Glycyrrhetinic acid 3-0-mono-β-D-glucuronide (GAMG), an important pharmaceutical intermediate and functional sweetener, has broad applications in the food and medical industries. A green and cost-effective method for...Glycyrrhetinic acid 3-0-mono-β-D-glucuronide (GAMG), an important pharmaceutical intermediate and functional sweetener, has broad applications in the food and medical industries. A green and cost-effective method for its preparation is highly desired. Using sitedirected mutagenesis, we previously obtained a variant of β-glucuronidase from Aspergillus oryzae Li-3 (PGUS1), which can specifically transform glycyrrhizin (GL) into GAMG. In this study, a facile method was established to prepare a CaHP04-PGUSl hybrid nanoflower for enzyme immobilization, based on protein-inorganic hybrid selfassembly. Under optimal conditions, 1.2 mg of a CaHP04- PGUS1 hybrid nanoflower precipitate with 71.2% immobilization efficiency, 35.60 mg·g^-1 loading capacity, and 118% relative activity was obtained. Confocal laser scanning microscope and scanning electron microscope results showed that the enzyme was encapsulated in the CaHP04-PGUSl hybrid nanoflower. Moreover, the thermostability of the CaHP04-PGUSl hybrid nanoflower at 55°C was improved, and its half-life increased by 1.3 folds. Additionally, the CaHP04-PGUSl hybrid nanoflower was used for the preparation of GAMG through GL hydrolysis, with the conversion rate of 92% in 8 h, and after eight consecutive runs, it had 60% of its original activity.展开更多
Enzyme-inorganic hybrid nanoflowers(HNFs)have shown excellent sensing capabilities due to their large specific surface area as well as the simplicity and mildness of the preparation process.However,coupling HNFs to el...Enzyme-inorganic hybrid nanoflowers(HNFs)have shown excellent sensing capabilities due to their large specific surface area as well as the simplicity and mildness of the preparation process.However,coupling HNFs to electrodes to fabricate a uniform and controllable enzymatic electrochemical sensing interface remains a challenge.Here,we proposed an aptamer-induced insitu fabrication strategy for preparing an HNF-based electrochemical sensor with ideal performance.Central to this strategy is the introduction of acetylcholinesterase(AChE)-specific binding aptamer(Apt),which induces the in-situ growth of AChE-copper phosphate(Cu_(3)(PO_(4))_(2))HNFs on the surface of carbon paper(CP).In addition,a dense gold nanoparticle(AuNP)layer was electrodeposited on the CP for anchoring Apt and further extending the electroactive surface area.The prepared AChECu_(3)(PO_(4))_(2)HNF/Apt/AuNP/CP biosensor exhibited a wide detection range from 1 to 107 pM for the four organophosphorus inhibitors,including isocarbophos,dichlorvos,methamidophos,and parathion,with detection limits down to 0.016,0.028,0.071,and 0.113 pM,respectively.With the reactivation of pralidoxime chloride,the electrode can still recover 98.1%of the response after five times of repeated use.In real sample detection,the biosensor achieved high recoveries from 96.45%to 100.13%.The detection target may be extendable to other AChE inhibitors(e.g.,drugs for Alzheimer’s disease).This study demonstrates for the first time the feasibility of using aptamers as an inducer to fabricate an electrochemical enzyme sensing interface in-situ.This strategy can be used to fabricate other enzyme-based biosensors and therefore has broader applications.展开更多
基金the National Natural Science Foundation of China (Grant Nos.21425624, 21878021, and 21506011).
文摘Glycyrrhetinic acid 3-0-mono-β-D-glucuronide (GAMG), an important pharmaceutical intermediate and functional sweetener, has broad applications in the food and medical industries. A green and cost-effective method for its preparation is highly desired. Using sitedirected mutagenesis, we previously obtained a variant of β-glucuronidase from Aspergillus oryzae Li-3 (PGUS1), which can specifically transform glycyrrhizin (GL) into GAMG. In this study, a facile method was established to prepare a CaHP04-PGUSl hybrid nanoflower for enzyme immobilization, based on protein-inorganic hybrid selfassembly. Under optimal conditions, 1.2 mg of a CaHP04- PGUS1 hybrid nanoflower precipitate with 71.2% immobilization efficiency, 35.60 mg·g^-1 loading capacity, and 118% relative activity was obtained. Confocal laser scanning microscope and scanning electron microscope results showed that the enzyme was encapsulated in the CaHP04-PGUSl hybrid nanoflower. Moreover, the thermostability of the CaHP04-PGUSl hybrid nanoflower at 55°C was improved, and its half-life increased by 1.3 folds. Additionally, the CaHP04-PGUSl hybrid nanoflower was used for the preparation of GAMG through GL hydrolysis, with the conversion rate of 92% in 8 h, and after eight consecutive runs, it had 60% of its original activity.
基金the National Natural Science Foundation of China(No.31871878).
文摘Enzyme-inorganic hybrid nanoflowers(HNFs)have shown excellent sensing capabilities due to their large specific surface area as well as the simplicity and mildness of the preparation process.However,coupling HNFs to electrodes to fabricate a uniform and controllable enzymatic electrochemical sensing interface remains a challenge.Here,we proposed an aptamer-induced insitu fabrication strategy for preparing an HNF-based electrochemical sensor with ideal performance.Central to this strategy is the introduction of acetylcholinesterase(AChE)-specific binding aptamer(Apt),which induces the in-situ growth of AChE-copper phosphate(Cu_(3)(PO_(4))_(2))HNFs on the surface of carbon paper(CP).In addition,a dense gold nanoparticle(AuNP)layer was electrodeposited on the CP for anchoring Apt and further extending the electroactive surface area.The prepared AChECu_(3)(PO_(4))_(2)HNF/Apt/AuNP/CP biosensor exhibited a wide detection range from 1 to 107 pM for the four organophosphorus inhibitors,including isocarbophos,dichlorvos,methamidophos,and parathion,with detection limits down to 0.016,0.028,0.071,and 0.113 pM,respectively.With the reactivation of pralidoxime chloride,the electrode can still recover 98.1%of the response after five times of repeated use.In real sample detection,the biosensor achieved high recoveries from 96.45%to 100.13%.The detection target may be extendable to other AChE inhibitors(e.g.,drugs for Alzheimer’s disease).This study demonstrates for the first time the feasibility of using aptamers as an inducer to fabricate an electrochemical enzyme sensing interface in-situ.This strategy can be used to fabricate other enzyme-based biosensors and therefore has broader applications.