The uniaxial compression tests were conducted on the cylindrical shale specimens with bedding plane inclined at 0° and 90° to the axial loading direction, respectively. Effect of the bedding orientation on t...The uniaxial compression tests were conducted on the cylindrical shale specimens with bedding plane inclined at 0° and 90° to the axial loading direction, respectively. Effect of the bedding orientation on the mechanical property and energy evolution characteristics of shales was revealed. The failure mechanisms of the specimens with layers in 0° orientation showed splitting failure along weak bedding, while the specimens with layers in 90° orientation were failed by shearing sliding. The values of compressive strength, elastic modulus and shear modulus of samples at 0° were higher than those of samples at 90°and there was little difference of Poisson's ratio between samples at 0° and 90°. The analysis of the stress–strain energy and acoustic emission(AE) energy indicated that the growth rate of absorbed energy density and elastic energy density at 0° was significantly faster than that at 90°, hence their final values at 0°were relatively larger than the latter. Moreover, higher energy release was observed for specimens at 0°.The energy release and rapid growth of energy dissipation also appeared more early at 0°. The stress ratio63% was a critical point of energy distribution at which differences started to arise between samples at 0°and 90°. These results indicated that the failure of shale at 0° was more violent and devastative than the failure of shale at 90°.展开更多
Gangdise tectonic belt, located in the middle part of Tibet—Qinghai plateau Tethys tectonic domain, is the most representative region in Tibet—Qinghai plateau Tethyan evolution especially in Mesozoic era. It is main...Gangdise tectonic belt, located in the middle part of Tibet—Qinghai plateau Tethys tectonic domain, is the most representative region in Tibet—Qinghai plateau Tethyan evolution especially in Mesozoic era. It is mainly covered by thick Jurassic—Cretaceous system layer. During the Mesozoic to Cenozoic era, strong island\|arc types volcanism and volcanic rocks and intrusive rocks belt.. Geologists had divided the Tibet Tethyan evolution into three or four stages (Huang, Jiqing, 1987; Pan Guitang, Li Xinzheng, 1993), according to the ocean\|land conversion process of Tethyan evolution .The Tethyan evolution and the nature of Gangdise tectonic belt had been well\|studied by geologists (Huang Jiqing, 1987; Deng Wanming, 1984; Xia Daixiang, 1986; Cheng Changlun 1987; ZhouXiang 1993; Pan Guitang, 1996). Studies showed that Gangdise tectonic belt, from upper Paleozoic to Mesozoic era, had been developed alternate multiple island arc\|basin system, and characterized by many basin types and strong tectonic\|magma activity. Based on the study of Gangdise multiple island arc\|basin system, I present another version of Gangdise tectonic belt tectonic units division and evolution here.展开更多
Pancreatic cancer is one of the most devastating solid tumors, and it remains one of the most difficult to treat. The treatment of metastatic pancreatic cancer (MPC) is systemic, based on chemotherapy or best supporti...Pancreatic cancer is one of the most devastating solid tumors, and it remains one of the most difficult to treat. The treatment of metastatic pancreatic cancer (MPC) is systemic, based on chemotherapy or best supportive care, depending on the performance status of the patient. Two chemotherapeutical regimens have produced substantial benefits in the treatment of MPC: gemcitabine in 1997; and FOLFIRIONOX in 2011. FOLFIRINOX improved the natural history of MPC, with overall survival (OS) of 11.1 mo. Nab-paclitaxel associated with gemcitabine is a newly approved regimen for MPC, with a median OS of 8.6 mo. Despite multiple trials, this targeted therapy was not efficient in the treatment of MPC. Many new molecules targeting the proliferation and survival pathways, immune response, oncofetal signaling and the epigenetic changes are currently undergoing phase I and II trials for the treatment of MPC, with many promising results.展开更多
Solar hydrogen production by the photoelectrochemical method promises a means to store solar energy.While it is generally understood that the process is highly sensitive to the nature of the interface between the semi...Solar hydrogen production by the photoelectrochemical method promises a means to store solar energy.While it is generally understood that the process is highly sensitive to the nature of the interface between the semiconductor and the electrolyte,a detailed understanding of this interface is still missing.For instance,few prior studies have established a clear relationship between the interface energetics and the catalyst loading amount.Here we aim to study this relationship on a prototypical Si-based photoelectrochemical system.Two types of interfaces were examined,one with GaN nanowires as a protection layer and one without.It was found that when GaN was present,higher Pt loading (> 0.1 μg/cm2) led to not only better water reduction (and,hence,hydrogen evolution) kinetics but also more favorable interface energetics for greater photovoltages.In the absence of the protection layer,by stark contrast,increased Pt loading exhibited no measurable influence on the interface energetics,and the main difference was observed only in the hydrogen evolution kinetics.The study sheds new light on the importance of interface engineering for further improvement of photoelectrochemical systems,especially concerning the role of catalysts and protection layers.展开更多
基金supported by the National Key Basic Research Program of China (No. 2011CB201205)National Natural Science Foundation of China (No. 51204161)+1 种基金Innovation Project for Graduates in Jiangsu Province of China (No. KYLX15_1404) the Natural Science Foundation of Jiangsu Province of China (No. BK20140189)
文摘The uniaxial compression tests were conducted on the cylindrical shale specimens with bedding plane inclined at 0° and 90° to the axial loading direction, respectively. Effect of the bedding orientation on the mechanical property and energy evolution characteristics of shales was revealed. The failure mechanisms of the specimens with layers in 0° orientation showed splitting failure along weak bedding, while the specimens with layers in 90° orientation were failed by shearing sliding. The values of compressive strength, elastic modulus and shear modulus of samples at 0° were higher than those of samples at 90°and there was little difference of Poisson's ratio between samples at 0° and 90°. The analysis of the stress–strain energy and acoustic emission(AE) energy indicated that the growth rate of absorbed energy density and elastic energy density at 0° was significantly faster than that at 90°, hence their final values at 0°were relatively larger than the latter. Moreover, higher energy release was observed for specimens at 0°.The energy release and rapid growth of energy dissipation also appeared more early at 0°. The stress ratio63% was a critical point of energy distribution at which differences started to arise between samples at 0°and 90°. These results indicated that the failure of shale at 0° was more violent and devastative than the failure of shale at 90°.
文摘Gangdise tectonic belt, located in the middle part of Tibet—Qinghai plateau Tethys tectonic domain, is the most representative region in Tibet—Qinghai plateau Tethyan evolution especially in Mesozoic era. It is mainly covered by thick Jurassic—Cretaceous system layer. During the Mesozoic to Cenozoic era, strong island\|arc types volcanism and volcanic rocks and intrusive rocks belt.. Geologists had divided the Tibet Tethyan evolution into three or four stages (Huang, Jiqing, 1987; Pan Guitang, Li Xinzheng, 1993), according to the ocean\|land conversion process of Tethyan evolution .The Tethyan evolution and the nature of Gangdise tectonic belt had been well\|studied by geologists (Huang Jiqing, 1987; Deng Wanming, 1984; Xia Daixiang, 1986; Cheng Changlun 1987; ZhouXiang 1993; Pan Guitang, 1996). Studies showed that Gangdise tectonic belt, from upper Paleozoic to Mesozoic era, had been developed alternate multiple island arc\|basin system, and characterized by many basin types and strong tectonic\|magma activity. Based on the study of Gangdise multiple island arc\|basin system, I present another version of Gangdise tectonic belt tectonic units division and evolution here.
文摘Pancreatic cancer is one of the most devastating solid tumors, and it remains one of the most difficult to treat. The treatment of metastatic pancreatic cancer (MPC) is systemic, based on chemotherapy or best supportive care, depending on the performance status of the patient. Two chemotherapeutical regimens have produced substantial benefits in the treatment of MPC: gemcitabine in 1997; and FOLFIRIONOX in 2011. FOLFIRINOX improved the natural history of MPC, with overall survival (OS) of 11.1 mo. Nab-paclitaxel associated with gemcitabine is a newly approved regimen for MPC, with a median OS of 8.6 mo. Despite multiple trials, this targeted therapy was not efficient in the treatment of MPC. Many new molecules targeting the proliferation and survival pathways, immune response, oncofetal signaling and the epigenetic changes are currently undergoing phase I and II trials for the treatment of MPC, with many promising results.
文摘Solar hydrogen production by the photoelectrochemical method promises a means to store solar energy.While it is generally understood that the process is highly sensitive to the nature of the interface between the semiconductor and the electrolyte,a detailed understanding of this interface is still missing.For instance,few prior studies have established a clear relationship between the interface energetics and the catalyst loading amount.Here we aim to study this relationship on a prototypical Si-based photoelectrochemical system.Two types of interfaces were examined,one with GaN nanowires as a protection layer and one without.It was found that when GaN was present,higher Pt loading (> 0.1 μg/cm2) led to not only better water reduction (and,hence,hydrogen evolution) kinetics but also more favorable interface energetics for greater photovoltages.In the absence of the protection layer,by stark contrast,increased Pt loading exhibited no measurable influence on the interface energetics,and the main difference was observed only in the hydrogen evolution kinetics.The study sheds new light on the importance of interface engineering for further improvement of photoelectrochemical systems,especially concerning the role of catalysts and protection layers.