Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCa...Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.展开更多
Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts we...Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.展开更多
This study aims to explore the formation mechanism of ethyl acetate and organic acids in acid rice soup(rice-acid soup)inoculated with Kluyveromyces marxianus L1-1 through the complementary analysis of transcriptome a...This study aims to explore the formation mechanism of ethyl acetate and organic acids in acid rice soup(rice-acid soup)inoculated with Kluyveromyces marxianus L1-1 through the complementary analysis of transcriptome and proteome.The quantity of K.marxianus L1-1 varied significantly in the fermentation process of rice-acid soup and the first and third days were the two key turning points in the growth phase of K.marxianus L1-1.Importantly,the concentrations of ethyl acetate,ethanol,acetic acid,and L-lactic acid increased from day 1 to day 3.At least 4231 genes and 2937 proteins were identified and 610 differentially expressed proteins were annotated to 30 Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways based on the analysis results of transcriptome and proteome.The key genes and proteins including up-regulated alcohol dehydrogenase family,alcohol O-acetyltransferase,acetyl-CoA C-acetyltransferase,acyl-coenzyme A thioester hydrolase,and down-regulated aldehyde dehydrogenase family were involved in glycolysis/gluconeogenesis pathways,starch and sucrose metabolism pathways,amino sugar and nucleotide sugar metabolism pathways,tricarboxylic acid(TCA)cycle,and pyruvate metabolism pathways,thus promoting the formation of ethyl acetate,organic acids,alcohols,and other esters.Our results revealed the formation mechanisms of ethyl acetate and organic acids in rice-acid soup inoculated with K.marxianus L1-1.展开更多
The catalytic packing is the core component of the catalytic distillation,and how the catalyst exists in the packing has significant influence on the process.To investigate the effect of catalyst packings on the catal...The catalytic packing is the core component of the catalytic distillation,and how the catalyst exists in the packing has significant influence on the process.To investigate the effect of catalyst packings on the catalytic distillation process,the classical ethyl acetate reactive distillation system was utilized,and a supported catalytic packing(SCP)was prepared in comparison with the conventional tea-bag catalytic packing(TBP).Laboratory scale experiments showed that the ethyl acetate conversion of the SCP was superior to the TBP at a low catalyst loading.The effects of reaction kinetics,mass transfer performance and actual catalytic efficiency of the packings on this process were regarded as reasons and studied by combining the experiments and numerical simulation.Results suggested that the relatively immediate“in-situ separation”caused by the rapid reaction kinetics and better mass transfer performance of SCP may be a main reason for the difference of the conversion.展开更多
In present work,liquid phase esterification of acetic acid with ethanol over dodecatungestophosphoric acid (DTPA) supported on K10 montmorillonite was systematically studied and optimization of process parameters wa...In present work,liquid phase esterification of acetic acid with ethanol over dodecatungestophosphoric acid (DTPA) supported on K10 montmorillonite was systematically studied and optimization of process parameters was carried out.The 20% m/m DTPA/K10 was found to be the optimum catalyst with 90% acetic acid conversion and 100% ethyl acetate selectivity.The study was also explored to see the feasibility of 20% m/m DTPA/K10 as a catalyst for the alkylation of acetic acid with other alcohols like methanol,iso-propanol and n-butanol.The 20% m/m DTPA/K10 has shown increased activity with the increase in carbon number,at the same alcohol reflux.The results are novel.展开更多
Continuous homogenous azeotropic distillation(CHAD) and pressure-swing distillation(PSD) are explored to separate a minimum-boiling azeotropic system of ethyl acetate and n-hexane. The CHAD process with acetone as the...Continuous homogenous azeotropic distillation(CHAD) and pressure-swing distillation(PSD) are explored to separate a minimum-boiling azeotropic system of ethyl acetate and n-hexane. The CHAD process with acetone as the entrainer and the PSD process with the pressures of 0.1 MPa and 0.6 MPa in two columns are designed and simulated by Aspen Plus. The operating conditions of the two processes are optimized via a sequential modular approach to obtain the minimum total annual cost(TAC). The computational results show that the partially heat integrated pressure-swing distillation(HIPSD) has reduced in the energy cost and TAC by 40.79% and 35.94%, respectively, than the conventional PSD, and has more greatly reduced the energy cost and TAC by 62.61% and 49.26% respectively compared with the CHAD process. The comparison of CHAD process and partially HIPSD process illustrates that the partially HIPSD has more advantages in averting the product pollution, energy saving, and economy.展开更多
Reactive dividing wall column(RDWC) is a highly integrated unit which combines reaction distillation(RD) with dividing wall column separation technology into one shell, and it realized the chemical reaction and the se...Reactive dividing wall column(RDWC) is a highly integrated unit which combines reaction distillation(RD) with dividing wall column separation technology into one shell, and it realized the chemical reaction and the separation of multiple product fractions simultaneously. In this paper, the reaction of esterification with acetic acid and ethanol to produce ethyl acetate was used as the research system, experiments and simulations of the RDWC were carried out. This system in the traditional process mostly used the homogeneous catalyst(e.g. sulfuric acid). However, in view of the corrosion of the equipment caused by the acidity of the catalyst, we used the heterogeneous catalysts – iron exchange resins – Amberlyst15 and proposed a novel catalyst loading method. Firstly,the reliability of the model of the simulation was verified by the experimental study on the change of liquid split ratio and reflux ratio. After that, the four-column model was established in Aspen Plus to analyze the effects of the amount of azeotropic agent, reflux ratio and acetic acid concentration. Finally, for a fair comparison, the economic analysis was conducted between traditional RD column and RDWC. The results showed that RDWC can save34.7% of total operating costs and 18.5% of TAC.展开更多
Ce0.6Mn0.4O2 catalysts with different sources of manganese and Ce0.6-xZrxMn0.4O2 mixed oxide catalysts were prepared by coprecipitation method and were characterized by N2 adsorption-desorption,TPR,XRD,and XPS techniq...Ce0.6Mn0.4O2 catalysts with different sources of manganese and Ce0.6-xZrxMn0.4O2 mixed oxide catalysts were prepared by coprecipitation method and were characterized by N2 adsorption-desorption,TPR,XRD,and XPS techniques.The activities of the prepared catalysts for ethyl acetate combustion,and the effects of calcination temperature and space velocity on catalytic activity were investigated.The results showed that partial replacement of Mn(NO3)2 with KMnO4 as sources of manganese could improve activities of catalysts.Ce0.45Zr0.15Mn0.4O2 catalyst exhibited the best catalytic activity and high thermal stability,e.g.,T90 could be still below 210℃ even if space velocity was up to 20000h-1.展开更多
Catalytic treatments of VOCs at normal temperature can greatly reduce the cost and temperature of processing,and improve the safety factor in line with the requirements of green chemistry.Activated carbon fiber(ACF)wa...Catalytic treatments of VOCs at normal temperature can greatly reduce the cost and temperature of processing,and improve the safety factor in line with the requirements of green chemistry.Activated carbon fiber(ACF)was pretreated with 10%H_(2)SO_(4)by single factor optimization to increase specific surface area and pore volume obviously.The catalytic ozonation performance of ACF loaded with Au,Ag,Pt and Pd noble metals on ethyl acetate was investigated and Pd/ACF was selected as the optimal catalyst which had certain stability.Pd is uniformly distributed on the surface of ACF,and Palladium mainly exists in the form of Pd0 with a amount of Pd+2.The specific surface area of the catalysts gradually decreases as the loading increases.The activation energy of ethyl acetate calculated by Arrhenius equation is 113 kJ mol 1.With 1%Pd loading and the concentration ratio of ozone to ethyl acetate is 3:1,catalytic ozonation performance is maximized and the conversion rate of ethyl acetate reached to 60%in 3050℃Cat 15,00030,000 h^1.展开更多
In this work, a novel hollow fiber membrane extractor was set up to extract inorganic anions from ethyl acetate using deionized water. Inorganic anions in slightly soluble organic solvents can be determined by the in-...In this work, a novel hollow fiber membrane extractor was set up to extract inorganic anions from ethyl acetate using deionized water. Inorganic anions in slightly soluble organic solvents can be determined by the in-line hollow fiber membrane extractor coupled with ion chromatography at first time. Different aspects of the extraction procedure such as magnetic stirring speed, extraction flow rate and extraction time were optimized to achieve high extraction efficiency and good separation results. Satisfactory linear range, limits of detection and good repeatability were obtained. The procedure was applied to analyze inorganic anions in two commercial ethyl acetate samples.展开更多
[Objectives] To optimize the ethyl acetate impurity removal method for extracting and isolating mangiferin from mango leaves,and provide raw materials and technical support for development and use of mangiferin relate...[Objectives] To optimize the ethyl acetate impurity removal method for extracting and isolating mangiferin from mango leaves,and provide raw materials and technical support for development and use of mangiferin related products. [Methods]Five steps( material crushing→ ethyl acetate impurity removing → concentrated extract washing → extracting with methanol → crystallization and precipitation) were used.The single factor experiment and L9( 34) orthogonal experiment was carried out to optimize the process parameters including extraction time,ultrasonic power,extraction times,and extraction temperature.[Results] The optimum process of ethyl acetate impurity removal method for extracting and isolating mangiferin from mango leaves was as follows: the mango leaves were crushed and sieved; 3 m L/g of ethyl acetate was added,sealed and soaked for 4 h,ultrasonically shaken for 20 min( 50℃,350 W),filtered at room temperature,filtered with 100 mesh sieve,and extracted three times; added 100% methanol to the residue at 3 m L/g,extract by ultrasonic vibration for 20 min( 350 W,55℃)for four times,filtered with 100 mesh sieve when it was still hot; mixed the extract of each time,condensed by vacuum decompression to get the extract; added 100% methanol at 4 m L/g,mixed and washed for 5 min at room temperature,placed for 10 min,filtered with 100 mesh sieve,washed 3 times repeatedly,and dried the filter residue at 60℃ to obtain the crude mangiferin; added 100% methanol at 4 m L/g,mixed and washed at 50℃ for 5 min,placed at 6℃ for 8 h,dried the filter residue at 60℃,and repeatedly crystallized two times. According to the above process,crude and pure mangiferin products could be obtained,the purity of mangiferin of the crude product was higher than 64. 00%,the total recovery rate was 83. 90%,and the purity of mangiferin of the pure product was higher than 98. 00%,and the total recovery rate was about 66. 40%. [Conclusions] The optimized ethyl acetate impurity removal method is easy in operation,low in cost,and high in efficiency for extracting and isolating mangiferin,and can be applied for actual production of mangiferin.展开更多
The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H...The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H_2-TPR,and O_2-TPD techniques,and their catalytic activities for CO and ethyl acetate oxidation were evaluated.The results show that catalytic activities of the Cux Mny/Fe-Sep samples were higher than those of the Cu1/Fe-Sep and Mn2/Fe-Sep samples,and the Mn/Cu molar ratio had a distinct in fluence on catalytic activity of the sample.Among the Cux Mny/Fe-Sep and Cu1Mn2/Sep samples,Cu1Mn2/Fe-Sep performed the best for CO and ethyl acetate oxidation,showing the highest reaction rate and the lowest T50 and T90 of 4.4×10^(-6) mmol·g-1·s-1,110,and 140 °C for CO oxidation,and 1.9×10^(-6) mmol·g-1·s-1,170,and210 °C for ethyl acetate oxidation,respectively.Moreover,the Cu1Mn2/Fe-Sep sample possessed the best lowtemperature reducibility and the lowest temperature of oxygen desorption as well as the highest surface Mn^(4+)/Mn^(3+) and Cu^(2+)/CuO atomic ratios.It is concluded that factors,such as the strong interaction between the Cu or Mn and the Fe-Sep support,good low-temperature reducibility,and good mobility of chemisorbed oxygen species,might account for the excellent catalytic activity of Cu1Mn2/Fe-Sep.展开更多
Objective:To investigate the osteoblastogenic activity of the ethyl acetate(EtOAc)extract of Smilax glabra Roxb roots and its major active compound astilbin.Methods:Astilbin was isolated from EtOAc extract using silic...Objective:To investigate the osteoblastogenic activity of the ethyl acetate(EtOAc)extract of Smilax glabra Roxb roots and its major active compound astilbin.Methods:Astilbin was isolated from EtOAc extract using silica gel chromatography combined with fraction crystallization.Chemical structure of astilbin was determined by analysis of the spectroscopic data in comparison with the literature.MTT method was used to detect the toxicity.Alkaline phosphatase(ALP)activity was determined by the spectrophotometric method at 405 nm using p-nitrophenyl phosphate as a substrate.Calcium deposition was stained with alizarin red-S,distained with cetylpyridium chloride,and quantified at 562 nm.In silico model for astilbin-ALP interaction was analyzed using AutoDock 4.2.6.The changes in expression of osteoblast differentiation related genes were determined using quantitative real-time PCR.Results:Both the EtOAc extract and astilbin had no toxicity toward osteoblast MC3T3-E1 cells at 5.0,10,25,and 50μg/mL.At 25μg/mL,they enhanced ALP activity and mineralization of osteoblasts up to 30%and 55%for the EtOAc extract and 22%and 41%for astilbin,respectively.Molecular docking analysis of astilbin-ALP interaction revealed Arg167,Asp320,His324,and His437 were key residues participating in hydrophobic interaction;meanwhile,His434 and Thr436 residues were involved in hydrogen bond formation in the active site of human tissue-nonspecific ALP.Moreover,the expression level of genes opn,col1,osx,and runx2 were up-regulated in astilbin treated samples with the fold changes as 2.2;3.7;4.1;2.3,respectively at 10μg/mL(P<0.05).Conclusions:The EtOAc extract and its major compound astilbin exhibit osteoblastogenic activity by up-regulating important markers for bone cell differentiation.It could be a new and promising osteogenic agent with dual actions for therapeutic applications.展开更多
In this work,a strategy of"etching-modification filling-graft copolymerization"was proposed to load the acidic ionic polyionic liquid on the smooth ceramic surface.In this way,commercial ceramic Raschig ring...In this work,a strategy of"etching-modification filling-graft copolymerization"was proposed to load the acidic ionic polyionic liquid on the smooth ceramic surface.In this way,commercial ceramic Raschig rings were successfully transformed into the supported catalytic packing for the reactive distillation,and were further evaluated with esterification reaction of ethyl acetate by means of the fully mixed reactor,the ultrasonic destruction,the cyclic catalysis reaction and the lab-scale distillation column experiment.This catalyst coating has good adhesion with the substrate.It can withstand 24 h of ultrasound damage and shows good stability in three cycle catalytic experiments.This kind of coated catalyst has better catalytic activity than the commercial Amberlyst 15 dry.In the lab-scale reaction distillation,the supported catalyst Raschig ring can achieve a higher conversion in comparison with the tea bag catalytic packing of Amberlyst 15 dry under some conditions.展开更多
The residue curve maps are considered as a powerful tool for the preliminary design of reactive distillation. The residue curve maps of ethyl acetate synthesis reaction were calculated based on the pseudo-homogeneous ...The residue curve maps are considered as a powerful tool for the preliminary design of reactive distillation. The residue curve maps of ethyl acetate synthesis reaction were calculated based on the pseudo-homogeneous rate-based kinetic model and the NRTL activity coefficient model. The results show that the unstable node branch emerges from the ethyl acetate/water edge, moving toward the chemical equilibrium surface with the increase of Damkoeler value (D), and the node reaches the ternary reactive azeotrope when D-∞ eventually. Conceptual design for the ethyl acetate synthesis of reactive distillation based on the residue curve maps is presented at last.展开更多
The capability of the synthesized heteropoly complexes of rare earths {K10 [(O39W11Si) Ln(Gly)3Ln(SiW11O39)]?H2O (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy)} as the catalyst promoter in the synthesis of the ethyl acetate was ...The capability of the synthesized heteropoly complexes of rare earths {K10 [(O39W11Si) Ln(Gly)3Ln(SiW11O39)]?H2O (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy)} as the catalyst promoter in the synthesis of the ethyl acetate was studied. The results showed that the quantity of H2SO4 used for synthesizing the ethyl acetate can be reduced by 75% and the yield reached 98% at the optional condition.展开更多
Dear Editor: Pergularia daemia Forsk (Asclepiadaceae) is a perennial twining herb commonly known as veliparuthi in Tamil. The plant has anthelmintic, laxative, antidiabetic, hepatoprotective and anti-inflammatory ...Dear Editor: Pergularia daemia Forsk (Asclepiadaceae) is a perennial twining herb commonly known as veliparuthi in Tamil. The plant has anthelmintic, laxative, antidiabetic, hepatoprotective and anti-inflammatory activities. The pharmacological properties of this plant come from bioactive phytochemicals such as alkaloids, triterpenes, saponins and flavonoids. Phytochemically, the plant has been investigated for the presence of cardenolides, alkaloids, saponins and steroidal compoundst. In the present study, we developed a rapid method for identification and quantitative determination of putative phyto compounds in the crude extracts of ethyl acetate and methanol from whole plant of Pergularia daemia.展开更多
[Objectives]To explore the effects of ethyl acetate extract of Phyllanthus reticulatus leaves on autophagy-related proteins Beclin-1,ATG5 and LC3 by immunohistochemistry,and to preliminarily explore their effects on a...[Objectives]To explore the effects of ethyl acetate extract of Phyllanthus reticulatus leaves on autophagy-related proteins Beclin-1,ATG5 and LC3 by immunohistochemistry,and to preliminarily explore their effects on autophagy.[Methods]BEL-7404 Hepatocellular Carcinoma(HCC)nude mice model was established,and blank group(same volume of pure water),positive control group(20 mg/kg fluorouracil),high dose drug group(600 mg/kg),and medium dose drug group(300 mg/kg),and low dose drug group(150 mg/kg)were set up.After 2 weeks of intragastric administration,the nude mice were sacrificed,and the tumor tissues were taken out,processed by immunohistochemistry,and then made into paraffin sections.Photos were taken under an optical microscope(10×40),and evaluation and analysis were performed with the aid of the Image-Pro Plus 6.0 image analysis software.Differences were calculated using SPSS 20.0 software.The effects of drugs on autophagy-related proteins LC3,Beclin-1 and ATG5 were observed.[Results]Compared with the blank group,the medium and high dose groups of ethyl acetate extract of P.reticulatus leaves had the effect of promoting the increase of autophagy-related proteins LC3,Beclin-1 and ATG5(P<0.05).However,there was no significant difference between the low dose group of ethyl acetate extract of P.reticulatus leaves and the blank group(P>0.05).[Conclusions]The ethyl acetate extract of P.reticulatus leaves has a promoting effect on autophagy-related proteins LC3,Beclin-1,and ATG5.展开更多
The CeO_(2)-TiO_(2)@MnO_(x) catalyst was prepared by the co-precipitation method and applied to the photothermocatalysis system of ethyl acetate and NO simultaneous degradation under H_(2)O at low temperature,which in...The CeO_(2)-TiO_(2)@MnO_(x) catalyst was prepared by the co-precipitation method and applied to the photothermocatalysis system of ethyl acetate and NO simultaneous degradation under H_(2)O at low temperature,which introduced Ce into TiO_(2)@MnO_(x) hollow sptrera structure.The optimum TiO_(2)/MnO_(x) ratio and Ce introducing amount were obtained in the process.Among of them,the NO and ethyl acetate conversion percentage of TiO_(2)@MnO_(x)(n_(Mn):n_(Ti)=40:40)is 74%and 62%at 240℃,respectively.CeO_(2)-TiO_(2)@MnO_(x)(n_(Mn):n_(Ce)=1:1)exhibits the best catalytic performance,its efficiency for NO conversion is 83%and the conversion of ethyl acetate reaches 72%at 240℃.In addition,it is confirmed that the Cedoped nanocomposites have more uniform dispersion through various characterization and analysis methods.Meanwhile,these catalysts have a large specific surface area as well as a large number of surface-active oxygen and oxygen vacancies.It can further improve the catalytic performance based on the adjusted ratio of active components.Moreover,this work investigated the relationship between multi-metal interactions and catalytic performance in the presence of H_(2)O.Finally,the possible reaction pathways for the simultaneous removal of NO and ethyl acetate were explored in our system.展开更多
The catalytic oxidation of ethyl acetate(EA)was studied over CuO/CeO_(2) catalysts which were prepared by ball milling with different precursors(copper oxide,cerium acetate,cerium dioxide,copper acetate and cerium hyd...The catalytic oxidation of ethyl acetate(EA)was studied over CuO/CeO_(2) catalysts which were prepared by ball milling with different precursors(copper oxide,cerium acetate,cerium dioxide,copper acetate and cerium hydroxide).The CuO/CeO_(2) catalyst(O-A)prepared with copper oxide and cerium acetate as precursors shows very high catalytic activity that 100%EA conversion is achieved at low temperature of 220℃.It is found that specific surface area(112.8 m^(2)/g),particle size of CuO(3.5 nm)and proportion of oxygen vacancies are prominent on the O-A catalyst.Oxygen vacancies in CeO_(2)support are beneficial to enhancing the adsorption and activation of the oxygen.More finely dispersed CuO particles and oxygen vacancies which are derived from the synergistic interaction of Cu-Ce species play an important role in the catalytic oxidation of EA.展开更多
基金This work was supported financially by Korea Environment Industry&Technology Institute through Project to make multi-ministerial national biological research resources more advanced program,funded by Korea Ministry of Environment(grant number RS-2023-00230403).
文摘Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.
基金supported by the National Science Foundation of China(21776268,21721004,22108274 and 22378383)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences,(XDA 21060200)support provided by Shanxi Yanchang Petroleum(Group)Co.,Ltd.(yc-hw-2022ky-02).
文摘Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.
基金financially supported by National Natural Science Foundation of China (32060530)Guizhou University, Gui Da Te Gang He Zi (2022) 39, Technology platform and talent team plan of Guizhou. China ((2018)5251)+2 种基金Graduate Research Fund Project of Guizhou (YJSCXJH(2019]028)Industry-University-Research Cooperation Project of Guizhou (701/700465172217)China Scholarship Council (201906670006)
文摘This study aims to explore the formation mechanism of ethyl acetate and organic acids in acid rice soup(rice-acid soup)inoculated with Kluyveromyces marxianus L1-1 through the complementary analysis of transcriptome and proteome.The quantity of K.marxianus L1-1 varied significantly in the fermentation process of rice-acid soup and the first and third days were the two key turning points in the growth phase of K.marxianus L1-1.Importantly,the concentrations of ethyl acetate,ethanol,acetic acid,and L-lactic acid increased from day 1 to day 3.At least 4231 genes and 2937 proteins were identified and 610 differentially expressed proteins were annotated to 30 Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways based on the analysis results of transcriptome and proteome.The key genes and proteins including up-regulated alcohol dehydrogenase family,alcohol O-acetyltransferase,acetyl-CoA C-acetyltransferase,acyl-coenzyme A thioester hydrolase,and down-regulated aldehyde dehydrogenase family were involved in glycolysis/gluconeogenesis pathways,starch and sucrose metabolism pathways,amino sugar and nucleotide sugar metabolism pathways,tricarboxylic acid(TCA)cycle,and pyruvate metabolism pathways,thus promoting the formation of ethyl acetate,organic acids,alcohols,and other esters.Our results revealed the formation mechanisms of ethyl acetate and organic acids in rice-acid soup inoculated with K.marxianus L1-1.
基金support provided by National Natural Science Foundation of China(21978243).
文摘The catalytic packing is the core component of the catalytic distillation,and how the catalyst exists in the packing has significant influence on the process.To investigate the effect of catalyst packings on the catalytic distillation process,the classical ethyl acetate reactive distillation system was utilized,and a supported catalytic packing(SCP)was prepared in comparison with the conventional tea-bag catalytic packing(TBP).Laboratory scale experiments showed that the ethyl acetate conversion of the SCP was superior to the TBP at a low catalyst loading.The effects of reaction kinetics,mass transfer performance and actual catalytic efficiency of the packings on this process were regarded as reasons and studied by combining the experiments and numerical simulation.Results suggested that the relatively immediate“in-situ separation”caused by the rapid reaction kinetics and better mass transfer performance of SCP may be a main reason for the difference of the conversion.
文摘In present work,liquid phase esterification of acetic acid with ethanol over dodecatungestophosphoric acid (DTPA) supported on K10 montmorillonite was systematically studied and optimization of process parameters was carried out.The 20% m/m DTPA/K10 was found to be the optimum catalyst with 90% acetic acid conversion and 100% ethyl acetate selectivity.The study was also explored to see the feasibility of 20% m/m DTPA/K10 as a catalyst for the alkylation of acetic acid with other alcohols like methanol,iso-propanol and n-butanol.The 20% m/m DTPA/K10 has shown increased activity with the increase in carbon number,at the same alcohol reflux.The results are novel.
基金Supported by the Education Foundation of Chongqing(KJ1712307)the Application Technology Research and Developments Foundation of Fuling Technology Board(FLKJ,2016ABA1026)the Young Foundation of Yangtze Normal University(2015XJXM03)
文摘Continuous homogenous azeotropic distillation(CHAD) and pressure-swing distillation(PSD) are explored to separate a minimum-boiling azeotropic system of ethyl acetate and n-hexane. The CHAD process with acetone as the entrainer and the PSD process with the pressures of 0.1 MPa and 0.6 MPa in two columns are designed and simulated by Aspen Plus. The operating conditions of the two processes are optimized via a sequential modular approach to obtain the minimum total annual cost(TAC). The computational results show that the partially heat integrated pressure-swing distillation(HIPSD) has reduced in the energy cost and TAC by 40.79% and 35.94%, respectively, than the conventional PSD, and has more greatly reduced the energy cost and TAC by 62.61% and 49.26% respectively compared with the CHAD process. The comparison of CHAD process and partially HIPSD process illustrates that the partially HIPSD has more advantages in averting the product pollution, energy saving, and economy.
基金Supported by the Project funded by China Postdoctoral Science Foundation(2016M590191)the Key Basic Research Items in Application Basic Research Program of Hebei Province(16964502D)
文摘Reactive dividing wall column(RDWC) is a highly integrated unit which combines reaction distillation(RD) with dividing wall column separation technology into one shell, and it realized the chemical reaction and the separation of multiple product fractions simultaneously. In this paper, the reaction of esterification with acetic acid and ethanol to produce ethyl acetate was used as the research system, experiments and simulations of the RDWC were carried out. This system in the traditional process mostly used the homogeneous catalyst(e.g. sulfuric acid). However, in view of the corrosion of the equipment caused by the acidity of the catalyst, we used the heterogeneous catalysts – iron exchange resins – Amberlyst15 and proposed a novel catalyst loading method. Firstly,the reliability of the model of the simulation was verified by the experimental study on the change of liquid split ratio and reflux ratio. After that, the four-column model was established in Aspen Plus to analyze the effects of the amount of azeotropic agent, reflux ratio and acetic acid concentration. Finally, for a fair comparison, the economic analysis was conducted between traditional RD column and RDWC. The results showed that RDWC can save34.7% of total operating costs and 18.5% of TAC.
基金supported by the National Natural Science Foundation of China (No. 20773090)the National High Technology Research and Development Program of China (863 Program,No. 2006AA06Z347)the Youth Fund of Sichuan University (No. 2008119)
文摘Ce0.6Mn0.4O2 catalysts with different sources of manganese and Ce0.6-xZrxMn0.4O2 mixed oxide catalysts were prepared by coprecipitation method and were characterized by N2 adsorption-desorption,TPR,XRD,and XPS techniques.The activities of the prepared catalysts for ethyl acetate combustion,and the effects of calcination temperature and space velocity on catalytic activity were investigated.The results showed that partial replacement of Mn(NO3)2 with KMnO4 as sources of manganese could improve activities of catalysts.Ce0.45Zr0.15Mn0.4O2 catalyst exhibited the best catalytic activity and high thermal stability,e.g.,T90 could be still below 210℃ even if space velocity was up to 20000h-1.
基金the National Key R&D Program of the Ministry of Science and Technology,China(Grant No.2018YFC0705304)and the Key Scientific and Technological Support Projects,Tianjin City,China(Grant No.19YFZCSF01090).
文摘Catalytic treatments of VOCs at normal temperature can greatly reduce the cost and temperature of processing,and improve the safety factor in line with the requirements of green chemistry.Activated carbon fiber(ACF)was pretreated with 10%H_(2)SO_(4)by single factor optimization to increase specific surface area and pore volume obviously.The catalytic ozonation performance of ACF loaded with Au,Ag,Pt and Pd noble metals on ethyl acetate was investigated and Pd/ACF was selected as the optimal catalyst which had certain stability.Pd is uniformly distributed on the surface of ACF,and Palladium mainly exists in the form of Pd0 with a amount of Pd+2.The specific surface area of the catalysts gradually decreases as the loading increases.The activation energy of ethyl acetate calculated by Arrhenius equation is 113 kJ mol 1.With 1%Pd loading and the concentration ratio of ozone to ethyl acetate is 3:1,catalytic ozonation performance is maximized and the conversion rate of ethyl acetate reached to 60%in 3050℃Cat 15,00030,000 h^1.
基金supported by National Natural Science Foundation of China(No.20775070)by Zhejiang Provincial Natural Science Foundation of China(No.R4080124)Zhejiang Qianjiang Project of Science and Technology for Competent People(No.2008R10028).
文摘In this work, a novel hollow fiber membrane extractor was set up to extract inorganic anions from ethyl acetate using deionized water. Inorganic anions in slightly soluble organic solvents can be determined by the in-line hollow fiber membrane extractor coupled with ion chromatography at first time. Different aspects of the extraction procedure such as magnetic stirring speed, extraction flow rate and extraction time were optimized to achieve high extraction efficiency and good separation results. Satisfactory linear range, limits of detection and good repeatability were obtained. The procedure was applied to analyze inorganic anions in two commercial ethyl acetate samples.
基金Supported by Key Technological Innovation Project of Sichuan Province,China(2016XM120)
文摘[Objectives] To optimize the ethyl acetate impurity removal method for extracting and isolating mangiferin from mango leaves,and provide raw materials and technical support for development and use of mangiferin related products. [Methods]Five steps( material crushing→ ethyl acetate impurity removing → concentrated extract washing → extracting with methanol → crystallization and precipitation) were used.The single factor experiment and L9( 34) orthogonal experiment was carried out to optimize the process parameters including extraction time,ultrasonic power,extraction times,and extraction temperature.[Results] The optimum process of ethyl acetate impurity removal method for extracting and isolating mangiferin from mango leaves was as follows: the mango leaves were crushed and sieved; 3 m L/g of ethyl acetate was added,sealed and soaked for 4 h,ultrasonically shaken for 20 min( 50℃,350 W),filtered at room temperature,filtered with 100 mesh sieve,and extracted three times; added 100% methanol to the residue at 3 m L/g,extract by ultrasonic vibration for 20 min( 350 W,55℃)for four times,filtered with 100 mesh sieve when it was still hot; mixed the extract of each time,condensed by vacuum decompression to get the extract; added 100% methanol at 4 m L/g,mixed and washed for 5 min at room temperature,placed for 10 min,filtered with 100 mesh sieve,washed 3 times repeatedly,and dried the filter residue at 60℃ to obtain the crude mangiferin; added 100% methanol at 4 m L/g,mixed and washed at 50℃ for 5 min,placed at 6℃ for 8 h,dried the filter residue at 60℃,and repeatedly crystallized two times. According to the above process,crude and pure mangiferin products could be obtained,the purity of mangiferin of the crude product was higher than 64. 00%,the total recovery rate was 83. 90%,and the purity of mangiferin of the pure product was higher than 98. 00%,and the total recovery rate was about 66. 40%. [Conclusions] The optimized ethyl acetate impurity removal method is easy in operation,low in cost,and high in efficiency for extracting and isolating mangiferin,and can be applied for actual production of mangiferin.
基金Supported by the National Natural Science Foundation of China(21277008,20777005)the Natural Science Foundation of Beijing(8082008)
文摘The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H_2-TPR,and O_2-TPD techniques,and their catalytic activities for CO and ethyl acetate oxidation were evaluated.The results show that catalytic activities of the Cux Mny/Fe-Sep samples were higher than those of the Cu1/Fe-Sep and Mn2/Fe-Sep samples,and the Mn/Cu molar ratio had a distinct in fluence on catalytic activity of the sample.Among the Cux Mny/Fe-Sep and Cu1Mn2/Sep samples,Cu1Mn2/Fe-Sep performed the best for CO and ethyl acetate oxidation,showing the highest reaction rate and the lowest T50 and T90 of 4.4×10^(-6) mmol·g-1·s-1,110,and 140 °C for CO oxidation,and 1.9×10^(-6) mmol·g-1·s-1,170,and210 °C for ethyl acetate oxidation,respectively.Moreover,the Cu1Mn2/Fe-Sep sample possessed the best lowtemperature reducibility and the lowest temperature of oxygen desorption as well as the highest surface Mn^(4+)/Mn^(3+) and Cu^(2+)/CuO atomic ratios.It is concluded that factors,such as the strong interaction between the Cu or Mn and the Fe-Sep support,good low-temperature reducibility,and good mobility of chemisorbed oxygen species,might account for the excellent catalytic activity of Cu1Mn2/Fe-Sep.
基金supported by the the Vietnam Academy of Science and Technology under grant NCCC 08.10/20-20the Institute of Biotechnology under grant CS20-01。
文摘Objective:To investigate the osteoblastogenic activity of the ethyl acetate(EtOAc)extract of Smilax glabra Roxb roots and its major active compound astilbin.Methods:Astilbin was isolated from EtOAc extract using silica gel chromatography combined with fraction crystallization.Chemical structure of astilbin was determined by analysis of the spectroscopic data in comparison with the literature.MTT method was used to detect the toxicity.Alkaline phosphatase(ALP)activity was determined by the spectrophotometric method at 405 nm using p-nitrophenyl phosphate as a substrate.Calcium deposition was stained with alizarin red-S,distained with cetylpyridium chloride,and quantified at 562 nm.In silico model for astilbin-ALP interaction was analyzed using AutoDock 4.2.6.The changes in expression of osteoblast differentiation related genes were determined using quantitative real-time PCR.Results:Both the EtOAc extract and astilbin had no toxicity toward osteoblast MC3T3-E1 cells at 5.0,10,25,and 50μg/mL.At 25μg/mL,they enhanced ALP activity and mineralization of osteoblasts up to 30%and 55%for the EtOAc extract and 22%and 41%for astilbin,respectively.Molecular docking analysis of astilbin-ALP interaction revealed Arg167,Asp320,His324,and His437 were key residues participating in hydrophobic interaction;meanwhile,His434 and Thr436 residues were involved in hydrogen bond formation in the active site of human tissue-nonspecific ALP.Moreover,the expression level of genes opn,col1,osx,and runx2 were up-regulated in astilbin treated samples with the fold changes as 2.2;3.7;4.1;2.3,respectively at 10μg/mL(P<0.05).Conclusions:The EtOAc extract and its major compound astilbin exhibit osteoblastogenic activity by up-regulating important markers for bone cell differentiation.It could be a new and promising osteogenic agent with dual actions for therapeutic applications.
基金financial support provided by the National Natural Science Foundation of China(No.21978243)。
文摘In this work,a strategy of"etching-modification filling-graft copolymerization"was proposed to load the acidic ionic polyionic liquid on the smooth ceramic surface.In this way,commercial ceramic Raschig rings were successfully transformed into the supported catalytic packing for the reactive distillation,and were further evaluated with esterification reaction of ethyl acetate by means of the fully mixed reactor,the ultrasonic destruction,the cyclic catalysis reaction and the lab-scale distillation column experiment.This catalyst coating has good adhesion with the substrate.It can withstand 24 h of ultrasound damage and shows good stability in three cycle catalytic experiments.This kind of coated catalyst has better catalytic activity than the commercial Amberlyst 15 dry.In the lab-scale reaction distillation,the supported catalyst Raschig ring can achieve a higher conversion in comparison with the tea bag catalytic packing of Amberlyst 15 dry under some conditions.
基金Project(2008-XY-6) supported by the Development of Science and Technology Start-up Fund of Fuzhou University, ChinaProject(XRC-0826) supported by the Talents Fund of Fuzhou University, China
文摘The residue curve maps are considered as a powerful tool for the preliminary design of reactive distillation. The residue curve maps of ethyl acetate synthesis reaction were calculated based on the pseudo-homogeneous rate-based kinetic model and the NRTL activity coefficient model. The results show that the unstable node branch emerges from the ethyl acetate/water edge, moving toward the chemical equilibrium surface with the increase of Damkoeler value (D), and the node reaches the ternary reactive azeotrope when D-∞ eventually. Conceptual design for the ethyl acetate synthesis of reactive distillation based on the residue curve maps is presented at last.
文摘The capability of the synthesized heteropoly complexes of rare earths {K10 [(O39W11Si) Ln(Gly)3Ln(SiW11O39)]?H2O (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy)} as the catalyst promoter in the synthesis of the ethyl acetate was studied. The results showed that the quantity of H2SO4 used for synthesizing the ethyl acetate can be reduced by 75% and the yield reached 98% at the optional condition.
文摘Dear Editor: Pergularia daemia Forsk (Asclepiadaceae) is a perennial twining herb commonly known as veliparuthi in Tamil. The plant has anthelmintic, laxative, antidiabetic, hepatoprotective and anti-inflammatory activities. The pharmacological properties of this plant come from bioactive phytochemicals such as alkaloids, triterpenes, saponins and flavonoids. Phytochemically, the plant has been investigated for the presence of cardenolides, alkaloids, saponins and steroidal compoundst. In the present study, we developed a rapid method for identification and quantitative determination of putative phyto compounds in the crude extracts of ethyl acetate and methanol from whole plant of Pergularia daemia.
基金Supported by the 2018 Basic Ability Improvement Project of Young and Middle-aged Teachers in Guangxi Universities (2018KY0300xp018034)+2 种基金the Education Department of Guangxi Zhuang Autonomous Region and Guangxi University of Traditional Chinese Medicine (2019XK089)Guangxi Science and Technology Base and Talent Project (GuiKe AD20238058)the Key Laboratory of TCM Pharmacology of Guangxi University of Traditional Chinese Medicine
文摘[Objectives]To explore the effects of ethyl acetate extract of Phyllanthus reticulatus leaves on autophagy-related proteins Beclin-1,ATG5 and LC3 by immunohistochemistry,and to preliminarily explore their effects on autophagy.[Methods]BEL-7404 Hepatocellular Carcinoma(HCC)nude mice model was established,and blank group(same volume of pure water),positive control group(20 mg/kg fluorouracil),high dose drug group(600 mg/kg),and medium dose drug group(300 mg/kg),and low dose drug group(150 mg/kg)were set up.After 2 weeks of intragastric administration,the nude mice were sacrificed,and the tumor tissues were taken out,processed by immunohistochemistry,and then made into paraffin sections.Photos were taken under an optical microscope(10×40),and evaluation and analysis were performed with the aid of the Image-Pro Plus 6.0 image analysis software.Differences were calculated using SPSS 20.0 software.The effects of drugs on autophagy-related proteins LC3,Beclin-1 and ATG5 were observed.[Results]Compared with the blank group,the medium and high dose groups of ethyl acetate extract of P.reticulatus leaves had the effect of promoting the increase of autophagy-related proteins LC3,Beclin-1 and ATG5(P<0.05).However,there was no significant difference between the low dose group of ethyl acetate extract of P.reticulatus leaves and the blank group(P>0.05).[Conclusions]The ethyl acetate extract of P.reticulatus leaves has a promoting effect on autophagy-related proteins LC3,Beclin-1,and ATG5.
基金Project supported by the Foundation of Guangxi Science and Technology of Base&Talent Special Program(AD20159067)Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology(2101Z002)。
文摘The CeO_(2)-TiO_(2)@MnO_(x) catalyst was prepared by the co-precipitation method and applied to the photothermocatalysis system of ethyl acetate and NO simultaneous degradation under H_(2)O at low temperature,which introduced Ce into TiO_(2)@MnO_(x) hollow sptrera structure.The optimum TiO_(2)/MnO_(x) ratio and Ce introducing amount were obtained in the process.Among of them,the NO and ethyl acetate conversion percentage of TiO_(2)@MnO_(x)(n_(Mn):n_(Ti)=40:40)is 74%and 62%at 240℃,respectively.CeO_(2)-TiO_(2)@MnO_(x)(n_(Mn):n_(Ce)=1:1)exhibits the best catalytic performance,its efficiency for NO conversion is 83%and the conversion of ethyl acetate reaches 72%at 240℃.In addition,it is confirmed that the Cedoped nanocomposites have more uniform dispersion through various characterization and analysis methods.Meanwhile,these catalysts have a large specific surface area as well as a large number of surface-active oxygen and oxygen vacancies.It can further improve the catalytic performance based on the adjusted ratio of active components.Moreover,this work investigated the relationship between multi-metal interactions and catalytic performance in the presence of H_(2)O.Finally,the possible reaction pathways for the simultaneous removal of NO and ethyl acetate were explored in our system.
基金Project supported by the Shanghai Rising-Star Program(21QA1406600)the NSFC-Zhejiang Joint Fund for Integration of Industrialization and Diversification(U1809214)Zhoushan City Science&Technology Research Project(2019C21012).
文摘The catalytic oxidation of ethyl acetate(EA)was studied over CuO/CeO_(2) catalysts which were prepared by ball milling with different precursors(copper oxide,cerium acetate,cerium dioxide,copper acetate and cerium hydroxide).The CuO/CeO_(2) catalyst(O-A)prepared with copper oxide and cerium acetate as precursors shows very high catalytic activity that 100%EA conversion is achieved at low temperature of 220℃.It is found that specific surface area(112.8 m^(2)/g),particle size of CuO(3.5 nm)and proportion of oxygen vacancies are prominent on the O-A catalyst.Oxygen vacancies in CeO_(2)support are beneficial to enhancing the adsorption and activation of the oxygen.More finely dispersed CuO particles and oxygen vacancies which are derived from the synergistic interaction of Cu-Ce species play an important role in the catalytic oxidation of EA.