012ZX03004005-002)+1 种基金the Fundamental Research Funds for the Central Universities BUPT2011RCZJ018Research Funds of Doctoral Program of Higher Education of China (20090005110003)
文摘This paper investigates the tradeoff between energy-efficiency capacity and spectrum sensing under hybrid spectrum sharing model, where the spectrum sharing method is based on sensing results of secondary user (SU). The metric 'bits per joule', which captures the effect of energy overhead in spectrum sensing, is adopted to evaluate energy-efficiency capacity. We first formulize the tradeoff between energy-efficiency capacity and spectrum sensing as an optimization problem with mixture constraint of sensing time and detection threshold. Under some certain condition on the domain of detection threshold, i.e. in which we can't improve energy-efficiency capacity through increasing the detection probability, the original optimization problem can be reduced to a new unconstrained one, which only relates to sensing time. Then the existence and uniqueness of optimal sensing time to achieve maximum energy-efficiency capacity are discussed and a low-complexity algorithm is proposed to obtain the optimal solution. Finally, numerical simulation is performed to verify the theoretical analysis results. The simulation results indicate that hybrid spectrum sharing is remarkably beneficial to energy-efficient transmission in cognitive radio networks (CRN). And the proposed algorithm can quickly converge to the optimal solution.
基金supported by the National Natural Science Foundation of China (61271182)the National Natural Science Funds of China for Young Scholar (61302080)
文摘Financial and environment considerations present new trends in wireless network known as green communication. As one of the most promising network architectures, the device-to-device (D2D) communication should take seriously account to the energy-efficiency. Most of the existing work in the area of D2D communication only focus on the direct communication, however, the direct link D2D communication has to be limited in practice because of long distance, poor propagation medium and cellular interference, etc. A new energy-efficient multi-hop routing algorithm was investigated for multi-hop D2D system by jointly optimizing channel reusing and power allocation. Firstly, the energy-efficient multi-hop routing problem was formulated as a combinatorial optimization problem. Secondly, to obtain a desirable solution with reasonable computation cost, a heuristic multi-hop routing algorithm was presented to solve the formulated problem and to achieve a satisfactory energy-efficiency performance. Simulation shows the effectiveness of the proposed routing algorithm.
基金This work was supported by the National Natural Science Foundation of China(11705108).
文摘The energy-efficiency(EE)optimization problem was studied for resource allocation in an uplink single-cell network,in which multiple mobile users with different quality of service(QoS)requirements operate under a non-orthogonal multiple access(NOMA)scheme.Firstly,a multi-user feasible power allocation region is derived as a multidimensional body that provides an efficient scheme to determine the feasibility of original channel and power assignment problem.Then,the size of feasible power allocation region was first introduced as utility function of the subchannel-user matching game in order to get high EE of the system and fairness among the users.Moreover,the power allocation optimization to the EE maximization is proved to be a monotonous decline function.The simulation results show that compared with the conventional schemes,the network connectivity of the proposed scheme is significantly enhanced and besides,for low rate massive connectivity networks,the proposed scheme obtains performance gains in the EE of the system.
基金supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB114 and 2023BAB094).
文摘In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed(DHPFSP-VPS),considering both the minimum makespan and total energy consumption(TEC)as objectives.A discrete multi-objective squirrel search algorithm(DMSSA)is proposed to solve the DHPFSPVPS.DMSSA makes four improvements based on the squirrel search algorithm.Firstly,in terms of the population initialization strategy,four hybrid initialization methods targeting different objectives are proposed to enhance the quality of initial solutions.Secondly,enhancements are made to the population hierarchy system and position updating methods of the squirrel search algorithm,making it more suitable for discrete scheduling problems.Additionally,regarding the search strategy,six local searches are designed based on problem characteristics to enhance search capability.Moreover,a dynamic predator strategy based on Q-learning is devised to effectively balance DMSSA’s capability for global exploration and local exploitation.Finally,two speed control energy-efficient strategies are designed to reduce TEC.Extensive comparative experiments are conducted in this paper to validate the effectiveness of the proposed strategies.The results of comparing DMSSA with other algorithms demonstrate its superior performance and its potential for efficient solving of the DHPFSP-VPS problem.
基金supported in part by the National Natural Science Foundation of China under Grants 62171154in part by the National Natural Science Foundation of Shandong Province under Grant ZR2020MF007+1 种基金in part by the Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology under Grant 2018B030322004in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2023030。
文摘The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and maintenance,greatly increasing network delay and control overhead.A energyefficient routing method based on the discrete timeaggregated graph(TAG)theory is proposed since UAV formation is a defined time-varying network.The network is characterized using the TAG,which utilizes the prior knowledge in UAV formation.An energyefficient routing algorithm is designed based on TAG,considering the link delay,relative mobility,and residual energy of UAVs.The routing path is determined with global network information before requesting communication.Simulation results demonstrate that the routing method can improve the end-to-end delay,packet delivery ratio,routing control overhead,and residual energy.Consequently,introducing timevarying graphs to design routing algorithms is more effective for UAV formation.
基金supported by Swiss Federal Office of Transport,the ETH foundation and via the grant RAILPOWER.
文摘The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.
基金support by the National Science and Technology Council under grant no.NSTC 112-2221-E-167-017-MY3.
文摘Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consumption.An energy audit is used to predict the weak points of a building’s energy use system.Various factors influence building energy consumption,which can be modified to achieve more energy-efficient strategies.In this study,an existing hotel building in Central Taiwan is evaluated by simulating several scenarios using energy modeling over a year.Energy modeling is conducted by using Autodesk Revit 2025.It was discovered from the results that arranging the lighting schedule based on the ASHRAE Standard 90.1 could save up to 8.22%of energy consumption.And then the results also revealed that changing the glazing of the building into double-layer lowemissivity glass could reduce energy consumption by 14.58%.While the energy consumption of the building could also be decreased to 7.20%by changing the building orientation to the north.Meanwhile,moving the building location to Northern Taiwan could also minimize the energy consumption of the building by 3.23%.The results revealed that the double layer offers better thermal insulation,and low-emissivity glass can lower energy consumption,electricity costs,and CO_(2)emissions by up to 15.27%annually.While adjusting orientation and location can enhance energy performance,this approach is impractical for existing buildings,but this could be considered for designing new buildings.The results showed the relevancy of energy performance to CO_(2)emission production and electricity expenses.
基金The Natural Science Foundation of Jiangsu Province(NoBK2005409)
文摘An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.
基金supported in part by the National Natural Science Foundation of China for Young Scholars under Grant No.61701167Young Elite Backbone Teachers in Blue and Blue Project of Jiangsu Province, China
文摘In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.
文摘Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications.However,the broader use of the Cloud services,the rapid increase in the size,and the capacity of Cloud data centers bring a remarkable rise in energy consumption leading to a significant rise in the system provider expenses and carbon emissions in the environment.Besides this,users have become more demanding in terms of Quality-of-service(QoS)expectations in terms of execution time,budget cost,utilization,and makespan.This situation calls for the design of task scheduling policy,which ensures efficient task sequencing and allocation of computing resources to tasks to meet the trade-off between QoS promises and service provider requirements.Moreover,the task scheduling in the Cloud is a prevalent NP-Hard problem.Motivated by these concerns,this paper introduces and implements a QoS-aware Energy-Efficient Scheduling policy called as CSPSO,for scheduling tasks in Cloud systems to reduce the energy consumption of cloud resources and minimize the makespan of workload.The proposed multi-objective CSPSO policy hybridizes the search qualities of two robust metaheuristics viz.cuckoo search(CS)and particle swarm optimization(PSO)to overcome the slow convergence and lack of diversity of standard CS algorithm.A fitness-aware resource allocation(FARA)heuristic was developed and used by the proposed policy to allocate resources to tasks efficiently.A velocity update mechanism for cuckoo individuals is designed and incorporated in the proposed CSPSO policy.Further,the proposed scheduling policy has been implemented in the CloudSim simulator and tested with real supercomputing workload traces.The comparative analysis validated that the proposed scheduling policy can produce efficient schedules with better performance over other well-known heuristics and meta-heuristics scheduling policies.
基金National Natural Science Foundation of China(No.61871241)Nantong Science and Technology Project(JC2019114,JC2021129).
文摘This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration of the UAV and the information-causality constraints into consideration,the energy-efficiency of the system under investigation is maximized by jointly optimizing the UAV’s trajectory and the individual transmit power levels of the source and the UAV relay nodes.The optimization problem is non-convex and thus cannot be solved directly.Therefore,it is decoupled into two subproblems.One sub-problem is for the transmit power control at the source and the UAV relay nodes,and the other aims at optimizing the UAV s flight trajectory.By using the Lagrangian dual and Dinkelbach methods,the two sub-problems are solved,leading to an iterative algorithm for the joint design of transmit power control and trajectory optimization.Computer simulations demonstrated that by conducting the proposed algorithm,the flight trajectory of the UAV and the individual transmit power levels of the nodes can be flexibly adjusted according to the system conditions,and the proposed algorithm can achieve signiflcantly higher energy efficiency as compared with the other benchmark schemes.
文摘The Internet of Things (IoT) represents a radical shifting paradigm fortechnological innovations as it can play critical roles in cyberspace applications invarious sectors, such as security, monitoring, medical, and environmental sectors,and also in control and industrial applications. The IoT in E-medicine unleashedthe design space for new technologies to give instant treatment to patients whilealso monitoring and tracking health conditions. This research presents a systemlevel architecture approach for IoT energy efficiency and security. The proposedarchitecture includes functional components that provide privacy managementand system security. Components in the security function group provide securecommunications through Multi-Authority Ciphertext-Policy Attributes-BasedEncryption (MA-CPABE). Because MA-CPABE is assigned to unlimited devices,presuming that the devices are reliable, the user encodes data with AdvancedEncryption Standard (AES) and protects the ABE approach using the solutionsof symmetric key. The Johnson’s algorithm with a new computation measure isused to increase network lifetime since an individual sensor node with limitedenergy represents the inevitable constraints for the broad usage of wireless sensornetworks. The optimal route from a source to destination turns out as the cornerstone for longevity of network and its sustainability. To reduce the energy consumption of networks, the evaluation measures consider the node’s residualenergy, the number of neighbors, their distance, and the link dependability. Theexperiment results demonstrate that the proposed model increases network lifeby about 12.25% (27.73%) compared to Floyd–Warshall’s, Bellman–Ford’s,and Dijkstra’s algorithms, lowering consumption of energy by eliminating thenecessity for re-routing the message as a result of connection failure.
基金supported by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)under Grant No.NIPA-2011-(C1090-1121-0002)
文摘In this paper, we provide a comprehensive survey of key energy-efficient Medium Access Control (MAC) protocols for Wireless Body Area Networks (WBANs). At the outset, we outline the crucial attributes of a good MAC protocol for WBAN. Several sources that contribute to the energy inefficiency of WBAN are identified, and features of the various MAC protocols qualitatively compared. Then, we further investigate some representative TDMA-based energy-efficient MAC protocols for WBAN by emphasizing their strengths and weaknesses. Finally, we conclude with a number of open research issues with regard to WBAN MAC layer.
文摘The goal of this study is to determine specific guidelines for Iraqi architects to contribute to the design and composition of energy-efficient housing units within the limits of a normal budget, locally available materials and technologies. These units can provide comfort despite the current energy situation in Iraq. The study is based on a computer simulation for a reference building in Baghdad, which has been selected according to the urban conditions, building legislations, housing market and statistics. The final results displayed the main recommendations and the possibility to achieve up to 50% energy reduction with a pay-back period not exceeding two years in some cases. There are some measures that have big energy saving potential. Yet, some of the measures may require big investment or have some bad environmental impacts. Some other good measures are already being implemented.
基金supported by the National Natural Science Foundation of China under Grant No. 61771488in part by the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province under Grant No. BK20160034+1 种基金 in part by the Open Research Foundation of Science and Technology on Communication Networks Laboratorythe Guang Xi Universities Key Laboratory Fund of Embedded Technology and Intelligent System (Guilin University of Technology)
文摘UAV cooperative control has been applied in many complex UAV communication networks. It remains challenging to develop UAV cooperative coverage and UAV energy-efficient communication technology. In this paper, we investigate current works about UAV coverage problem and propose a multi-UAV coverage model based on energy-efficient communication. The proposed model is decomposed into two steps: coverage maximization and power control, both are proved to be exact potential games(EPG) and have Nash equilibrium(NE) points. Then the multi-UAV energy-efficient coverage deployment algorithm based on spatial adaptive play(MUECD-SAP) is adopted to perform coverage maximization and power control, which guarantees optimal energy-efficient coverage deployment. Finally, simulation results show the effectiveness of our proposed approach, and confirm the reliability of proposed model.
基金supported in part by the National Natural Science Foundation of China under Grant 61971084 and Grant 62001073in part by the National Natural Science Foundation of Chongqing under Grant cstc2019jcyj-msxmX0208in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University,under Grant 2020D05.
文摘Mobile Edge Computing(MEC)is promising to alleviate the computation and storage burdens for terminals in wireless networks.The huge energy consumption of MEC servers challenges the establishment of smart cities and their service time powered by rechargeable batteries.In addition,Orthogonal Multiple Access(OMA)technique cannot utilize limited spectrum resources fully and efficiently.Therefore,Non-Orthogonal Multiple Access(NOMA)-based energy-efficient task scheduling among MEC servers for delay-constraint mobile applications is important,especially in highly-dynamic vehicular edge computing networks.The various movement patterns of vehicles lead to unbalanced offloading requirements and different load pressure for MEC servers.Self-Imitation Learning(SIL)-based Deep Reinforcement Learning(DRL)has emerged as a promising machine learning technique to break through obstacles in various research fields,especially in time-varying networks.In this paper,we first introduce related MEC technologies in vehicular networks.Then,we propose an energy-efficient approach for task scheduling in vehicular edge computing networks based on DRL,with the purpose of both guaranteeing the task latency requirement for multiple users and minimizing total energy consumption of MEC servers.Numerical results demonstrate that the proposed algorithm outperforms other methods.
基金the National Natural Science Foundation of China 61661021,61971191,61902214,and 61871321,in part by the Beijing Natural Science Foundation under Grant L182018,in part by the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant 2016ZX03001014-006in part by the open project of Shanghai Institute of Microsystem and Information Technology(20190910)+1 种基金in part by the Key project of Natural Science Foundation of Jiangxi Province(20202ACBL202006)in part by the open project of Key Laboratory of Wireless Sensor Network&Communication,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,865 Changning Road,Shanghai 200050 China,and in part by the Tsinghua University Initiative Scientific Research Program 2019Z08QCX19.
文摘Recently,backscatter communication(BC)has been introduced as a green paradigm for Internet of Things(IoT).Meanwhile,unmanned aerial vehicles(UAVs)can serve as aerial base stations(BSs)to enhance the performance of BC system thanks to their high mobility and flexibility.In this paper,we investigate the problem of energy efficiency(EE)for an energy-limited backscatter communication(BC)network,where backscatter devices(BDs)on the ground harvest energy from the wireless signal of a flying rotary-wing quadrotor.Specifically,we first reformulate the EE optimization problem as a Markov decision process(MDP)and then propose a deep reinforcement learning(DRL)algorithm to design the UAV trajectory with the constraints of the BD scheduling,the power reflection coefficients,the transmission power,and the fairness among BDs.Simulation results show the proposed DRL algorithm achieves close-to-optimal performance and significant EE gains compared to the benchmark schemes.
文摘In the coexisted world of 3G,4G,5G and many other specialized wireless communication systems,billions of connections could be existing for various information transmission types.Unluckily,data show that the increase of network capacity is heavily more than the increase of the network energy efficiency in recent years,which could lead to more energy consumption per transmitted bit in the future network.As basic units in mobile communication systems,microwave/RF components and modules play key roles