Laminated elastomeric bearings have been widely used for small-to-medium-span highway bridges in China, in which concrete shear keys are set transversely to prohibit large girder displacement. To evaluate bridge seism...Laminated elastomeric bearings have been widely used for small-to-medium-span highway bridges in China, in which concrete shear keys are set transversely to prohibit large girder displacement. To evaluate bridge seismic responses more accurately, proper analytical models of bearings and shear keys should be developed. Based on a series of cyclic loading experiments and analyses, rational analytical models of laminated elastomeric bearings and shear keys, which can consider mechanical degradation, were developed. The effect of the mechanical degradation was investigated by examining the seismic response of a small-to-medium-span bridge in the transverse direction under a wide range of peak ground accelerations(PGA). The damage mechanism for small-to-medium-span highway bridges was determined, which can explain the seismic damage investigation during earthquakes in recent years. The experimental results show that the mechanical properties of laminated elastomeric bearings will degrade due to friction sliding, but the degree of decrease is dependent upon the influencing parameters. It can be concluded that the mechanical degradation of laminated elastomeric bearings and shear keys play an important role in the seismic response of bridges. The degradation of mechanical properties of laminated elastomeric bearings and shear keys should be included to evaluate more precise bridge seismic performance.展开更多
Based on the analysis of inherent limitations in existing security response decision-making systems, a dynamic adaptive model of fault response is presented. Several security fault levels were founded, which comprise ...Based on the analysis of inherent limitations in existing security response decision-making systems, a dynamic adaptive model of fault response is presented. Several security fault levels were founded, which comprise the basic level, equipment level and mechanism level. Fault damage cost is calculated using the analytic hierarchy process. Meanwhile, the model evaluates the impact of different responses upon fault repair and normal operation. Response operation cost and response negative cost are introduced through quantitative calculation. This model adopts a comprehensive response decision of security fault in three principles--the maximum and minimum principle, timeliness principle, acquiescence principle, which assure optimal response counter- measure is selected for different situations. Experimental results show that the proposed model has good self- adaptation ability, timeliness and cost-sensitiveness.展开更多
Enhancement of nitrogen fixation in the rhizo-sphere of cereals has attracted a wide interestin biological and agricultural research,insteadof chemicals,for supplying higher plants withcombined nitrogen.Bacteria in as...Enhancement of nitrogen fixation in the rhizo-sphere of cereals has attracted a wide interestin biological and agricultural research,insteadof chemicals,for supplying higher plants withcombined nitrogen.Bacteria in association withrice plant.s were sensitive to the surroundingfactors in the soil,such as NH~+ or O,whichrepressed associative nitrogen fixation between展开更多
To investigate the thermo-mechanical response of channel wall nozzle under cyclic working loads,the fnite volume fluid-thermal coupling calculation method and the fnite element thermal-structural coupling analysis tec...To investigate the thermo-mechanical response of channel wall nozzle under cyclic working loads,the fnite volume fluid-thermal coupling calculation method and the fnite element thermal-structural coupling analysis technique are applied.In combination with the material lowcycle fatigue behavior,the modifed continuous damage model on the basics of local strain approach is adopted to analyze the fatigue damage distribution and accumulation with increasing nozzle work cycles.Simulation results have shown that the variation of the non-uniform temperature distribution of channel wall nozzle during cyclic work plays a signifcant role in the thermal-structural response by altering the material properties;the thermal-mechanical loads interaction results in serious deformation mainly in the front region of slotted liner.In particular,the maximal cyclic strains appear in the intersecting regions of liner gas side wall and symmetric planes of channel and rib,where the fatigue failure takes place initially;with the increase in nozzle work cycles,the residual plastic strain accumulates linearly,and the strain amplitude and increment in each work cycle are separately equal,but the fatigue damage grows up nonlinearly.As a result,a simplifed nonlinear damage accumulation approach has been suggested to estimate the fatigue service life of channel wall nozzle.The predicted node life is obviously conservative to the Miner's life.In addition,several workable methods have also been proposed to improve the channel wall nozzle durability.展开更多
China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than ...China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.展开更多
基金Project of China International Science and Technology Cooperation under Grant No.2009DFA82480Science and Technology Project of Communications’ Construction in Western China,MOC under Grant No.2009318223094
文摘Laminated elastomeric bearings have been widely used for small-to-medium-span highway bridges in China, in which concrete shear keys are set transversely to prohibit large girder displacement. To evaluate bridge seismic responses more accurately, proper analytical models of bearings and shear keys should be developed. Based on a series of cyclic loading experiments and analyses, rational analytical models of laminated elastomeric bearings and shear keys, which can consider mechanical degradation, were developed. The effect of the mechanical degradation was investigated by examining the seismic response of a small-to-medium-span bridge in the transverse direction under a wide range of peak ground accelerations(PGA). The damage mechanism for small-to-medium-span highway bridges was determined, which can explain the seismic damage investigation during earthquakes in recent years. The experimental results show that the mechanical properties of laminated elastomeric bearings will degrade due to friction sliding, but the degree of decrease is dependent upon the influencing parameters. It can be concluded that the mechanical degradation of laminated elastomeric bearings and shear keys play an important role in the seismic response of bridges. The degradation of mechanical properties of laminated elastomeric bearings and shear keys should be included to evaluate more precise bridge seismic performance.
基金Sponsored by the Ministerial Level Foundation(20021823)
文摘Based on the analysis of inherent limitations in existing security response decision-making systems, a dynamic adaptive model of fault response is presented. Several security fault levels were founded, which comprise the basic level, equipment level and mechanism level. Fault damage cost is calculated using the analytic hierarchy process. Meanwhile, the model evaluates the impact of different responses upon fault repair and normal operation. Response operation cost and response negative cost are introduced through quantitative calculation. This model adopts a comprehensive response decision of security fault in three principles--the maximum and minimum principle, timeliness principle, acquiescence principle, which assure optimal response counter- measure is selected for different situations. Experimental results show that the proposed model has good self- adaptation ability, timeliness and cost-sensitiveness.
文摘Enhancement of nitrogen fixation in the rhizo-sphere of cereals has attracted a wide interestin biological and agricultural research,insteadof chemicals,for supplying higher plants withcombined nitrogen.Bacteria in association withrice plant.s were sensitive to the surroundingfactors in the soil,such as NH~+ or O,whichrepressed associative nitrogen fixation between
文摘To investigate the thermo-mechanical response of channel wall nozzle under cyclic working loads,the fnite volume fluid-thermal coupling calculation method and the fnite element thermal-structural coupling analysis technique are applied.In combination with the material lowcycle fatigue behavior,the modifed continuous damage model on the basics of local strain approach is adopted to analyze the fatigue damage distribution and accumulation with increasing nozzle work cycles.Simulation results have shown that the variation of the non-uniform temperature distribution of channel wall nozzle during cyclic work plays a signifcant role in the thermal-structural response by altering the material properties;the thermal-mechanical loads interaction results in serious deformation mainly in the front region of slotted liner.In particular,the maximal cyclic strains appear in the intersecting regions of liner gas side wall and symmetric planes of channel and rib,where the fatigue failure takes place initially;with the increase in nozzle work cycles,the residual plastic strain accumulates linearly,and the strain amplitude and increment in each work cycle are separately equal,but the fatigue damage grows up nonlinearly.As a result,a simplifed nonlinear damage accumulation approach has been suggested to estimate the fatigue service life of channel wall nozzle.The predicted node life is obviously conservative to the Miner's life.In addition,several workable methods have also been proposed to improve the channel wall nozzle durability.
基金supported by the National Natural Science Foundation of China (Grant No. 51608542)Project of Science and Technology Research and Development Program of China Railway Corporation (Grant No.2015G001-G)
文摘China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.