期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Construction of a CaHP04-PGUSl hybrid nanoflower through protein-inorganic self-assembly, and its application in glycyrrhetinic acid 3-0-mono-β-D-glucuronide preparation 被引量:1
1
作者 Tian Jiang Yuhui Hou +2 位作者 Tengjiang Zhang Xudong Feng Chun Li 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2019年第3期554-562,共9页
Glycyrrhetinic acid 3-0-mono-β-D-glucuronide (GAMG), an important pharmaceutical intermediate and functional sweetener, has broad applications in the food and medical industries. A green and cost-effective method for... Glycyrrhetinic acid 3-0-mono-β-D-glucuronide (GAMG), an important pharmaceutical intermediate and functional sweetener, has broad applications in the food and medical industries. A green and cost-effective method for its preparation is highly desired. Using sitedirected mutagenesis, we previously obtained a variant of β-glucuronidase from Aspergillus oryzae Li-3 (PGUS1), which can specifically transform glycyrrhizin (GL) into GAMG. In this study, a facile method was established to prepare a CaHP04-PGUSl hybrid nanoflower for enzyme immobilization, based on protein-inorganic hybrid selfassembly. Under optimal conditions, 1.2 mg of a CaHP04- PGUS1 hybrid nanoflower precipitate with 71.2% immobilization efficiency, 35.60 mg·g^-1 loading capacity, and 118% relative activity was obtained. Confocal laser scanning microscope and scanning electron microscope results showed that the enzyme was encapsulated in the CaHP04-PGUSl hybrid nanoflower. Moreover, the thermostability of the CaHP04-PGUSl hybrid nanoflower at 55°C was improved, and its half-life increased by 1.3 folds. Additionally, the CaHP04-PGUSl hybrid nanoflower was used for the preparation of GAMG through GL hydrolysis, with the conversion rate of 92% in 8 h, and after eight consecutive runs, it had 60% of its original activity. 展开更多
关键词 β-glucuronidase enzyme-inorganic hybrid nanoflower biotransformation glycyrrhizin glycyrrtinic acid 3-O-mono-β-D-glucuronide
原文传递
Aptamer-induced in-situ growth of acetylcholinesterase-Cu_(3)(PO_(4))_(2)hybrid nanoflowers for electrochemical detection of organophosphorus inhibitors
2
作者 Limin Yang Linjiao Qu +2 位作者 Xiaolong Zhang Mingming Li Zhen Liu 《Nano Research》 SCIE EI CSCD 2023年第10期12134-12143,共10页
Enzyme-inorganic hybrid nanoflowers(HNFs)have shown excellent sensing capabilities due to their large specific surface area as well as the simplicity and mildness of the preparation process.However,coupling HNFs to el... Enzyme-inorganic hybrid nanoflowers(HNFs)have shown excellent sensing capabilities due to their large specific surface area as well as the simplicity and mildness of the preparation process.However,coupling HNFs to electrodes to fabricate a uniform and controllable enzymatic electrochemical sensing interface remains a challenge.Here,we proposed an aptamer-induced insitu fabrication strategy for preparing an HNF-based electrochemical sensor with ideal performance.Central to this strategy is the introduction of acetylcholinesterase(AChE)-specific binding aptamer(Apt),which induces the in-situ growth of AChE-copper phosphate(Cu_(3)(PO_(4))_(2))HNFs on the surface of carbon paper(CP).In addition,a dense gold nanoparticle(AuNP)layer was electrodeposited on the CP for anchoring Apt and further extending the electroactive surface area.The prepared AChECu_(3)(PO_(4))_(2)HNF/Apt/AuNP/CP biosensor exhibited a wide detection range from 1 to 107 pM for the four organophosphorus inhibitors,including isocarbophos,dichlorvos,methamidophos,and parathion,with detection limits down to 0.016,0.028,0.071,and 0.113 pM,respectively.With the reactivation of pralidoxime chloride,the electrode can still recover 98.1%of the response after five times of repeated use.In real sample detection,the biosensor achieved high recoveries from 96.45%to 100.13%.The detection target may be extendable to other AChE inhibitors(e.g.,drugs for Alzheimer’s disease).This study demonstrates for the first time the feasibility of using aptamers as an inducer to fabricate an electrochemical enzyme sensing interface in-situ.This strategy can be used to fabricate other enzyme-based biosensors and therefore has broader applications. 展开更多
关键词 in-situ fabrication APTAMER enzyme-inorganic hybrid nanoflowers electrochemical biosensor acetylcholinesterase inhibitors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部