A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance i...A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.展开更多
With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in ...With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in this paper.The ampere-hour(Ah)integration method based on external characteristics is analyzed,and the open-circuit voltage(OCV)method is studied.The two methods are combined to estimate SOC.Considering the accuracy and complexity of the model,the second-order RC equivalent circuit model of lithium battery is selected.Pulse discharge and exponential fitting of lithium battery are used to obtain corresponding parameters.The simulation is carried out by using fixed resistance capacitance and variable resistance capacitor respectively.The accuracy of variable resistance and capacitance model is 2.9%,which verifies the validity of the proposed model.展开更多
Terahertz quantum cascade lasers(THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In...Terahertz quantum cascade lasers(THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model.Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results.展开更多
With the widespread utilization of indium-phosphide-based high-electron-mobility transistors(InP HEMTs)in the millimeter-wave(mmW)band,the distributed and high-frequency parasitic coupling behavior of the device is pa...With the widespread utilization of indium-phosphide-based high-electron-mobility transistors(InP HEMTs)in the millimeter-wave(mmW)band,the distributed and high-frequency parasitic coupling behavior of the device is particularly prominent.We present an InP HEMT extrinsic parasitic equivalent circuit,in which the conductance between the device electrodes and a new gate-drain mutual inductance term L_(mgd)are taken into account for the high-frequency magnetic field coupling between device electrodes.Based on the suggested parasitic equivalent circuit,through HFSS and advanced design system(ADS)co-simulation,the equivalent circuit parameters are directly extracted in the multi-step system.The HFSS simulation prediction,measurement data,and modeled frequency response are compared with each other to verify the feasibility of the extraction method and the accuracy of the equivalent circuit.The proposed model demonstrates the distributed and radio-frequency behavior of the device and solves the problem that the equivalent circuit parameters of the conventional InP HEMTs device are limited by the device model and inaccurate at high frequencies when being extracted.展开更多
A scalable wideband equivalent circuit model of silicon-based on-chip transmission lines is presented in this paper along with an efficient analytical parameter extraction method based on improved characteristic funct...A scalable wideband equivalent circuit model of silicon-based on-chip transmission lines is presented in this paper along with an efficient analytical parameter extraction method based on improved characteristic function approach,including a relevant equation to reduce the deviation caused by approximation.The model consists of both series and shunt lumped elements and accounts for high-order parasitic effects.The equivalent circuit model is derived and verified to recover the frequency-dependent parameters at a range from direct current to 50 GHz accurately.The scalability of the model is proved by comparing simulated and measured scattering parameters with the method of cascade,attaining excellent results based on samples made from CMOS 0.13 and 0.18 μm process.展开更多
UHVDC converter valves during operation may experience overvoltage,which come from the AC or DC systems to which they are connected.Therefore,building an equivalent circuit model(ECM)for the converter valve to analyze...UHVDC converter valves during operation may experience overvoltage,which come from the AC or DC systems to which they are connected.Therefore,building an equivalent circuit model(ECM)for the converter valve to analyze the interlayer transient voltage distribution characteristics has important engineering significance for safe and reasonable voltage equalization methods and improving the stability of the DC system.This paper proposes a two-port equivalent circuit model for ±1100 kV converter valve based on the structure of the valve and parameter extraction methods presented.In terms of lumped parameters,integrated ECMs for valve layers are built through impedance-frequency characteristic analysis;in terms of parasitic capacitance parameters,port equivalent parasitic capacitance parameters are obtained by terminal capacitance method and iterative equivalence methods proposed in this paper.By combining integrated ECMs of valve layers and port equivalent parasitic capacitances,the two-port ECM is obtained.Simulations are carried out to test the effectiveness of the twoport ECM.Using the ECM,the voltage transmission characteristics and their influencing factors are analyzed,depending on which corresponding voltage equalization method is proposed in this paper,and the effect of this method is verified through simulation.展开更多
An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect bra...An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect branch and a substrate lateral coupling branch. The parameter extraction is based on an improved characteristic function approach and vector fitting method. The model has better simulation than the previous work over the measured data of 2.5r and 4.5r on-chip inductors in the GaAs process.展开更多
Intrinsic stability ofthe heterojunction bipolar transistor (HBT) was analyzed and discussed based on a small signal equivalent circuit model. The stability factor of the HBT device was derived based on a compact T-...Intrinsic stability ofthe heterojunction bipolar transistor (HBT) was analyzed and discussed based on a small signal equivalent circuit model. The stability factor of the HBT device was derived based on a compact T-type small signal equivalent circuit model of the HBT. The effect of the mainly small signal model parameters of the HBT on the stability of the HBT was thoroughly examined. The discipline of parameter optimum to improve the intrinsic stability of the HBT was achieved. The theoretic analysis results of the stability were also used to explain the experimental results of the stability of the HBT and they were verified by the experimental results.展开更多
Stabilization of the accelerating field in Drift Tube Linac(DTL) is obtained by inserting Post Couplers(PCs). On the basis of the equivalent circuit model for the DTL with and without asymmetrical PCs, stabilizati...Stabilization of the accelerating field in Drift Tube Linac(DTL) is obtained by inserting Post Couplers(PCs). On the basis of the equivalent circuit model for the DTL with and without asymmetrical PCs, stabilization is deduced quantitatively: we let δω/ω0 be the relative frequency error, then we discover that the sensitivity of field to perturbation is proportional to √δω/ω0 without PCs and to δω/ω0 with PCs. Then we adapt the circuit model of symmetrical PCs for the case of asymmetrical PCs. The circuit model shows how the slope of field distribution is changed by rotating the asymmetrical PCs and illustrates that the asymmetrical PCs have the same effect as the symmetrical ones in stabilization.展开更多
The industrial application of the Kaufman ion thruster in its arc stage is limited owing to the instability of the discharge pulse.Presently,a complete prediction model that can predict the discharge pulse in the high...The industrial application of the Kaufman ion thruster in its arc stage is limited owing to the instability of the discharge pulse.Presently,a complete prediction model that can predict the discharge pulse in the high-current stage does not exist.In this study,a complete prediction model for the pulse in the ion thruster is established using the zero-dimensional plasma discharge model and equivalent circuit model.The zero-dimensional plasma discharge model is used to obtain the corresponding plasma parameters by calculating the beam current,discharge current,voltage,and gas flow under actual working conditions.The input parameters of the equivalent circuit model are calculated using empirical formulae to acquire the estimated discharge waveforms.The pulse waveforms obtained using the model are found to be consistent with the experimental results.The model is used to evaluate the process of rapid changes in plasma density.Additionally,this model is employed to predict changes in the pulse waveforms when the volume of the discharge chamber and grid plate transmittance are changed.展开更多
The concepts of substrate eddy influence factor and distribution-effects-occurring frequency are presented. The effects of substrate resistivity and inductor spiral length on the substrate eddy and distribution effect...The concepts of substrate eddy influence factor and distribution-effects-occurring frequency are presented. The effects of substrate resistivity and inductor spiral length on the substrate eddy and distribution effects are captured. The substrate eddy influence factors of an inductor (6 turn, 3 060 μm in length) fabricated on low ( 1 Ω. cm) and high resistivity( 1 000 Ω.cm) silicon substrates are 0. 3 and 0. 04, and the distribution-effects- occurring frequencies are 1.8 GHz and 14. 5 GHz, respectively. The measurement results show that the equivalent circuit model of the inductor on low resistivity silicon must take into consideration substrate eddy effects and distribution effects. However, the circuit model of the inductor on high resistivity silicon cannot take into account the substrate eddy effects and the distribution effects at the frequencies of interest. Its simple model shows agreement with the measurements, and the contrast is within 7%.展开更多
Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous co...Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.展开更多
The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the ...The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma.In this paper,a glass vacuum chamber and a pair of plate electrodes were designed and fabricated,using 13.56 MHz radio frequency(RF)discharge technology to ionize the working gas of Ar.This discharge was mathematically described with equivalent circuit model.The discharge voltage and current of the plasma were measured atdifferent pressures and different powers.Based on the capacitively coupled homogeneous discharge model,the equivalent circuit and the analytical formula were established.The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation.The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa,the average electron temperature is about 1.7–2.1 e V and the average electron density is about 0.5?×10^17–3.6?×10^17m^-3.Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.展开更多
Online parameter identification is essential for the accuracy of the battery equivalent circuit model(ECM).The traditional recursive least squares(RLS)method is easily biased with the noise disturbances from sensors,w...Online parameter identification is essential for the accuracy of the battery equivalent circuit model(ECM).The traditional recursive least squares(RLS)method is easily biased with the noise disturbances from sensors,which degrades the modeling accuracy in practice.Meanwhile,the recursive total least squares(RTLS)method can deal with the noise interferences,but the parameter slowly converges to the reference with initial value uncertainty.To alleviate the above issues,this paper proposes a co-estimation framework utilizing the advantages of RLS and RTLS for a higher parameter identification performance of the battery ECM.RLS converges quickly by updating the parameters along the gradient of the cost function.RTLS is applied to attenuate the noise effect once the parameters have converged.Both simulation and experimental results prove that the proposed method has good accuracy,a fast convergence rate,and also robustness against noise corruption.展开更多
An earlier study manipulated the Butler-Volmer equation to effectively model a lithium-ion capacitor’s (LIC) energy storage as a function of its constituent components and charge current. However, this model had seve...An earlier study manipulated the Butler-Volmer equation to effectively model a lithium-ion capacitor’s (LIC) energy storage as a function of its constituent components and charge current. However, this model had several shortcomings: computed temperature values were too low, voltage was inaccurate, and the model required Warburg impedance values that were two orders of magnitude higher than experimental results. This study began by analyzing the model’s temperature and voltage computations in order to justify output values. Ultimately, these justifications failed. Therefore, in situ temperature rise was measured during charge cycles. Experimental results indicated that temperature increases minimally during a charge cycle (<1%). At high current densities (≥150 A<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>) temperature increase is negligible. After it was found that LIC temperature change is minimal during a charge cycle, the model accurately computed LIC voltage during the charge cycle and computed Warburg impedance that agreed with values derived from earlier experimental studies, even falling within the measurements’ precision error.展开更多
Lithium-oxygen batteries are a promising technology because they can greatly surpass the energy density of lithium-ion batteries.However,this theoretical characteristic has not yet been converted into a real device wi...Lithium-oxygen batteries are a promising technology because they can greatly surpass the energy density of lithium-ion batteries.However,this theoretical characteristic has not yet been converted into a real device with high cyclability.Problems with air contamination,metallic lithium reactivity,and complex discharge and charge reactions are the main issues for this technology.A fast and reversible oxygen reduction reaction(ORR)is crucial for good performance of secondary batteries',but the partial knowledge of its mechanisms,especially when devices are concerned,hinders further development.From this perspective,the present work uses operando Raman experiments and electrochemical impedance spectroscopy(EIS)to assess the first stages of the discharge processes in porous carbon electrodes,following their changes cycle by cycle at initial operation.A growth kinetic formation of the discharge product signal(Li_(2)O_(2))was observed with operando Raman,indicating a first-order reaction and enabling an analysis by a microkinetic model.The solution mechanism in the evaluated system was ascribed for an equivalent circuit with three time constants.While the time constant for the anode interface reveals to remain relatively constant after the first discharge,its surface seemed to be more non-uniform.The model indicated that the reaction occurs at the Li_(2)O_(2) surface,decreasing the associated resistance during the initial discharge phase.Furthermore,the growth of Li_(2)O_(2) forms a hetero-phase between Li_(2)O_(2)/electrolyte,while creating a more compact and homogeneous on the Li_(2)O_(2)/cathode surface.The methodology here described thus offers a way of directly probing changes in surface chemistry evolution during cycling from a device through EIS analysis.展开更多
Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we invest...Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we investigated and realized the first X-band backward traveling-wave(BTW)accelerating structure as the buncher for a VHEE facility.A method for calculating the parameters of single cell from the field distribution was introduced to simplify the design of the BTW structure.Time-domain circuit equations were applied to calculate the transient beam parameters of the buncher in the unsteady state.A prototype of the BTW structure with a thermionic cathode-diode electron gun was designed,fabricated,and tested at high power at the Tsinghua X-band high-power test stand.The structure successfully operated with 5-MW microwave pulses from the pulse compressor and outputted electron bunches with an energy of 8 MeV and a pulsed current of 108 mA.展开更多
ABSTRACT The accurate state-of-charge(SOC)estimation of sodium-ion batteries is the basis for their efficient application.In this paper,a new SOC estimation method suitable for sodium-ion batteries and their applicati...ABSTRACT The accurate state-of-charge(SOC)estimation of sodium-ion batteries is the basis for their efficient application.In this paper,a new SOC estimation method suitable for sodium-ion batteries and their application conditions is proposed,which considers the combination of open circuit voltage(OCV)and internal resistance correction.First,the optimal order of equivalent circuit model is analyzed and selected,and the monotonic and stable mapping relationships between OCV and SOC,as well as between ohmic internal resistance and SOC are determined.Then,a joint estimation algorithm for battery model parameters and SOC is estab-lished,and a joint SOC correction strategy based on OCV and ohmic internal resistance is established.The test results show that OCV correction is reliable when polarization is small,that the ohmic internal resistance correction is reliable when the current fluctuation is large,and that the maximum absolute error of SOC estimation of the proposed method is not more than 2.6%.展开更多
Numerical study on dynamic hydroelastic problems is usually rather complex due to the coupling of fluid and solid mechanics.Here,we demonstrate that the performance of a hydroelastic microfluidic oscillator can be ana...Numerical study on dynamic hydroelastic problems is usually rather complex due to the coupling of fluid and solid mechanics.Here,we demonstrate that the performance of a hydroelastic microfluidic oscillator can be analyzed using a simple equivalent circuit model.Previous studies reveal that its transition from the steady state to the oscillation state follows the negative-differential-resistance(NDR)mechanism.The performance is mainly determined by a bias fluidic resistor,and a pressurevariant resistor which further relates to the bending stiffness of the elastic diaphragm and the depth of the oscillation chamber.In this work,a numerical study is conducted to examine the effects of key design factors on the device robustness,the applicable fluid viscosity,the flow rate,and the transition pressure.The underlying physics is interpreted,providing a new perspective on hydroelastic oscillation problems.Relevant findings also provide design guidelines of the NDR fluidic oscillator.展开更多
A novel method for detecting early damage at the steel-concrete interface due to external loading based on AC impedance spectroscopy technology was proposed.Firstly,alkali pretreatment was introduced to ensure the acc...A novel method for detecting early damage at the steel-concrete interface due to external loading based on AC impedance spectroscopy technology was proposed.Firstly,alkali pretreatment was introduced to ensure the accuracy and repeatability of the AC impedance test.Secondly,the AC impedance spectroscopy between the steel bar and concrete surface of different bonding positions was tested,and then the physical quantities reflecting the bonding damage condition were obtained by equivalent circuit fitting.Theoretical debonding position calculation and AC conductive structure analysis indicate that the change of interface resistance and interface capacitance can seize the development of bonding damage during the loading process.As the interface damage develops,obvious changes in interface resistance and interface capacitance are observed,and they cannot be recovered after unloading.展开更多
文摘A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.
基金Project(51507073)supported by the National Natural Science Foundation of China。
文摘With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in this paper.The ampere-hour(Ah)integration method based on external characteristics is analyzed,and the open-circuit voltage(OCV)method is studied.The two methods are combined to estimate SOC.Considering the accuracy and complexity of the model,the second-order RC equivalent circuit model of lithium battery is selected.Pulse discharge and exponential fitting of lithium battery are used to obtain corresponding parameters.The simulation is carried out by using fixed resistance capacitance and variable resistance capacitor respectively.The accuracy of variable resistance and capacitance model is 2.9%,which verifies the validity of the proposed model.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339803)the National High Technology Research and Development Program of China(Grant No.2011AA010205)+5 种基金the National Natural Science Foundation of China(Grant Nos.61131006,61321492,and 61404149)the Major National Development Project of Scientific Instrument and Equipment,China(Grant No.2011YQ150021)the National Science and Technology Major Project,China(Grant No.2011ZX02707)the Major Project,China(Grant No.YYYJ-1123-1)the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciencesthe Shanghai Municipal Commission of Science and Technology,China(Grant Nos.14530711300)
文摘Terahertz quantum cascade lasers(THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model.Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61434006 and 61704189)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences。
文摘With the widespread utilization of indium-phosphide-based high-electron-mobility transistors(InP HEMTs)in the millimeter-wave(mmW)band,the distributed and high-frequency parasitic coupling behavior of the device is particularly prominent.We present an InP HEMT extrinsic parasitic equivalent circuit,in which the conductance between the device electrodes and a new gate-drain mutual inductance term L_(mgd)are taken into account for the high-frequency magnetic field coupling between device electrodes.Based on the suggested parasitic equivalent circuit,through HFSS and advanced design system(ADS)co-simulation,the equivalent circuit parameters are directly extracted in the multi-step system.The HFSS simulation prediction,measurement data,and modeled frequency response are compared with each other to verify the feasibility of the extraction method and the accuracy of the equivalent circuit.The proposed model demonstrates the distributed and radio-frequency behavior of the device and solves the problem that the equivalent circuit parameters of the conventional InP HEMTs device are limited by the device model and inaccurate at high frequencies when being extracted.
基金supported by National Natural Science Foundation of China(No.61674036)
文摘A scalable wideband equivalent circuit model of silicon-based on-chip transmission lines is presented in this paper along with an efficient analytical parameter extraction method based on improved characteristic function approach,including a relevant equation to reduce the deviation caused by approximation.The model consists of both series and shunt lumped elements and accounts for high-order parasitic effects.The equivalent circuit model is derived and verified to recover the frequency-dependent parameters at a range from direct current to 50 GHz accurately.The scalability of the model is proved by comparing simulated and measured scattering parameters with the method of cascade,attaining excellent results based on samples made from CMOS 0.13 and 0.18 μm process.
基金This work was supported by Science and Technology Project of the State Grid Corporation under Grant 5455ZS150004.
文摘UHVDC converter valves during operation may experience overvoltage,which come from the AC or DC systems to which they are connected.Therefore,building an equivalent circuit model(ECM)for the converter valve to analyze the interlayer transient voltage distribution characteristics has important engineering significance for safe and reasonable voltage equalization methods and improving the stability of the DC system.This paper proposes a two-port equivalent circuit model for ±1100 kV converter valve based on the structure of the valve and parameter extraction methods presented.In terms of lumped parameters,integrated ECMs for valve layers are built through impedance-frequency characteristic analysis;in terms of parasitic capacitance parameters,port equivalent parasitic capacitance parameters are obtained by terminal capacitance method and iterative equivalence methods proposed in this paper.By combining integrated ECMs of valve layers and port equivalent parasitic capacitances,the two-port ECM is obtained.Simulations are carried out to test the effectiveness of the twoport ECM.Using the ECM,the voltage transmission characteristics and their influencing factors are analyzed,depending on which corresponding voltage equalization method is proposed in this paper,and the effect of this method is verified through simulation.
基金Project supported by the National Natural Science Foundation of China(No.61674036)
文摘An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect branch and a substrate lateral coupling branch. The parameter extraction is based on an improved characteristic function approach and vector fitting method. The model has better simulation than the previous work over the measured data of 2.5r and 4.5r on-chip inductors in the GaAs process.
文摘Intrinsic stability ofthe heterojunction bipolar transistor (HBT) was analyzed and discussed based on a small signal equivalent circuit model. The stability factor of the HBT device was derived based on a compact T-type small signal equivalent circuit model of the HBT. The effect of the mainly small signal model parameters of the HBT on the stability of the HBT was thoroughly examined. The discipline of parameter optimum to improve the intrinsic stability of the HBT was achieved. The theoretic analysis results of the stability were also used to explain the experimental results of the stability of the HBT and they were verified by the experimental results.
基金Supported by National Natural Science Foundation of China(91126003)
文摘Stabilization of the accelerating field in Drift Tube Linac(DTL) is obtained by inserting Post Couplers(PCs). On the basis of the equivalent circuit model for the DTL with and without asymmetrical PCs, stabilization is deduced quantitatively: we let δω/ω0 be the relative frequency error, then we discover that the sensitivity of field to perturbation is proportional to √δω/ω0 without PCs and to δω/ω0 with PCs. Then we adapt the circuit model of symmetrical PCs for the case of asymmetrical PCs. The circuit model shows how the slope of field distribution is changed by rotating the asymmetrical PCs and illustrates that the asymmetrical PCs have the same effect as the symmetrical ones in stabilization.
基金the financial support from National Natural Science Foundation of China(Nos.11402025,11475019,and 11702123)the National Key Laboratory of Science and Technology on Vacuum Technology&Physics(No.ZWK1608)+1 种基金the Advanced Space Propulsion Laboratory of BICEBeijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.Lab ASP-2018-03)。
文摘The industrial application of the Kaufman ion thruster in its arc stage is limited owing to the instability of the discharge pulse.Presently,a complete prediction model that can predict the discharge pulse in the high-current stage does not exist.In this study,a complete prediction model for the pulse in the ion thruster is established using the zero-dimensional plasma discharge model and equivalent circuit model.The zero-dimensional plasma discharge model is used to obtain the corresponding plasma parameters by calculating the beam current,discharge current,voltage,and gas flow under actual working conditions.The input parameters of the equivalent circuit model are calculated using empirical formulae to acquire the estimated discharge waveforms.The pulse waveforms obtained using the model are found to be consistent with the experimental results.The model is used to evaluate the process of rapid changes in plasma density.Additionally,this model is employed to predict changes in the pulse waveforms when the volume of the discharge chamber and grid plate transmittance are changed.
基金The National Natural Science Foundation of China(No.60676043)the National High Technology Research and Development Program of China(863Program)(No.2007AA04Z328)
文摘The concepts of substrate eddy influence factor and distribution-effects-occurring frequency are presented. The effects of substrate resistivity and inductor spiral length on the substrate eddy and distribution effects are captured. The substrate eddy influence factors of an inductor (6 turn, 3 060 μm in length) fabricated on low ( 1 Ω. cm) and high resistivity( 1 000 Ω.cm) silicon substrates are 0. 3 and 0. 04, and the distribution-effects- occurring frequencies are 1.8 GHz and 14. 5 GHz, respectively. The measurement results show that the equivalent circuit model of the inductor on low resistivity silicon must take into consideration substrate eddy effects and distribution effects. However, the circuit model of the inductor on high resistivity silicon cannot take into account the substrate eddy effects and the distribution effects at the frequencies of interest. Its simple model shows agreement with the measurements, and the contrast is within 7%.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100201120028)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2012JQ7026)the Fundamental Research Funds for the Central Universities of China (Grant No. 2012jdgz09)the State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No. EIPE12303)
文摘Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.
基金supported by National Natural Science Foundation of China(Grant No.61378037)the Fundamental Research Funds for the Central Universities(Nos.2013B33614,2017B15214)+1 种基金the Research Funds of Innovation and Entrepreneurship Education Reform for Chinese Universities(No.16CCJG01Z004)the Changzhou Science and Technology Program(No.CJ20160027)
文摘The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma.In this paper,a glass vacuum chamber and a pair of plate electrodes were designed and fabricated,using 13.56 MHz radio frequency(RF)discharge technology to ionize the working gas of Ar.This discharge was mathematically described with equivalent circuit model.The discharge voltage and current of the plasma were measured atdifferent pressures and different powers.Based on the capacitively coupled homogeneous discharge model,the equivalent circuit and the analytical formula were established.The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation.The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa,the average electron temperature is about 1.7–2.1 e V and the average electron density is about 0.5?×10^17–3.6?×10^17m^-3.Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.
基金National Natural Science Foundation of China(Grant No.52107229)the Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province(Grant No.20KFKT02)。
文摘Online parameter identification is essential for the accuracy of the battery equivalent circuit model(ECM).The traditional recursive least squares(RLS)method is easily biased with the noise disturbances from sensors,which degrades the modeling accuracy in practice.Meanwhile,the recursive total least squares(RTLS)method can deal with the noise interferences,but the parameter slowly converges to the reference with initial value uncertainty.To alleviate the above issues,this paper proposes a co-estimation framework utilizing the advantages of RLS and RTLS for a higher parameter identification performance of the battery ECM.RLS converges quickly by updating the parameters along the gradient of the cost function.RTLS is applied to attenuate the noise effect once the parameters have converged.Both simulation and experimental results prove that the proposed method has good accuracy,a fast convergence rate,and also robustness against noise corruption.
文摘An earlier study manipulated the Butler-Volmer equation to effectively model a lithium-ion capacitor’s (LIC) energy storage as a function of its constituent components and charge current. However, this model had several shortcomings: computed temperature values were too low, voltage was inaccurate, and the model required Warburg impedance values that were two orders of magnitude higher than experimental results. This study began by analyzing the model’s temperature and voltage computations in order to justify output values. Ultimately, these justifications failed. Therefore, in situ temperature rise was measured during charge cycles. Experimental results indicated that temperature increases minimally during a charge cycle (<1%). At high current densities (≥150 A<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>) temperature increase is negligible. After it was found that LIC temperature change is minimal during a charge cycle, the model accurately computed LIC voltage during the charge cycle and computed Warburg impedance that agreed with values derived from earlier experimental studies, even falling within the measurements’ precision error.
基金supported by the S?o Paulo Research Foundation (FAPESP) (2017/11958-1)the strategic importance of the support given by ANP (Brazil's National Oil,Natural Gas and Biofuels Agency)through the R&D levy regulation and the support from the Brazilian Coordination for the Improvement of Higher Education and Personnel (CAPES)CNPq (PQ-2 grant:Process 304442/2019-4 and UFMT STI-Server for access to their computing resources)。
文摘Lithium-oxygen batteries are a promising technology because they can greatly surpass the energy density of lithium-ion batteries.However,this theoretical characteristic has not yet been converted into a real device with high cyclability.Problems with air contamination,metallic lithium reactivity,and complex discharge and charge reactions are the main issues for this technology.A fast and reversible oxygen reduction reaction(ORR)is crucial for good performance of secondary batteries',but the partial knowledge of its mechanisms,especially when devices are concerned,hinders further development.From this perspective,the present work uses operando Raman experiments and electrochemical impedance spectroscopy(EIS)to assess the first stages of the discharge processes in porous carbon electrodes,following their changes cycle by cycle at initial operation.A growth kinetic formation of the discharge product signal(Li_(2)O_(2))was observed with operando Raman,indicating a first-order reaction and enabling an analysis by a microkinetic model.The solution mechanism in the evaluated system was ascribed for an equivalent circuit with three time constants.While the time constant for the anode interface reveals to remain relatively constant after the first discharge,its surface seemed to be more non-uniform.The model indicated that the reaction occurs at the Li_(2)O_(2) surface,decreasing the associated resistance during the initial discharge phase.Furthermore,the growth of Li_(2)O_(2) forms a hetero-phase between Li_(2)O_(2)/electrolyte,while creating a more compact and homogeneous on the Li_(2)O_(2)/cathode surface.The methodology here described thus offers a way of directly probing changes in surface chemistry evolution during cycling from a device through EIS analysis.
基金supported by the National Natural Science Foundation of China(No.11922504).
文摘Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we investigated and realized the first X-band backward traveling-wave(BTW)accelerating structure as the buncher for a VHEE facility.A method for calculating the parameters of single cell from the field distribution was introduced to simplify the design of the BTW structure.Time-domain circuit equations were applied to calculate the transient beam parameters of the buncher in the unsteady state.A prototype of the BTW structure with a thermionic cathode-diode electron gun was designed,fabricated,and tested at high power at the Tsinghua X-band high-power test stand.The structure successfully operated with 5-MW microwave pulses from the pulse compressor and outputted electron bunches with an energy of 8 MeV and a pulsed current of 108 mA.
基金supported by the Key Science and Technology Project of China Southern Power Grid Corporation:Sodium-ion Battery Energy Storage System Multi-Scenario Demonstration Application Project-Topic 2 Research on Safety Application Technology of Sodium-ion Battery Energy Storage(STKJXM 20210104)the National Natural Science Foundation of China under Grant 52307233.
文摘ABSTRACT The accurate state-of-charge(SOC)estimation of sodium-ion batteries is the basis for their efficient application.In this paper,a new SOC estimation method suitable for sodium-ion batteries and their application conditions is proposed,which considers the combination of open circuit voltage(OCV)and internal resistance correction.First,the optimal order of equivalent circuit model is analyzed and selected,and the monotonic and stable mapping relationships between OCV and SOC,as well as between ohmic internal resistance and SOC are determined.Then,a joint estimation algorithm for battery model parameters and SOC is estab-lished,and a joint SOC correction strategy based on OCV and ohmic internal resistance is established.The test results show that OCV correction is reliable when polarization is small,that the ohmic internal resistance correction is reliable when the current fluctuation is large,and that the maximum absolute error of SOC estimation of the proposed method is not more than 2.6%.
基金the National Natural Science Foundation of China(No.51575282)the Fundamental Research Funds for the Central Universities(Nos.30915118803 and 30916012101)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX200266)Nanyang Technological University and Singapore Institute of Manufacturing Technology,under the Agency for Science,Technology and Research(A*STAR,Singapore).
文摘Numerical study on dynamic hydroelastic problems is usually rather complex due to the coupling of fluid and solid mechanics.Here,we demonstrate that the performance of a hydroelastic microfluidic oscillator can be analyzed using a simple equivalent circuit model.Previous studies reveal that its transition from the steady state to the oscillation state follows the negative-differential-resistance(NDR)mechanism.The performance is mainly determined by a bias fluidic resistor,and a pressurevariant resistor which further relates to the bending stiffness of the elastic diaphragm and the depth of the oscillation chamber.In this work,a numerical study is conducted to examine the effects of key design factors on the device robustness,the applicable fluid viscosity,the flow rate,and the transition pressure.The underlying physics is interpreted,providing a new perspective on hydroelastic oscillation problems.Relevant findings also provide design guidelines of the NDR fluidic oscillator.
基金Funded by the Opening Funds of State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of Building Technology (No.BSBE2019-07)the Young Talent Support Program of Hebei Institutions of Higher Learning (No.BJ2017019)the National Natural Science Foundation of China (No.51808357)。
文摘A novel method for detecting early damage at the steel-concrete interface due to external loading based on AC impedance spectroscopy technology was proposed.Firstly,alkali pretreatment was introduced to ensure the accuracy and repeatability of the AC impedance test.Secondly,the AC impedance spectroscopy between the steel bar and concrete surface of different bonding positions was tested,and then the physical quantities reflecting the bonding damage condition were obtained by equivalent circuit fitting.Theoretical debonding position calculation and AC conductive structure analysis indicate that the change of interface resistance and interface capacitance can seize the development of bonding damage during the loading process.As the interface damage develops,obvious changes in interface resistance and interface capacitance are observed,and they cannot be recovered after unloading.