AIM: To investigate the autofluorescence spectroscopic differences in normal and adenomatous coionic tissues and to determine the optimal excitation wavelengths for subsequent study and clinical application. METHODS: ...AIM: To investigate the autofluorescence spectroscopic differences in normal and adenomatous coionic tissues and to determine the optimal excitation wavelengths for subsequent study and clinical application. METHODS: Normal and adenomatous coionic tissues were obtained from patients during surgery. A FL/FS920 combined TCSPC spectrofluorimeter and a lifetime spectrometer system were used for fluorescence measurement. Fluorescence excitation wavelengths varying from 260 to 540 nm were used to induce the autofluorescence spectra, and the corresponding emission spectra were recorded from a range starting 20 nm above the excitation wavelength and extending to 800 nm. Emission spectra were assembled into a three-dimensional fluorescence spectroscopy and an excitation-emission matrix (EEM) to exploit endogenous fluorophores and diagnostic information. Then emission spectra of normal and adenomatous coionic tissues at certain excitation wavelengths were compared to determine the optimal excitation wavelengths for diagnosis of coionic cancer. RESULTS: When compared to normal tissues, low NAD (P)H and FAD, but high amino acids and endogenous phorphyrins of protoporphyrin IX characterized the high-grade malignant coionic tissues. The optimal excitation wavelengths for diagnosis of coionic cancer were about 340, 380, 460, and 540 nm. CONCLUSION: Significant differences in autofluorescence peaks and its intensities can be observed in normal and adenomatous coionic tissues. Autofluorescence EEMs are able to identify coionic tissues.展开更多
The feasibility of using fluorescence excitation-emission matrix(EEM) along with parallel factor analysis(PARAFAC) and nonnegative least squares(NNLS) method for the differentiation of phytoplankton taxonomic groups w...The feasibility of using fluorescence excitation-emission matrix(EEM) along with parallel factor analysis(PARAFAC) and nonnegative least squares(NNLS) method for the differentiation of phytoplankton taxonomic groups was investigated. Forty-one phytoplankton species belonging to 28 genera of five divisions were studied. First, the PARAFAC model was applied to EEMs, and 15 fluorescence components were generated. Second, 15 fluorescence components were found to have a strong discriminating capability based on Bayesian discriminant analysis(BDA). Third, all spectra of the fluorescence component compositions for the 41 phytoplankton species were spectrographically sorted into 61 reference spectra using hierarchical cluster analysis(HCA), and then, the reference spectra were used to establish a database. Finally, the phytoplankton taxonomic groups was differentiated by the reference spectra database using the NNLS method. The five phytoplankton groups were differentiated with the correct discrimination ratios(CDRs) of 100% for single-species samples at the division level. The CDRs for the mixtures were above 91% for the dominant phytoplankton species and above 73% for the subdominant phytoplankton species. Sixteen of the 85 field samples collected from the Changjiang River estuary were analyzed by both HPLC-CHEMTAX and the fluorometric technique developed. The results of both methods reveal that Bacillariophyta was the dominant algal group in these 16 samples and that the subdominant algal groups comprised Dinophyta, Chlorophyta and Cryptophyta. The differentiation results by the fluorometric technique were in good agreement with those from HPLC-CHEMTAX. The results indicate that the fluorometric technique could differentiate algal taxonomic groups accurately at the division level.展开更多
The membrane bioreactor(MBR)technology is a rising star for wastewater treatment.The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter(DOM)in the s...The membrane bioreactor(MBR)technology is a rising star for wastewater treatment.The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter(DOM)in the system.Three-dimensional excitation-emission matrix(3D-EEM)fluorescence spectroscopy,a powerful tool for the rapid and sensitive characterization of DOM,has been extensively applied in MBR studies;however,only a limited portion of the EEM fingerprinting information was utilized.This paper revisits the principles and methods of fluorescence EEM,and reviews the recent progress in applying EEM to characterize DOM in MBR studies.We systematically introduced the information extracted from EEM by considering the fluorescence peak location/intensity,wavelength regional distribution,and spectral deconvolution(giving fluorescent component loadings/scores),and discussed how to use the information to interpret the chemical compositions,physiochemical properties,biological activities,membrane retention/fouling behaviors,and migration/transformation fates of DOM in MBR systems.In addition to conventional EEM indicators,novel fluorescent parameters are summarized for potential use,including quantum yield,Stokes shift,excited energy state,and fluorescence lifetime.The current limitations of EEM-based DOM characterization are also discussed,with possible measures proposed to improve applications in MBR monitoring.展开更多
A novel approach is proposed for direct quantitative analysis of thiabendazole in the orange extract by using excitation-emission matrix fluorescence coupled with second-order calibration methods based on the alternat...A novel approach is proposed for direct quantitative analysis of thiabendazole in the orange extract by using excitation-emission matrix fluorescence coupled with second-order calibration methods based on the alternating trilinear decomposition(ATLD) and the alternating normalization-weighted error(ANWE) algorithms,respectively. The average recoveries of thiabendazole in the orange extract by using ATLD and ANWE with an estimated component number of two were 99.7 ± 3.3% and 103.5 ± 4.1%,respectively. Furthermore,the accuracy of the two algorithms was also evaluated through elliptical joint confidence region(EJCR) tests as well as figures of merit,such as sensitivity(SEN),selectivity(SEL) and limit of detection(LOD). The experimental results demonstrate that both algorithms have been satisfactorily applied to the determination of thiabendazole in orange extract,and the perform-ance of ANWE is slightly better than that of ATLD.展开更多
The autofluorescence spectroscopy of biologi- cal tissues is a powerful tool for non-invasive detection of tissue pathologies and evaluation of any biochemical and morphological changes arising during the lesions' gr...The autofluorescence spectroscopy of biologi- cal tissues is a powerful tool for non-invasive detection of tissue pathologies and evaluation of any biochemical and morphological changes arising during the lesions' growth. To obtain a full picture of the whole set of endogenous fluorophores appearing in the gastrointestinal (GI) tumors investigated, the technique of excitation-emission matrix (EEM) development was applied in a broad spectral region, covering the ultraviolet and visible spectral ranges. We could thus address a set of diagnostically-important chromophores and their alterations during tumor develop- ment, namely, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavins, porphyrins, while hemo- globin's absorption influence on the spectra obtained could be evaluated as well. Comparisons are presented between EEM data of normal mucosae, benign polyps and malignant carcinoma, and the origins are determined of the fluorescence signals forming these matrices.展开更多
This study established back-propagation neural networks(BPNNs)for evaluating the freshness of bighead carp(Hypophthalmichthys nobilis)heads during chilled storage via fluorescence spectroscopy using an excitation-emis...This study established back-propagation neural networks(BPNNs)for evaluating the freshness of bighead carp(Hypophthalmichthys nobilis)heads during chilled storage via fluorescence spectroscopy using an excitation-emission matrix(EEM).The total volatile basic nitrogen(TVB-N)and total aerobic count(TAC)of fish increased obviously during storage at 0,4,8,12,and 16°C,while sensory scores decreased with increasing storage time.The EEM fluorescence intensity was measured,and its change was correlated with the freshness indicators of the samples.Three characteristic components of EEM data were extracted by parallel factor analysis,and two freshness indicators were used to construct the EEM-BPNNs model.The results demonstrated that the relative errors of the EEM-BPNNs model for TVB-N and TAC were less than 14%.This result indicated that the EEM-BPNNs model could determine the freshness of fish in cold chains in a rapid and nondestructive way.展开更多
The Southern Ocean is an important carbon sink pool and plays a critical role in the global carbon cycling.The Amundsen Sea was reported to be highly productive in inshore area in the Southern Ocean.In order to invest...The Southern Ocean is an important carbon sink pool and plays a critical role in the global carbon cycling.The Amundsen Sea was reported to be highly productive in inshore area in the Southern Ocean.In order to investigate the influence of transparent exopolymer particles(TEP)on the behavior of dissolved organic carbon(DOC)in this region,a comprehensive study was conducted,encompassing both open water areas and highly productive polynyas.It was found that microbial heterotrophic metabolism is the primary process responsible for the production of humic-like fluorescent components in the open ocean.The relationship between apparent oxygen utilization and the two humic-like components can be accurately described by a power-law function,with a conversion rate consistent with that observed globally.The presence of TEP was found to have little impact on this process.Additionally,the study revealed the accumulation of DOC at the sea surface in the Amundsen Sea Polynya,suggesting that TEP may play a critical role in this phenomenon.These findings contribute to a deeper understanding of the dynamics and surface accumulation of DOC in the Amundsen Sea Polynya,and provide valuable insights into the carbon cycle in this region.展开更多
Effect of ultrasonic pretreatment on sludge dewaterability was determined and the fate of extracellular polymeric substances (EPS) matrix in mesophilic anaerobic digestion after ultrasonic pretreatment was studied. ...Effect of ultrasonic pretreatment on sludge dewaterability was determined and the fate of extracellular polymeric substances (EPS) matrix in mesophilic anaerobic digestion after ultrasonic pretreatment was studied. Characteristics of proteins (PN), polysaccharides (PS), excitation-emission matrix (EEM) fluorescence spectroscopy and molecular weight (MW) distribution of dissolved organic matters (DOM) in different EPS fractions were evaluated. The results showed that after ultrasonic pretreatment, the normalized capillary suction time (CST) decreased from 44.4 to 11.1 (sec·L)/g total suspended solids (TSS) during anaerobic digestion, indicating that sludge dewaterability was greatly improved. The normalized CST was significantly correlated with PN concentration (R2 = 0.92, p 〈 0.01) and the PN/PS ratio (R2 = 0.84, p 〈 0.01) in the loosely bound EPS (LB-EPS) fraction. Meanwhile, the average MW of DOM in the LB- EPS and tightly bound EPS (TB-EPS) fractions also had a good correlation with the normalized CST (R2 〉 0.66, p 〈 0.01). According to EEM fluorescence spectroscopy, tryptophan-like substances intensities in the slime, LB-EPS and TB-EPS fractions were correlated with the normalized CST. The organic matters in the EPS matrix played an important role in influencing sludge dewaterability.展开更多
Dissolved organic matter(DOM)plays a crucial role in both the carbon cycle and geochemical cycles of other nutrient elements,which is of importance to the management and protection of the aquatic environments.To achie...Dissolved organic matter(DOM)plays a crucial role in both the carbon cycle and geochemical cycles of other nutrient elements,which is of importance to the management and protection of the aquatic environments.To achieve a more comprehensive understanding the characteristics of DOM in the Changjiang(Yangtze)River basin,water samples from four natural lakes(Xiandao,Baoan,Daye,and Qingshan)in southeastern Hubei Province in China with different eutrophication levels were collected and analyzed.The optical characteristics were analyzed using ultraviolet-visible spectrophotometry and excitation-emission matrix spectroscopy coupled with parallel factor analysis.The results show that:(1)two humic-like components(C1 and C2)and two protein-like substances(C3 and C4)of DOM were identified in all waterbodies;(2)C3 originated primarily from the degradation of microalgae and contributed substantially to humic-like components during transformation.C4 was widely present in the Changjiang River basin and its formation was related to microbial activity,rather than algal blooms or seasons.Influenced by the water mixing,the protein-like components were more likely to be transformed by microorganism,whereas humic-like components were more easily to be photobleached;(3)the concentration of DOM and the fluorescence intensity of humic-like components gradually increased with rising lake eutrophication levels.With respect to protein-like components,only C3 showed changes along the eutrophication gradients;(4)DOM showed a high affinity with permanganate index(COD Mn)and chlorophyll a(chl a)while the relationship was variable with phosphorus.This study helps us systematically understand the DOM characteristics,microbial activities,and pollutant transformation in the Changjiang River basin and provides reference to the ecological restoration of aquatic environments.展开更多
A rapid,green and highly sensitive excitation-emission matrix(EEM) fluorescence method was proposed for analysis of irinotecan(CPT-11) in biological fluids including human plasma and urine samples of uncalibrated ...A rapid,green and highly sensitive excitation-emission matrix(EEM) fluorescence method was proposed for analysis of irinotecan(CPT-11) in biological fluids including human plasma and urine samples of uncalibrated interferences with the aid of second-order advantage.Due to the serious spectral overlapping from biological matrices,the parallel factor analysis(PARAFAC) and the alternating normalization-weighted error(ANWE) have been recommended to perform directly calibration and overcome the problem which makes the traditional fluorospectrophotometer in trouble.Satisfactory results can be achieved.Furthermore, performance of the proposed method was evaluated based on figures of merit and some statistical parameters.The accuracy of both algorithms was validated by the elliptical joint confidence region(EJCR) test.The precision and repeatability were also investigated by the relative standard deviations(RSDs) of intra-day and inter-day.展开更多
Filtration and cross-flow ultrafiltration techniques were used to separate culture media of Prorocentrurn donghaiense at the exponential growth, stationary and decline stages into 〈0.45 μm filtrate, 100 kDa-0.45 μm...Filtration and cross-flow ultrafiltration techniques were used to separate culture media of Prorocentrurn donghaiense at the exponential growth, stationary and decline stages into 〈0.45 μm filtrate, 100 kDa-0.45 μm, 1%100 kDa and 1-10 kDa retentate and 〈1 kDa ultrafiltrate fractions. The fluorescence properties of different molecular weights of dissolved organic matter (DOM) were measured by excitation-emission matrix spectra. Protein-like and humic-like fluorophores were observed in the DOM produced by P. donghaiense. The central positions of protein-like fluorophores showed a red shift with prolonged growth duration, shifting from tyrosine-like properties at the exponential growth stage to tryptophan-like properties at the stationary and decline stages. The excitation wavelengths of protein-like fluorophores exhibited some change in the exponential growth and stationary stages with increased molecular size, but showed little change in the decline stage. However, the emission wavelengths in the decline stage exhibited a blue shift. Very distinct C type and A type peaks in humic-like fluorophores were observed. With a prolonged culture time, the intensities of both of the peaks became strong and the excitation wavelengths of peak A showed a red shift, while the A:C ratios fell. More than 94% of fluorescent DOM was in the lower than 1 kDa molecular weight fraction.展开更多
This study examined the dissolved organic matter(DOM) components of cow dung using a combination of fluorescence(excitation–emission matrix,EEM)spectroscopy and parallel factor(PARAFAC) modelling along with eleven tr...This study examined the dissolved organic matter(DOM) components of cow dung using a combination of fluorescence(excitation–emission matrix,EEM)spectroscopy and parallel factor(PARAFAC) modelling along with eleven trace metals using ICP-MS and nutrients(NH_4^+ and NO_3^-) using an AA3 auto analyser. EEM–PARAFAC analysis demonstrated that cow dung predominantly contained only one fluorescent DOM component with two fluorescence peaks(Ex/Em=275/311 nm and Ex/Em=220/311 nm),which could be denoted as tyrosine by comparison with its standard. Occurrence of tyrosine can be further confirmed by the FTIR spectra. Trace metals analysis revealed that Na,K and Mg were significantly higher than Ca,Fe,Mn,Zn Sr,Cu,Ni and Co. The NH_4^+ concentrations were substantially higher than NO_3^-.These results thus indicate that the dissolved components of the cow dung could be useful for better understanding its future uses in various important purposes.展开更多
Hierarchical clustering analysis and principal component analysis (PCA) methods were used to assess the similarities and dissimilarities of the entire Excitation-emission matrix spectroscopy (EEMs) data sets of sa...Hierarchical clustering analysis and principal component analysis (PCA) methods were used to assess the similarities and dissimilarities of the entire Excitation-emission matrix spectroscopy (EEMs) data sets of samples collected from Jiaozhou Bay, China. The results demonstrate that multivariate analysis facilitates the complex data treatment and spectral sorting processes, and also enhances the probability to reveal otherwise hidden information concerning the chemical characteristics of the dissolved organic matter (DOM). The distribution of different water samples as revealed by multivariate results has been used to track the movement of DOM material in the study area, and the interpretation is supported by the results obtained from the numerical simulation model of substance tracing technique, which show that the substance discharged by Haibo River can be distributed in Jiaozhou Bay.展开更多
To understand the aerosol characteristics in a regional background environment,fine-particle(PM_(2.5),n=228)samples were collected over a one-year period at the Shangdianzi(SDZ)station,which is a Global Atmospheric Wa...To understand the aerosol characteristics in a regional background environment,fine-particle(PM_(2.5),n=228)samples were collected over a one-year period at the Shangdianzi(SDZ)station,which is a Global Atmospheric Watch regional background station in North China.The chemical and optical characteristics of PM_(2.5)were analyzed,including organic carbon,elemental carbon,water-soluble organic carbon,water-soluble inorganic ions,and fluorescent components of watersoluble organic matter.The source factors of major aerosol components are apportioned,and the sources of the fluorescent chromophores are further analyzed.The major chemical components of PM_(2.5)at SDZ were NO_(3)^(-),organic matter,SO_(4)^(2-),and NH_(4)^(+).Annually,water-soluble organic carbon contributed 48%±15%to the total organic carbon.Secondary formation(52%)and fossil fuel combustion(63%)are the largest sources of water-soluble organic matter and water-insoluble organic matter,respectively.In addition,three humic-like and one protein-like matter were identified via parallel factor analysis for excitation–emission matrices.The fluorescence intensities of the components were highest in winter and lowest in summer,indicating the main impact of burning sources.This study contributes to understanding the chemical and optical characteristics of ambient aerosols in the background atmosphere.展开更多
Chromophoric dissolved organic matter(CDOM)is a key component of organic matter that contributes to the ecological functioning of lakes.The lakes in Taihu Lake Basin play an important role in maintaining regional ecol...Chromophoric dissolved organic matter(CDOM)is a key component of organic matter that contributes to the ecological functioning of lakes.The lakes in Taihu Lake Basin play an important role in maintaining regional ecological stabilities;however,the optical characteristics of the CDOM in the upstream and downstream lakes in this basin have not yet been systematically studied.Here,the optical characteristics of CDOM in ten lakes of upstream and downstream of the Taihu Lake Basin were studied using UV-Visible and excitation-emission matrix spectroscopies.Three different fluorophores consisting of two humic-like components(C1,C2)and one protein-like component(C3)were identified by parallel factor analysis.Soil or surface erosion was responsible for the higher abund-ance of C1 in the upstream lakes,and increased biological activities accounted for the higher abundance of C3 in the downstream lakes.Rainfall erosion in the wet season led to an increase in CDOM.We also found that the photodegradation and flocculation degree,which played a significant role in reducing CDOM,were higher in downstream lakes than in upstream lakes.Optical analysis of CDOM provides a promising method for monitoring water qualities(e.g.,total phosphorus and potassium permanganate index)in each lake.Re-ductions in soil or surface erosion in the upstream are needed to improve water quality.展开更多
This paper presents the possibilities offered by fluorescence spectroscopy for the identification of vegetable oils such as soybean, sunflower, flax, walnut, corn, almond, sesame, olive and pumpkin oils. The probes un...This paper presents the possibilities offered by fluorescence spectroscopy for the identification of vegetable oils such as soybean, sunflower, flax, walnut, corn, almond, sesame, olive and pumpkin oils. The probes under study have been excited with two types of sources: a laser diode (LD) and light-emitting diodes (LEDs) emitting in the UV and in the visible range. Total luminescence spectra were recorded by measuring the emission spectra in the range 350-720 nm at excitation wavelengths from 375 to 450 nm. The excitation-emission matrices have been obtained and two basic fluorescence regions in the visible have been outlined. On this basis the fluorescence spectra of the oils have been subdivided into three categories depending on the prevalence of the fluorescence maxima. The samples show differences in their fluorescence spectra. The latter fact shows that fluorescence spectroscopy can be used for the quick identification of edible oils. The fatty acid, the tocopherol, the beta-carotene and chlorophyll contents in the analyzed oils have been studied. It is shown that some of the types of oils differ significantly from each other by the first derivatives of their fluorescence spectra. There also exist color differences between the groups of vegetable oils under study.展开更多
Dissolved organic matter(DOM)in surface waters can vary markedly in character depending on seasonal variations such as rainfall intensity,UV radiations and temperature.Changes in DOM as well as temperature and rainfal...Dissolved organic matter(DOM)in surface waters can vary markedly in character depending on seasonal variations such as rainfall intensity,UV radiations and temperature.Changes in DOM as well as temperature and rainfall intensity over the year can affect the biochemical processes occurring in bank filtration(BF).Identification and characterization of DOM in the surface water could help to optimize the water treatment and provide stable and safe drinking water.This study investigated year-long variations of DOM concentrations and compositions in a surface water of a circulated outdoor pond(research facility)connected to a BF passage.DOM was dominated by humic substances and a changing pattern of DOM in surface water was observed throughout the year.A significant increase of DOM(~38%)in surface water was noted in August compared to November.The fluorescent DOM showed that DOM in summer was enriched with the degradable fraction whilst non-degradable fraction was dominated in winter.A constant(1.7±0.1 mg/L)effluent DOM was recirculated in the system throughout the year.DOM removal through BF varied between 4%to 39%and was achieved within a few meters after infiltration and significantly correlated with influent DOM concentration(R^(2)=0.82,p<0.05).However,no significant(p>0.05)change in the removal of DOM was observed in two subsurface layers(upper and lower).This study highlights the presence of a constant non-degradable DOM in the bank filtrate,which was not affected by temperature,redox conditions and UV radiations.展开更多
Dissolved organic matter(DOM) plays an essential role in many geochemical processes,however its complexity, chemical diversity, and molecular composition are poorly understood. Soil samples were collected from 500 veg...Dissolved organic matter(DOM) plays an essential role in many geochemical processes,however its complexity, chemical diversity, and molecular composition are poorly understood. Soil samples were collected from 500 vegetable fields in administrative regions of China' Mainland, of which 122 were selected for further investigation. DOM properties were characterized by three-dimensional excitation-emission matrix(3D-EEM) fuorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry(FTICRMS)(field intensity is 15 Tesla). Our results indicated that the main constituents were UVA humic-like substances, humic-like substances, fulvic acid-like substances, and tyrosine-like substances. A total of 10,989 molecular formulae with a mass range of 100.04 to 799.59 Da were detected, covering the mass spectrometric information of the soil samples from 27 different regions. CHO and CHON molecules were dominant in DOM, whereas lignin, tannins,and aromatic substances served as the main components. The results of cluster analysis revealed that the soil properties in Jiangxi Province were considerably different from those in other regions. The key backgrounds of the DOM molecular characteristics in the vegetablefield soil samples across China' Mainland were provided at the molecular level, with large abundance and great variability.展开更多
The impact of thermal remediation on soil function has drawn increasing attention.So far,as the most active fraction of soil organic matter,the evolution of dissolved organic matter(DOM)during the thermal remediation ...The impact of thermal remediation on soil function has drawn increasing attention.So far,as the most active fraction of soil organic matter,the evolution of dissolved organic matter(DOM)during the thermal remediation lacks in-depth investigation,especially for the temperatures value below 100℃.In this study,a series of soil thermal treatment experiments was conducted at 30,60,and 90℃ during a 90-d period,where soil DOM concentration increased with heating temperature and duration.The molecular weight,functional groups content and aromaticity of DOM all decreased during the thermal treatment.The excitation-emission matrices(EEM)results suggested that humic acid-like substances transformed into fulvic acid-like substances(FIII/FV increased from 0.27 to 0.44)during the heating process,and five DOM components were further identified by EEM-PARAFAC.The change of DOM structures and components indicated the decline of DOM stability and hydrophilicity,and can potentially change the bioavailability and mobility.Elevated temperature also resulted in the decline of DOM complexation ability,which may be caused by the loss of binding sites due to the decrease of polar function groups,aromatic structures and hydrophilic components.This study provides valuable information about the evolution of DOM during thermal remediation,which would potentially change the fate of metal ions and the effectiveness of the post-treatment technologies in the treated region.展开更多
A sampling campaign was conducted monthly to investigate the occurrence of N-nitrosamines at a conventional water treatment plant in one city in North China.The yield of N-nitrosamines in the treated water indicated p...A sampling campaign was conducted monthly to investigate the occurrence of N-nitrosamines at a conventional water treatment plant in one city in North China.The yield of N-nitrosamines in the treated water indicated precursors changed greatly after the source water switching.Average concentrations of N-nitrosodimethylamine(NDMA),N-nitrosomorpholine(NMOR),and N-nitrosopyrrolidine(NPYR) in the finished water were6.9,3.3,and 3.1 ng/L,respectively,from June to October when the Luan River water was used as source water,while those of NDMA,N-nitrosomethylethylamine(NMEA),and NPYR in the finished water were 10.1,4.9,and 4.7 ng/L,respectively,from November to next April when the Yellow River was used.NDMA concentration in the finished water was frequently over the 10 ng/L,i.e.,the notification level of California,USA,which indicated a considerable threat to public health.Weak correlations were observed between N-nitrosamine yield and typical water quality parameters except for the dissolved organic nitrogen.展开更多
基金Supported by the Natural Science Foundation of Fujian Province, No. A0310018 and No. 2002F008the Scientific Research Program of Fujian Province, No. JA03041
文摘AIM: To investigate the autofluorescence spectroscopic differences in normal and adenomatous coionic tissues and to determine the optimal excitation wavelengths for subsequent study and clinical application. METHODS: Normal and adenomatous coionic tissues were obtained from patients during surgery. A FL/FS920 combined TCSPC spectrofluorimeter and a lifetime spectrometer system were used for fluorescence measurement. Fluorescence excitation wavelengths varying from 260 to 540 nm were used to induce the autofluorescence spectra, and the corresponding emission spectra were recorded from a range starting 20 nm above the excitation wavelength and extending to 800 nm. Emission spectra were assembled into a three-dimensional fluorescence spectroscopy and an excitation-emission matrix (EEM) to exploit endogenous fluorophores and diagnostic information. Then emission spectra of normal and adenomatous coionic tissues at certain excitation wavelengths were compared to determine the optimal excitation wavelengths for diagnosis of coionic cancer. RESULTS: When compared to normal tissues, low NAD (P)H and FAD, but high amino acids and endogenous phorphyrins of protoporphyrin IX characterized the high-grade malignant coionic tissues. The optimal excitation wavelengths for diagnosis of coionic cancer were about 340, 380, 460, and 540 nm. CONCLUSION: Significant differences in autofluorescence peaks and its intensities can be observed in normal and adenomatous coionic tissues. Autofluorescence EEMs are able to identify coionic tissues.
基金Supported by the National Natural Science Foundation of China(Nos.41376106,41176063)the Shandong Provincial Natural Science Foundation of China(No.ZR2013DM017)
文摘The feasibility of using fluorescence excitation-emission matrix(EEM) along with parallel factor analysis(PARAFAC) and nonnegative least squares(NNLS) method for the differentiation of phytoplankton taxonomic groups was investigated. Forty-one phytoplankton species belonging to 28 genera of five divisions were studied. First, the PARAFAC model was applied to EEMs, and 15 fluorescence components were generated. Second, 15 fluorescence components were found to have a strong discriminating capability based on Bayesian discriminant analysis(BDA). Third, all spectra of the fluorescence component compositions for the 41 phytoplankton species were spectrographically sorted into 61 reference spectra using hierarchical cluster analysis(HCA), and then, the reference spectra were used to establish a database. Finally, the phytoplankton taxonomic groups was differentiated by the reference spectra database using the NNLS method. The five phytoplankton groups were differentiated with the correct discrimination ratios(CDRs) of 100% for single-species samples at the division level. The CDRs for the mixtures were above 91% for the dominant phytoplankton species and above 73% for the subdominant phytoplankton species. Sixteen of the 85 field samples collected from the Changjiang River estuary were analyzed by both HPLC-CHEMTAX and the fluorometric technique developed. The results of both methods reveal that Bacillariophyta was the dominant algal group in these 16 samples and that the subdominant algal groups comprised Dinophyta, Chlorophyta and Cryptophyta. The differentiation results by the fluorometric technique were in good agreement with those from HPLC-CHEMTAX. The results indicate that the fluorometric technique could differentiate algal taxonomic groups accurately at the division level.
基金the National Natural Science Foundation of China(No.51778599)the Beijing Natural Science Foundation(No.LI82044)+1 种基金the CAS Strategic Priority Research Programmer(A)(No.XDA20050103)the Youth Innovation Promotion Association CAS(No.110500EA62)。
文摘The membrane bioreactor(MBR)technology is a rising star for wastewater treatment.The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter(DOM)in the system.Three-dimensional excitation-emission matrix(3D-EEM)fluorescence spectroscopy,a powerful tool for the rapid and sensitive characterization of DOM,has been extensively applied in MBR studies;however,only a limited portion of the EEM fingerprinting information was utilized.This paper revisits the principles and methods of fluorescence EEM,and reviews the recent progress in applying EEM to characterize DOM in MBR studies.We systematically introduced the information extracted from EEM by considering the fluorescence peak location/intensity,wavelength regional distribution,and spectral deconvolution(giving fluorescent component loadings/scores),and discussed how to use the information to interpret the chemical compositions,physiochemical properties,biological activities,membrane retention/fouling behaviors,and migration/transformation fates of DOM in MBR systems.In addition to conventional EEM indicators,novel fluorescent parameters are summarized for potential use,including quantum yield,Stokes shift,excited energy state,and fluorescence lifetime.The current limitations of EEM-based DOM characterization are also discussed,with possible measures proposed to improve applications in MBR monitoring.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20775025 and 20435010)973 Advanced Research Project (Grant No. 2007CB- 216404)
文摘A novel approach is proposed for direct quantitative analysis of thiabendazole in the orange extract by using excitation-emission matrix fluorescence coupled with second-order calibration methods based on the alternating trilinear decomposition(ATLD) and the alternating normalization-weighted error(ANWE) algorithms,respectively. The average recoveries of thiabendazole in the orange extract by using ATLD and ANWE with an estimated component number of two were 99.7 ± 3.3% and 103.5 ± 4.1%,respectively. Furthermore,the accuracy of the two algorithms was also evaluated through elliptical joint confidence region(EJCR) tests as well as figures of merit,such as sensitivity(SEN),selectivity(SEL) and limit of detection(LOD). The experimental results demonstrate that both algorithms have been satisfactorily applied to the determination of thiabendazole in orange extract,and the perform-ance of ANWE is slightly better than that of ATLD.
文摘The autofluorescence spectroscopy of biologi- cal tissues is a powerful tool for non-invasive detection of tissue pathologies and evaluation of any biochemical and morphological changes arising during the lesions' growth. To obtain a full picture of the whole set of endogenous fluorophores appearing in the gastrointestinal (GI) tumors investigated, the technique of excitation-emission matrix (EEM) development was applied in a broad spectral region, covering the ultraviolet and visible spectral ranges. We could thus address a set of diagnostically-important chromophores and their alterations during tumor develop- ment, namely, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavins, porphyrins, while hemo- globin's absorption influence on the spectra obtained could be evaluated as well. Comparisons are presented between EEM data of normal mucosae, benign polyps and malignant carcinoma, and the origins are determined of the fluorescence signals forming these matrices.
基金This study was supported by the Young Beijing Scholars Program and Beijing Agricultural Forestry Academy Foundation(QNJJ202218).
文摘This study established back-propagation neural networks(BPNNs)for evaluating the freshness of bighead carp(Hypophthalmichthys nobilis)heads during chilled storage via fluorescence spectroscopy using an excitation-emission matrix(EEM).The total volatile basic nitrogen(TVB-N)and total aerobic count(TAC)of fish increased obviously during storage at 0,4,8,12,and 16°C,while sensory scores decreased with increasing storage time.The EEM fluorescence intensity was measured,and its change was correlated with the freshness indicators of the samples.Three characteristic components of EEM data were extracted by parallel factor analysis,and two freshness indicators were used to construct the EEM-BPNNs model.The results demonstrated that the relative errors of the EEM-BPNNs model for TVB-N and TAC were less than 14%.This result indicated that the EEM-BPNNs model could determine the freshness of fish in cold chains in a rapid and nondestructive way.
基金funded by the National Natural Science Foundation of China(Grant nos.42276255 and 41976227)project“Impact and Response of Antarctic Seas to Climate Change,IRASCC 2020-2022”(Grant nos.01-01-02A and 02-02-05).
文摘The Southern Ocean is an important carbon sink pool and plays a critical role in the global carbon cycling.The Amundsen Sea was reported to be highly productive in inshore area in the Southern Ocean.In order to investigate the influence of transparent exopolymer particles(TEP)on the behavior of dissolved organic carbon(DOC)in this region,a comprehensive study was conducted,encompassing both open water areas and highly productive polynyas.It was found that microbial heterotrophic metabolism is the primary process responsible for the production of humic-like fluorescent components in the open ocean.The relationship between apparent oxygen utilization and the two humic-like components can be accurately described by a power-law function,with a conversion rate consistent with that observed globally.The presence of TEP was found to have little impact on this process.Additionally,the study revealed the accumulation of DOC at the sea surface in the Amundsen Sea Polynya,suggesting that TEP may play a critical role in this phenomenon.These findings contribute to a deeper understanding of the dynamics and surface accumulation of DOC in the Amundsen Sea Polynya,and provide valuable insights into the carbon cycle in this region.
基金supported by the National Natural Science Foundation of China (No. 20977066)the National Key Project for Water Pollution Control (No.2008ZX07316-002, 2008ZX07317-003)the Specialized Research Found for Doctoral Program of Higher Education of China (No. 200802470029)
文摘Effect of ultrasonic pretreatment on sludge dewaterability was determined and the fate of extracellular polymeric substances (EPS) matrix in mesophilic anaerobic digestion after ultrasonic pretreatment was studied. Characteristics of proteins (PN), polysaccharides (PS), excitation-emission matrix (EEM) fluorescence spectroscopy and molecular weight (MW) distribution of dissolved organic matters (DOM) in different EPS fractions were evaluated. The results showed that after ultrasonic pretreatment, the normalized capillary suction time (CST) decreased from 44.4 to 11.1 (sec·L)/g total suspended solids (TSS) during anaerobic digestion, indicating that sludge dewaterability was greatly improved. The normalized CST was significantly correlated with PN concentration (R2 = 0.92, p 〈 0.01) and the PN/PS ratio (R2 = 0.84, p 〈 0.01) in the loosely bound EPS (LB-EPS) fraction. Meanwhile, the average MW of DOM in the LB- EPS and tightly bound EPS (TB-EPS) fractions also had a good correlation with the normalized CST (R2 〉 0.66, p 〈 0.01). According to EEM fluorescence spectroscopy, tryptophan-like substances intensities in the slime, LB-EPS and TB-EPS fractions were correlated with the normalized CST. The organic matters in the EPS matrix played an important role in influencing sludge dewaterability.
基金Supported by the Science and Technology Research Project of Education Department of Hubei Province(Nos.Q20182502,D20152503)the Innovation Team Project of HBNU of Heavy Metal Pollution Mechanism and Ecological Restoration for Lake-Catchment System,Youth Project of Hubei Natural Science Foundation(No.2018CFB321)the Hubei Undergraduate Training Program for Innovation and Entrepreneurship(No.S201910513001)。
文摘Dissolved organic matter(DOM)plays a crucial role in both the carbon cycle and geochemical cycles of other nutrient elements,which is of importance to the management and protection of the aquatic environments.To achieve a more comprehensive understanding the characteristics of DOM in the Changjiang(Yangtze)River basin,water samples from four natural lakes(Xiandao,Baoan,Daye,and Qingshan)in southeastern Hubei Province in China with different eutrophication levels were collected and analyzed.The optical characteristics were analyzed using ultraviolet-visible spectrophotometry and excitation-emission matrix spectroscopy coupled with parallel factor analysis.The results show that:(1)two humic-like components(C1 and C2)and two protein-like substances(C3 and C4)of DOM were identified in all waterbodies;(2)C3 originated primarily from the degradation of microalgae and contributed substantially to humic-like components during transformation.C4 was widely present in the Changjiang River basin and its formation was related to microbial activity,rather than algal blooms or seasons.Influenced by the water mixing,the protein-like components were more likely to be transformed by microorganism,whereas humic-like components were more easily to be photobleached;(3)the concentration of DOM and the fluorescence intensity of humic-like components gradually increased with rising lake eutrophication levels.With respect to protein-like components,only C3 showed changes along the eutrophication gradients;(4)DOM showed a high affinity with permanganate index(COD Mn)and chlorophyll a(chl a)while the relationship was variable with phosphorus.This study helps us systematically understand the DOM characteristics,microbial activities,and pollutant transformation in the Changjiang River basin and provides reference to the ecological restoration of aquatic environments.
基金supported by The National Natural Science Foundation of China(No.20775025)The National Basic Research Program(No.2007CB216404) as well as PCSIRT.
文摘A rapid,green and highly sensitive excitation-emission matrix(EEM) fluorescence method was proposed for analysis of irinotecan(CPT-11) in biological fluids including human plasma and urine samples of uncalibrated interferences with the aid of second-order advantage.Due to the serious spectral overlapping from biological matrices,the parallel factor analysis(PARAFAC) and the alternating normalization-weighted error(ANWE) have been recommended to perform directly calibration and overcome the problem which makes the traditional fluorospectrophotometer in trouble.Satisfactory results can be achieved.Furthermore, performance of the proposed method was evaluated based on figures of merit and some statistical parameters.The accuracy of both algorithms was validated by the elliptical joint confidence region(EJCR) test.The precision and repeatability were also investigated by the relative standard deviations(RSDs) of intra-day and inter-day.
基金Supported by the High Technology Research and Development Program of China (863 Program) (Nos 2006AA09Z180 and 2004AA639790)the National Natural Science Foundation of China (No 40106013)the National Basic Research Program of China (973 Program) (No 2001CB409703)
文摘Filtration and cross-flow ultrafiltration techniques were used to separate culture media of Prorocentrurn donghaiense at the exponential growth, stationary and decline stages into 〈0.45 μm filtrate, 100 kDa-0.45 μm, 1%100 kDa and 1-10 kDa retentate and 〈1 kDa ultrafiltrate fractions. The fluorescence properties of different molecular weights of dissolved organic matter (DOM) were measured by excitation-emission matrix spectra. Protein-like and humic-like fluorophores were observed in the DOM produced by P. donghaiense. The central positions of protein-like fluorophores showed a red shift with prolonged growth duration, shifting from tyrosine-like properties at the exponential growth stage to tryptophan-like properties at the stationary and decline stages. The excitation wavelengths of protein-like fluorophores exhibited some change in the exponential growth and stationary stages with increased molecular size, but showed little change in the decline stage. However, the emission wavelengths in the decline stage exhibited a blue shift. Very distinct C type and A type peaks in humic-like fluorophores were observed. With a prolonged culture time, the intensities of both of the peaks became strong and the excitation wavelengths of peak A showed a red shift, while the A:C ratios fell. More than 94% of fluorescent DOM was in the lower than 1 kDa molecular weight fraction.
基金financially supported by the Key Construction Program of the National 985 Project,Tianjin University,Chinathe National Key R and D Program of China (2016YFA0601000)
文摘This study examined the dissolved organic matter(DOM) components of cow dung using a combination of fluorescence(excitation–emission matrix,EEM)spectroscopy and parallel factor(PARAFAC) modelling along with eleven trace metals using ICP-MS and nutrients(NH_4^+ and NO_3^-) using an AA3 auto analyser. EEM–PARAFAC analysis demonstrated that cow dung predominantly contained only one fluorescent DOM component with two fluorescence peaks(Ex/Em=275/311 nm and Ex/Em=220/311 nm),which could be denoted as tyrosine by comparison with its standard. Occurrence of tyrosine can be further confirmed by the FTIR spectra. Trace metals analysis revealed that Na,K and Mg were significantly higher than Ca,Fe,Mn,Zn Sr,Cu,Ni and Co. The NH_4^+ concentrations were substantially higher than NO_3^-.These results thus indicate that the dissolved components of the cow dung could be useful for better understanding its future uses in various important purposes.
基金supported by the National High-tech Research Project ("863" Project) of China under contract Nos 2003AA635180 and 2006AA09Z167the Public Welfare Project of Marine Science Research under contract No 200705011the open project of Key Laboratory of Integrated Marine Monitoring and Applied Technologies for Harmful Algal Blooms,SOA, China under contract No200811
文摘Hierarchical clustering analysis and principal component analysis (PCA) methods were used to assess the similarities and dissimilarities of the entire Excitation-emission matrix spectroscopy (EEMs) data sets of samples collected from Jiaozhou Bay, China. The results demonstrate that multivariate analysis facilitates the complex data treatment and spectral sorting processes, and also enhances the probability to reveal otherwise hidden information concerning the chemical characteristics of the dissolved organic matter (DOM). The distribution of different water samples as revealed by multivariate results has been used to track the movement of DOM material in the study area, and the interpretation is supported by the results obtained from the numerical simulation model of substance tracing technique, which show that the substance discharged by Haibo River can be distributed in Jiaozhou Bay.
基金supported by the National Natural Science Foundation of China(Grant Nos.42130513 and 41625014)the National Key Research and Development Program of China(Grant No.2019YFA0606801)。
文摘To understand the aerosol characteristics in a regional background environment,fine-particle(PM_(2.5),n=228)samples were collected over a one-year period at the Shangdianzi(SDZ)station,which is a Global Atmospheric Watch regional background station in North China.The chemical and optical characteristics of PM_(2.5)were analyzed,including organic carbon,elemental carbon,water-soluble organic carbon,water-soluble inorganic ions,and fluorescent components of watersoluble organic matter.The source factors of major aerosol components are apportioned,and the sources of the fluorescent chromophores are further analyzed.The major chemical components of PM_(2.5)at SDZ were NO_(3)^(-),organic matter,SO_(4)^(2-),and NH_(4)^(+).Annually,water-soluble organic carbon contributed 48%±15%to the total organic carbon.Secondary formation(52%)and fossil fuel combustion(63%)are the largest sources of water-soluble organic matter and water-insoluble organic matter,respectively.In addition,three humic-like and one protein-like matter were identified via parallel factor analysis for excitation–emission matrices.The fluorescence intensities of the components were highest in winter and lowest in summer,indicating the main impact of burning sources.This study contributes to understanding the chemical and optical characteristics of ambient aerosols in the background atmosphere.
基金Under the auspices of the Science and Technology Research Project of Education Department of Hubei Province(No.Q20182502,No.D20152503)Innovation Team Project of HBNU of Heavy Metal Pollution Mechanism and Ecological Restoration for Lake-Catchment System(No.2019CZ014)。
文摘Chromophoric dissolved organic matter(CDOM)is a key component of organic matter that contributes to the ecological functioning of lakes.The lakes in Taihu Lake Basin play an important role in maintaining regional ecological stabilities;however,the optical characteristics of the CDOM in the upstream and downstream lakes in this basin have not yet been systematically studied.Here,the optical characteristics of CDOM in ten lakes of upstream and downstream of the Taihu Lake Basin were studied using UV-Visible and excitation-emission matrix spectroscopies.Three different fluorophores consisting of two humic-like components(C1,C2)and one protein-like component(C3)were identified by parallel factor analysis.Soil or surface erosion was responsible for the higher abund-ance of C1 in the upstream lakes,and increased biological activities accounted for the higher abundance of C3 in the downstream lakes.Rainfall erosion in the wet season led to an increase in CDOM.We also found that the photodegradation and flocculation degree,which played a significant role in reducing CDOM,were higher in downstream lakes than in upstream lakes.Optical analysis of CDOM provides a promising method for monitoring water qualities(e.g.,total phosphorus and potassium permanganate index)in each lake.Re-ductions in soil or surface erosion in the upstream are needed to improve water quality.
文摘This paper presents the possibilities offered by fluorescence spectroscopy for the identification of vegetable oils such as soybean, sunflower, flax, walnut, corn, almond, sesame, olive and pumpkin oils. The probes under study have been excited with two types of sources: a laser diode (LD) and light-emitting diodes (LEDs) emitting in the UV and in the visible range. Total luminescence spectra were recorded by measuring the emission spectra in the range 350-720 nm at excitation wavelengths from 375 to 450 nm. The excitation-emission matrices have been obtained and two basic fluorescence regions in the visible have been outlined. On this basis the fluorescence spectra of the oils have been subdivided into three categories depending on the prevalence of the fluorescence maxima. The samples show differences in their fluorescence spectra. The latter fact shows that fluorescence spectroscopy can be used for the quick identification of edible oils. The fatty acid, the tocopherol, the beta-carotene and chlorophyll contents in the analyzed oils have been studied. It is shown that some of the types of oils differ significantly from each other by the first derivatives of their fluorescence spectra. There also exist color differences between the groups of vegetable oils under study.
基金supported by the German Academic Exchange Service (DAAD)and Higher Education Commission (HEC),Pakistan。
文摘Dissolved organic matter(DOM)in surface waters can vary markedly in character depending on seasonal variations such as rainfall intensity,UV radiations and temperature.Changes in DOM as well as temperature and rainfall intensity over the year can affect the biochemical processes occurring in bank filtration(BF).Identification and characterization of DOM in the surface water could help to optimize the water treatment and provide stable and safe drinking water.This study investigated year-long variations of DOM concentrations and compositions in a surface water of a circulated outdoor pond(research facility)connected to a BF passage.DOM was dominated by humic substances and a changing pattern of DOM in surface water was observed throughout the year.A significant increase of DOM(~38%)in surface water was noted in August compared to November.The fluorescent DOM showed that DOM in summer was enriched with the degradable fraction whilst non-degradable fraction was dominated in winter.A constant(1.7±0.1 mg/L)effluent DOM was recirculated in the system throughout the year.DOM removal through BF varied between 4%to 39%and was achieved within a few meters after infiltration and significantly correlated with influent DOM concentration(R^(2)=0.82,p<0.05).However,no significant(p>0.05)change in the removal of DOM was observed in two subsurface layers(upper and lower).This study highlights the presence of a constant non-degradable DOM in the bank filtrate,which was not affected by temperature,redox conditions and UV radiations.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP,No.2019QZKK0304)the Fundamental Research Funds for the Central Universities (No.E2EG0502×2)the Natural Science Foundation Committee of China (No.41991310)。
文摘Dissolved organic matter(DOM) plays an essential role in many geochemical processes,however its complexity, chemical diversity, and molecular composition are poorly understood. Soil samples were collected from 500 vegetable fields in administrative regions of China' Mainland, of which 122 were selected for further investigation. DOM properties were characterized by three-dimensional excitation-emission matrix(3D-EEM) fuorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry(FTICRMS)(field intensity is 15 Tesla). Our results indicated that the main constituents were UVA humic-like substances, humic-like substances, fulvic acid-like substances, and tyrosine-like substances. A total of 10,989 molecular formulae with a mass range of 100.04 to 799.59 Da were detected, covering the mass spectrometric information of the soil samples from 27 different regions. CHO and CHON molecules were dominant in DOM, whereas lignin, tannins,and aromatic substances served as the main components. The results of cluster analysis revealed that the soil properties in Jiangxi Province were considerably different from those in other regions. The key backgrounds of the DOM molecular characteristics in the vegetablefield soil samples across China' Mainland were provided at the molecular level, with large abundance and great variability.
基金supported by the National Natural Science Foundation of China(No.42077171).
文摘The impact of thermal remediation on soil function has drawn increasing attention.So far,as the most active fraction of soil organic matter,the evolution of dissolved organic matter(DOM)during the thermal remediation lacks in-depth investigation,especially for the temperatures value below 100℃.In this study,a series of soil thermal treatment experiments was conducted at 30,60,and 90℃ during a 90-d period,where soil DOM concentration increased with heating temperature and duration.The molecular weight,functional groups content and aromaticity of DOM all decreased during the thermal treatment.The excitation-emission matrices(EEM)results suggested that humic acid-like substances transformed into fulvic acid-like substances(FIII/FV increased from 0.27 to 0.44)during the heating process,and five DOM components were further identified by EEM-PARAFAC.The change of DOM structures and components indicated the decline of DOM stability and hydrophilicity,and can potentially change the bioavailability and mobility.Elevated temperature also resulted in the decline of DOM complexation ability,which may be caused by the loss of binding sites due to the decrease of polar function groups,aromatic structures and hydrophilic components.This study provides valuable information about the evolution of DOM during thermal remediation,which would potentially change the fate of metal ions and the effectiveness of the post-treatment technologies in the treated region.
基金supported by the National Natural Science Foundation of China (Nos.51290284 and 21477059)the Tsinghua University Initiative Scientific Research Program (No.20131089247)
文摘A sampling campaign was conducted monthly to investigate the occurrence of N-nitrosamines at a conventional water treatment plant in one city in North China.The yield of N-nitrosamines in the treated water indicated precursors changed greatly after the source water switching.Average concentrations of N-nitrosodimethylamine(NDMA),N-nitrosomorpholine(NMOR),and N-nitrosopyrrolidine(NPYR) in the finished water were6.9,3.3,and 3.1 ng/L,respectively,from June to October when the Luan River water was used as source water,while those of NDMA,N-nitrosomethylethylamine(NMEA),and NPYR in the finished water were 10.1,4.9,and 4.7 ng/L,respectively,from November to next April when the Yellow River was used.NDMA concentration in the finished water was frequently over the 10 ng/L,i.e.,the notification level of California,USA,which indicated a considerable threat to public health.Weak correlations were observed between N-nitrosamine yield and typical water quality parameters except for the dissolved organic nitrogen.