We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubrida...We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubridae(Hemorrhois hippocrepis, Coronella girondica and Macroprotodon mauritanicus), and Lamprophiidae(Malpolon insignitus). The suitable habitat for each species was modelled using the maximum entropy algorithm, combining presence field data(collected during 16 years:2000–2015) with a set of seven environmental variables(mean annual precipitation, elevation, slope gradient,aspect, distance to watercourses, land surface temperature and normalized Differential Vegetation Index. The relative importance of these environmental variables was evaluated by jackknife tests and the predictive power of our models was assessed using the area under the receiver operating characteristic. The main explicative variables of the species distribution were distance from streams and elevation, with contributions ranging from 60 to 77 and from 10 to 25%,respectively. Our study provided the first habitat suitability models for snakes in Kroumiria and this information can be used by conservation biologists and land managers concerned with preserving snakes in Kroumiria.展开更多
[Objectives]To determine the potential habitat range of Caragana acanthophylla in Xinjiang.[Methods]The known distribution points of C.acanthophylla were used as samples,and a MaxEnt model was developed based on their...[Objectives]To determine the potential habitat range of Caragana acanthophylla in Xinjiang.[Methods]The known distribution points of C.acanthophylla were used as samples,and a MaxEnt model was developed based on their climatic variables to identify key environmental factors affecting the potential habitats of C.acanthophylla through jackknife method and construction of a response relationship between representative variables and habitat suitability;the suitability of habitats for C.acanthophylla in Xinjiang was evaluated based on the output results of the model.[Results](i)The accuracy of the model verified by AUC curve was 0.971,indicating that the potential habitats of C.acanthophylla in Xinjiang predicted by MaxEnt model were highly credible.(ii)The optimum climatic characteristics for the distribution of C.acanthophylla in Xinjiang were:isothermality 18.8%-34%,minimum temperature of coldest month-30℃to-13℃,mean temperature of coldest quarter-18℃ to-4℃,annual precipitation 80-410 mm,precipitation of driest month 0-25 mm,precipitation of driest quarter 0-82 mm,and precipitation of coldest quarter 0-75 mm.(iii)The total potential distribution area of C.acanthophylla in Xinjiang was modeled to be 1.03×10^(5) km^(2),of which 8.54×10^(3)km^(2) was high suitability area,mainly in the front mountain belt of the north slope of Tianshan Mountain in Urumqi City,Changji Hui Autonomous Prefecture,Bortala Mongol Autonomous Prefecture,and Yili Kazak Autonomous Prefecture and the front mountain belt of Barluk Mountain in Tacheng Prefecture.[Conclusions]This study is of great significance for the future scientific management,regeneration,vegetation restoration and ecological protection of C.acanthophylla.展开更多
This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qu...This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality.展开更多
The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σ...The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σt), the tangential stress (σθ), the rock brittleness coefficient (σc/σt), the stress coefficient (σθ /σc) and the elastic energy index (Wet) are chosen to establish evaluation index system. The entropy?cloud model and criterion are obtained through 209 sets of rock burst samples from underground rock projects. The sensitivity of indicators is analyzed and 209 sets of rock burst samples are discriminated by this model. The discriminant results of the entropy-cloud model are compared with those of Bayes, KNN and RF methods. The results show that the sensitivity order of those factors from high to low is σ_θ /σ_c, σ_θ, W_(ct), σ_c/σ_t, σ_t, σ_c, and the entropy-cloud model has higher accuracy than Bayes, K-Nearest Neighbor algorithm (KNN) and Random Forest (RF) methods.展开更多
Incorporating private and working lands into protected area networks could mitigate the isolation state of protected areas(PAs) and improve the efficiency of conservation.But how to select patches of land for conserva...Incorporating private and working lands into protected area networks could mitigate the isolation state of protected areas(PAs) and improve the efficiency of conservation.But how to select patches of land for conservation is still a troublesome issue.In this study, the MaxEnt model and irreplaceability index were applied to guide marsh conservation in the Nenjiang River Basin, Northeast China.According to the high accuracy of the MaxEnt model predictions(i.e., the average AUC value = 0.933), the Wuyuer River and Zhalong marshes in the downstream reaches of Wuyuer River are the optimal habitat for the Red-crowned crane and migratory waterfowls.There are 22 marsh patches selected by the patch irreplaceability index for conservation, of which 12 patches had been included in the current network of protected areas.The other 10 patches of marsh(amounting to 1096 km^2) far from human disturbances with high NDVI(up to 0.8) and close distance to water(less than 100 m), which are excluded from the existing network of PAs, should be implemented conservation easement programs to improve the protection efficiency of conservation.Specifically, the marshes at Taha, Tangchi, and Lamadian should be given priority for conservation and restoration to reintroduce migratory waterfowls, as this would lessen the current isolation state of the Zhalong National Nature Reserve.展开更多
The spatial interaction model is an effective way to explore the geographical disparities inherent in the Belt and Road Initiative(BRI) by simulating spatial flows. The traditional gravity model implies the hypothesis...The spatial interaction model is an effective way to explore the geographical disparities inherent in the Belt and Road Initiative(BRI) by simulating spatial flows. The traditional gravity model implies the hypothesis of equilibrium points without any reference to when or how to achieve it. In this paper, a dynamic gravity model was established based on the Maximum Entropy(MaxEnt) theory to estimate and monitor the interconnection intensity and dynamic characters of bilateral relations. In order to detect the determinants of interconnection intensity, a Geodetector method was applied to identify and evaluate the determinants of spatial networks in five dimensions. The empirical study clearly demonstrates a heterogeneous and non-circular spatial structure. The main driving forces of spatial-temporal evolution are foreign direct investment, tourism and railway infrastructure construction, while determinants in different sub-regions show obvious spatial differentiation. Southeast Asian countries are typically multi-island area where aviation infrastructure plays a more important role. North and Central Asian countries regard oil as a pillar industry where power and port facilities have a greater impact on the interconnection. While Western Asian countries are mostly influenced by the railway infrastructure, Eastern European countries already have relatively robust infrastructure where tariff policies provide a greater impetus.展开更多
The interaction between a two-level atom and a single-mode field in the k-photon Jaynes-Cummings model (JCM) in the presence of the Stark shift and a Kerr medium is studied. All terms in the Hamiltonian, such as the...The interaction between a two-level atom and a single-mode field in the k-photon Jaynes-Cummings model (JCM) in the presence of the Stark shift and a Kerr medium is studied. All terms in the Hamiltonian, such as the single-mode field, its interaction with the atom, the contribution of the Stark shift and the Kerr medium effects are considered to be f-deformed. In particular, the effect of the initial state of the radiation field on the dynamical evolution of some physical properties such as atomic inversion and entropy squeezing are investigated by considering different initial field states (coherent, squeezed and thermal states).展开更多
The entropy squeezing of an atom with a k-photon in the Jaynes Cummings model is investigated. For comparison, we also study the corresponding variance squeezing and atomic inversion. Analytical results show that entr...The entropy squeezing of an atom with a k-photon in the Jaynes Cummings model is investigated. For comparison, we also study the corresponding variance squeezing and atomic inversion. Analytical results show that entropy squeezing is preferable to variance squeezing for zero atomic inversion. Moreover, for initial conditions of the system the relation between squeezing and photon transition number is also discussed. This provides a theoretical approach to finding out the optimal entropy squeezing.展开更多
The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, e...The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, exploit and utilize on groundwater resource are provided rationally. According to the real condition of Sanjiang Plain, the indexes system is established based on the traditional DRASTIC model. The new system includes the following seven indexes: Depth of Water, Net Recharge, Aquifer Media, Soil Media, Conductivity of the Aquifer, Land Utilizing Ratio and Populace Density. The related analysis appears that the system is rather reasonable. Because traditional methods, such as analytic hierarchy process and fuzzy mathematics theory, can't be avoided human interference in selection of weights, they could lead to an imprecise result. In order to evaluate the groundwater vulnerability reasonably, entropy weight coefficient method is applied for the first time, which provides a new way to groundwater vulnerability evaluation. The method is a model whose weights are insured by the calculation process, so the artificial disturb can be avoided. It has been used to evaluate the groundwater vulnerability in Sanjiang Plain. The satisfied result is acquired. Comparably, the same result is acquired by the other method named projection pursuit evaluation based on real-coded accelerating genetic algorithm. It shows that entropy weight coefficient method is applicable on groundwater vulnerability evaluation. The evaluation result can provide reference on the decision-making departments.展开更多
In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by ...In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by Chen Q S. In the model, firstly, the author establishes the attribute space matrix and determines the weight based on Shannon entropy theory; secondly, calculates attribute measure; thirdly, evaluates that with confidence criterion and score criterion; finally, an application example is given. The results show that the water quality of the groundwater sources for the city comes up to the grade II or III standard. There is no pollution that obviously exceeds the standard and the water can meet people’s needs .The results from an evaluation of this model are in basic agreement with the observed situation and with a set pair analysis (SPA) model.展开更多
We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity. Our numerical calculat...We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity. Our numerical calculations indicate that the squeezing period, the squeezing time and the maximM squeezing can be controlled by appropriately choosing the atomic motion and the field-mode structure. The atomic motion leads to a periodical time evolution of entanglement between the two-atom and the field. Moreover, there exists corresponding relation between the time evolution properties of the atomic entropy squeezing and that of the entanglement between the two atoms and the field.展开更多
Bactrocera bryoniae and Bactrocera neohumeralis are highly destructive and major biosecurity/quarantine pests of fruit and vegetable in the tropical and subtropical regions in the South Pacific and Australia.Although ...Bactrocera bryoniae and Bactrocera neohumeralis are highly destructive and major biosecurity/quarantine pests of fruit and vegetable in the tropical and subtropical regions in the South Pacific and Australia.Although these pests have not established in China,precautions must be taken due to their highly destructive nature.Thus,we predicted the potential geographic distribution of B.bryoniae and B.neohumeralis across the world and in particular China by ecological niche modeling of the Maximum Entropy(Max Ent)model with the occurrence records of these two species.Bactrocera bryoniae and B.neohumeralis exhibit similar potential geographic distribution ranges across the world and in China,and each species was predicted to be able to distribute to over 20%of the globe.Globally,the potential geographic distribution ranges for these two fruit fly species included southern Asia,the central and the southeast coast of Africa,southern North America,northern and central South America,and Australia.While within China,most of the southern Yangtze River area was found suitable for these species.Notably,southern China was considered to have the highest risk of B.bryoniae and B.neohumeralis invasions.Our study identifies the regions at high risk for potential establishment of B.bryoniae and B.neohumeralis in the world and in particular China,and informs the development of inspection and biosecurity/quarantine measures to prevent and control their invasions.展开更多
Tibetan spruce (Picea smithiana) is an endemic species of the Himalayas,and it distributes only in a re-stricted area with very low number.To address the lack of detailed distributional information,we used maximum en-...Tibetan spruce (Picea smithiana) is an endemic species of the Himalayas,and it distributes only in a re-stricted area with very low number.To address the lack of detailed distributional information,we used maximum en-tropy (Maxent) niche-based model to predict the species' potential distribution from limited occurrence-only records.The location data of P.smithiana,relative bioclimatic variables,vegetation data,digital elevation model (DEM),and the derived data were analyzed in Maxent.The receiver operating characteristic (ROC) curve was applied to assess the prediction accuracy.The Maxent jackknife test was performed to quantify the training gains from data layers and the response of P.smithiana distribution to four typical environmental variables was analyzed.Results show that the model performs well at the regional scale.There is a potential for continued expansion of P.smithiana population numbers and distribution in China.P.smithiana potentially distributes in the lower reaches of Gyirong Zangbo and Poiqu rivers in Gyirong and Nyalam counties in Qomolangma (Mount Everest) National Nature Preserve (QNNP),China.The species prefers warm temperate climate in mountain area and mainly distributes in needle-leaved evergreen closed to open forest and mixed forest along the river valley at relatively low altitudes of about 2000-3000 m.Model simulations suggest that distribution patterns of rare species with few species numbers can be well predicted by Max-ent.展开更多
基金Funding support for this work was provided by the Silvo-Pastoral Institute of Tabarka
文摘We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubridae(Hemorrhois hippocrepis, Coronella girondica and Macroprotodon mauritanicus), and Lamprophiidae(Malpolon insignitus). The suitable habitat for each species was modelled using the maximum entropy algorithm, combining presence field data(collected during 16 years:2000–2015) with a set of seven environmental variables(mean annual precipitation, elevation, slope gradient,aspect, distance to watercourses, land surface temperature and normalized Differential Vegetation Index. The relative importance of these environmental variables was evaluated by jackknife tests and the predictive power of our models was assessed using the area under the receiver operating characteristic. The main explicative variables of the species distribution were distance from streams and elevation, with contributions ranging from 60 to 77 and from 10 to 25%,respectively. Our study provided the first habitat suitability models for snakes in Kroumiria and this information can be used by conservation biologists and land managers concerned with preserving snakes in Kroumiria.
基金Supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region-Youth Science Fund Project(2022D01B175)Basic Research Business Special Projects of Public Welfare Research Institutes of Xinjiang Uygur Autonomous Region(KY2021037,KY2021038).
文摘[Objectives]To determine the potential habitat range of Caragana acanthophylla in Xinjiang.[Methods]The known distribution points of C.acanthophylla were used as samples,and a MaxEnt model was developed based on their climatic variables to identify key environmental factors affecting the potential habitats of C.acanthophylla through jackknife method and construction of a response relationship between representative variables and habitat suitability;the suitability of habitats for C.acanthophylla in Xinjiang was evaluated based on the output results of the model.[Results](i)The accuracy of the model verified by AUC curve was 0.971,indicating that the potential habitats of C.acanthophylla in Xinjiang predicted by MaxEnt model were highly credible.(ii)The optimum climatic characteristics for the distribution of C.acanthophylla in Xinjiang were:isothermality 18.8%-34%,minimum temperature of coldest month-30℃to-13℃,mean temperature of coldest quarter-18℃ to-4℃,annual precipitation 80-410 mm,precipitation of driest month 0-25 mm,precipitation of driest quarter 0-82 mm,and precipitation of coldest quarter 0-75 mm.(iii)The total potential distribution area of C.acanthophylla in Xinjiang was modeled to be 1.03×10^(5) km^(2),of which 8.54×10^(3)km^(2) was high suitability area,mainly in the front mountain belt of the north slope of Tianshan Mountain in Urumqi City,Changji Hui Autonomous Prefecture,Bortala Mongol Autonomous Prefecture,and Yili Kazak Autonomous Prefecture and the front mountain belt of Barluk Mountain in Tacheng Prefecture.[Conclusions]This study is of great significance for the future scientific management,regeneration,vegetation restoration and ecological protection of C.acanthophylla.
基金2024 Key Project of Teaching Reform Research and Practice in Higher Education in Henan Province“Exploration and Practice of Training Model for Outstanding Students in Basic Mechanics Discipline”(2024SJGLX094)Henan Province“Mechanics+X”Basic Discipline Outstanding Student Training Base2024 Research and Practice Project of Higher Education Teaching Reform in Henan University of Science and Technology“Optimization and Practice of Ability-Oriented Teaching Mode for Computational Mechanics Course:A New Exploration in Cultivating Practical Simulation Engineers”(2024BK074)。
文摘This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality.
基金Projects(51474252,51274253)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject(2016zzts095)supported by the Fundamental Research Funds for the Central Universities,China
文摘The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σt), the tangential stress (σθ), the rock brittleness coefficient (σc/σt), the stress coefficient (σθ /σc) and the elastic energy index (Wet) are chosen to establish evaluation index system. The entropy?cloud model and criterion are obtained through 209 sets of rock burst samples from underground rock projects. The sensitivity of indicators is analyzed and 209 sets of rock burst samples are discriminated by this model. The discriminant results of the entropy-cloud model are compared with those of Bayes, KNN and RF methods. The results show that the sensitivity order of those factors from high to low is σ_θ /σ_c, σ_θ, W_(ct), σ_c/σ_t, σ_t, σ_c, and the entropy-cloud model has higher accuracy than Bayes, K-Nearest Neighbor algorithm (KNN) and Random Forest (RF) methods.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFA0600401)the Key Research Program of Frontier Sciences from Chinese Academy of Sciences+1 种基金Fundamental Research Funds in Heilongjiang Provincial Universities(No.135209252,135309359)the Philosophy and Social Sciences Research Plan of Heilongjiang Province(No.16JLC01)
文摘Incorporating private and working lands into protected area networks could mitigate the isolation state of protected areas(PAs) and improve the efficiency of conservation.But how to select patches of land for conservation is still a troublesome issue.In this study, the MaxEnt model and irreplaceability index were applied to guide marsh conservation in the Nenjiang River Basin, Northeast China.According to the high accuracy of the MaxEnt model predictions(i.e., the average AUC value = 0.933), the Wuyuer River and Zhalong marshes in the downstream reaches of Wuyuer River are the optimal habitat for the Red-crowned crane and migratory waterfowls.There are 22 marsh patches selected by the patch irreplaceability index for conservation, of which 12 patches had been included in the current network of protected areas.The other 10 patches of marsh(amounting to 1096 km^2) far from human disturbances with high NDVI(up to 0.8) and close distance to water(less than 100 m), which are excluded from the existing network of PAs, should be implemented conservation easement programs to improve the protection efficiency of conservation.Specifically, the marshes at Taha, Tangchi, and Lamadian should be given priority for conservation and restoration to reintroduce migratory waterfowls, as this would lessen the current isolation state of the Zhalong National Nature Reserve.
基金the auspices of A Category of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA20010101)。
文摘The spatial interaction model is an effective way to explore the geographical disparities inherent in the Belt and Road Initiative(BRI) by simulating spatial flows. The traditional gravity model implies the hypothesis of equilibrium points without any reference to when or how to achieve it. In this paper, a dynamic gravity model was established based on the Maximum Entropy(MaxEnt) theory to estimate and monitor the interconnection intensity and dynamic characters of bilateral relations. In order to detect the determinants of interconnection intensity, a Geodetector method was applied to identify and evaluate the determinants of spatial networks in five dimensions. The empirical study clearly demonstrates a heterogeneous and non-circular spatial structure. The main driving forces of spatial-temporal evolution are foreign direct investment, tourism and railway infrastructure construction, while determinants in different sub-regions show obvious spatial differentiation. Southeast Asian countries are typically multi-island area where aviation infrastructure plays a more important role. North and Central Asian countries regard oil as a pillar industry where power and port facilities have a greater impact on the interconnection. While Western Asian countries are mostly influenced by the railway infrastructure, Eastern European countries already have relatively robust infrastructure where tariff policies provide a greater impetus.
文摘The interaction between a two-level atom and a single-mode field in the k-photon Jaynes-Cummings model (JCM) in the presence of the Stark shift and a Kerr medium is studied. All terms in the Hamiltonian, such as the single-mode field, its interaction with the atom, the contribution of the Stark shift and the Kerr medium effects are considered to be f-deformed. In particular, the effect of the initial state of the radiation field on the dynamical evolution of some physical properties such as atomic inversion and entropy squeezing are investigated by considering different initial field states (coherent, squeezed and thermal states).
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674038 and 10604042)the National Basic Research Program of China (Grant No. 2006CB302901)
文摘The entropy squeezing of an atom with a k-photon in the Jaynes Cummings model is investigated. For comparison, we also study the corresponding variance squeezing and atomic inversion. Analytical results show that entropy squeezing is preferable to variance squeezing for zero atomic inversion. Moreover, for initial conditions of the system the relation between squeezing and photon transition number is also discussed. This provides a theoretical approach to finding out the optimal entropy squeezing.
基金Supported by the National Natural Science Foundation of China(30400275)the Tackle Key Problems of Heilongjiang Province(the Hobbledehoy Science Fund of Heilongjiang Province)(QC04C28)
文摘The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, exploit and utilize on groundwater resource are provided rationally. According to the real condition of Sanjiang Plain, the indexes system is established based on the traditional DRASTIC model. The new system includes the following seven indexes: Depth of Water, Net Recharge, Aquifer Media, Soil Media, Conductivity of the Aquifer, Land Utilizing Ratio and Populace Density. The related analysis appears that the system is rather reasonable. Because traditional methods, such as analytic hierarchy process and fuzzy mathematics theory, can't be avoided human interference in selection of weights, they could lead to an imprecise result. In order to evaluate the groundwater vulnerability reasonably, entropy weight coefficient method is applied for the first time, which provides a new way to groundwater vulnerability evaluation. The method is a model whose weights are insured by the calculation process, so the artificial disturb can be avoided. It has been used to evaluate the groundwater vulnerability in Sanjiang Plain. The satisfied result is acquired. Comparably, the same result is acquired by the other method named projection pursuit evaluation based on real-coded accelerating genetic algorithm. It shows that entropy weight coefficient method is applicable on groundwater vulnerability evaluation. The evaluation result can provide reference on the decision-making departments.
文摘In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by Chen Q S. In the model, firstly, the author establishes the attribute space matrix and determines the weight based on Shannon entropy theory; secondly, calculates attribute measure; thirdly, evaluates that with confidence criterion and score criterion; finally, an application example is given. The results show that the water quality of the groundwater sources for the city comes up to the grade II or III standard. There is no pollution that obviously exceeds the standard and the water can meet people’s needs .The results from an evaluation of this model are in basic agreement with the observed situation and with a set pair analysis (SPA) model.
基金supported by the Science and Technology Program of Dezhou,Shandong Province,China (Grant No. 20080153)the Scientific Research Fund of Dezhou University,China (Grant No. 07024)
文摘We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity. Our numerical calculations indicate that the squeezing period, the squeezing time and the maximM squeezing can be controlled by appropriately choosing the atomic motion and the field-mode structure. The atomic motion leads to a periodical time evolution of entanglement between the two-atom and the field. Moreover, there exists corresponding relation between the time evolution properties of the atomic entropy squeezing and that of the entanglement between the two atoms and the field.
基金supported by the National Key R&D Program of China(2017YFC1200600 and 2016YFC1202104)the Innovation Team of Modern Agricultural Industry Generic Key Technology R&D of Guangdong Province,China(2019KJ134)+1 种基金the Open Fund of the Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests,China(2016-KF-3)A student scholarship was provided by the Harry Butler Institute,Murdoch University,Australia。
文摘Bactrocera bryoniae and Bactrocera neohumeralis are highly destructive and major biosecurity/quarantine pests of fruit and vegetable in the tropical and subtropical regions in the South Pacific and Australia.Although these pests have not established in China,precautions must be taken due to their highly destructive nature.Thus,we predicted the potential geographic distribution of B.bryoniae and B.neohumeralis across the world and in particular China by ecological niche modeling of the Maximum Entropy(Max Ent)model with the occurrence records of these two species.Bactrocera bryoniae and B.neohumeralis exhibit similar potential geographic distribution ranges across the world and in China,and each species was predicted to be able to distribute to over 20%of the globe.Globally,the potential geographic distribution ranges for these two fruit fly species included southern Asia,the central and the southeast coast of Africa,southern North America,northern and central South America,and Australia.While within China,most of the southern Yangtze River area was found suitable for these species.Notably,southern China was considered to have the highest risk of B.bryoniae and B.neohumeralis invasions.Our study identifies the regions at high risk for potential establishment of B.bryoniae and B.neohumeralis in the world and in particular China,and informs the development of inspection and biosecurity/quarantine measures to prevent and control their invasions.
基金Under the auspices of National Basic Research Program of China (No.2010CB951704)Institutional Consolidation for Coordinated and Integrated Monitoring of Natural Resources towards Sustainable Development and Environmental Conservation in the Hindu Kush-Karakoram-Himalaya Mountain Complex (No.76444-000)External Cooperation Program of Chinese Academy of Sciences (No.GJHZ0954)
文摘Tibetan spruce (Picea smithiana) is an endemic species of the Himalayas,and it distributes only in a re-stricted area with very low number.To address the lack of detailed distributional information,we used maximum en-tropy (Maxent) niche-based model to predict the species' potential distribution from limited occurrence-only records.The location data of P.smithiana,relative bioclimatic variables,vegetation data,digital elevation model (DEM),and the derived data were analyzed in Maxent.The receiver operating characteristic (ROC) curve was applied to assess the prediction accuracy.The Maxent jackknife test was performed to quantify the training gains from data layers and the response of P.smithiana distribution to four typical environmental variables was analyzed.Results show that the model performs well at the regional scale.There is a potential for continued expansion of P.smithiana population numbers and distribution in China.P.smithiana potentially distributes in the lower reaches of Gyirong Zangbo and Poiqu rivers in Gyirong and Nyalam counties in Qomolangma (Mount Everest) National Nature Preserve (QNNP),China.The species prefers warm temperate climate in mountain area and mainly distributes in needle-leaved evergreen closed to open forest and mixed forest along the river valley at relatively low altitudes of about 2000-3000 m.Model simulations suggest that distribution patterns of rare species with few species numbers can be well predicted by Max-ent.