期刊文献+

二次检索

题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息

年份

学科

共找到14篇文章
< 1 >
每页显示 20 50 100
Reduced exciton binding energy and diverse molecular stacking enable high-performance organic solar cells with V_(OC)over 1.1 V
1
作者 Tingting Dai Jiahao Lu +4 位作者 Ailing Tang Yuhan Meng Peiqing Cong Zongtao Wang Erjun Zhou 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第9期3140-3152,共13页
High-voltage organic solar cells(OSCs)have received increasing attention because of their promising applications in tandem devices and indoor photovoltaics,but the trade-off between energy loss and charge generation i... High-voltage organic solar cells(OSCs)have received increasing attention because of their promising applications in tandem devices and indoor photovoltaics,but the trade-off between energy loss and charge generation induced by exciton binding energy(E_(b))has become one of the biggest bottlenecks limiting the development of this field.Here,a wide bandgap(WBG)nonfullerene acceptor BTA503 with reduced E_(b) is designed by changing the phenyl side chain on the central core of Cl-BTA5 to an alkyl chain.The diverseπ-πinteractions and enhanced molecular stacking of BTA503 are responsible for its reduced E_(b).Furthermore,both the diminished charge recombination and the fast exciton dissociation caused by the small E_(b) favor the generation of more charge carriers for the PTQ10:BTA503 combination.The efficient Forster resonance energy transfer(FRET)and multiple π-π stacking patterns provide additional charge transfer and transport pathways.Ultimately,the PTQ10:BTA503-based OSC device achieves a V_(OC)of 1.112 V and a PCE of 12.70%,which is higher than that of PTQ10:Cl-BTA5(PCE=10.92%).Simultaneously,the thick film(~300 nm)binary device of PTQ10:BTA503 achieves a PCE of 10.13% with a V_(OC)of 1.102 V,which is the best result for thick film high-voltage OSCs.More importantly,the ternary device of PTQ10:BTA503:Cl-BTA5(1:0.9:0.1)realizes a champion PCE of 13.12% with a V_(OC)of 1.126 V.Our study demonstrates that it is an effective strategy to reduce E_(b) of A_(2)-A_(1)-D-A_(1)-A_(2) type WBG acceptors by modulating the side chains on D unit,which further favors the corresponding devices to obtain world-record PCE and improves their potential for commercial applications. 展开更多
关键词 exciton binding energy intermolecular interaction wide-bandgap acceptor high V_(OC) organic solar cells
原文传递
Tuning the exciton binding energy of covalent organic frameworks for efficient photocatalysis
2
作者 Zhangjie Gu Zhen Shan +6 位作者 Yulan Wang Jinjian Wang Tongtong Liu Xiaoming Li Zhiyang Yu Jian Su Gen Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期577-583,共7页
Owing to the large exciton binding energy(>100 meV)of most organic materials,the process of exciton dissociation into free electrons and holes is seriously hindered,which plays a key role in the photocatalytic syst... Owing to the large exciton binding energy(>100 meV)of most organic materials,the process of exciton dissociation into free electrons and holes is seriously hindered,which plays a key role in the photocatalytic system.In this study,a series of chalcogen(S,Se)-substituted mesoporous covalent organic frameworks(COFs)have been synthesized for enhanced photocatalytic organic transformations.Photoelectrochemical measurements indicate that the introduction of semi-metallic Se atom and the enlargement of conjugation degree can not only reduce the exciton binding energy accelerating the charge separation,but also reduce the band gap of COFs.As a result,the COF-NUST-36 with the lowest exciton binding energy(39.5 meV)shows the highest photocatalytic performance for selective oxidation of amines(up to 98%Conv.and 97.5%Sel.).This work provides a feasible method for designing COFs with high photocatalytic activity by adjusting exciton binding energy. 展开更多
关键词 Covalent organic frameworks exciton binding energy Atom substitution Extended conjugation PHOTOCATALYSIS
原文传递
Steric hindrance induced low exciton binding energy enables low-driving-force organic solar cells
3
作者 Tianyu Hu Xufan Zheng +10 位作者 Ting Wang Aziz Saparbaev Bowen Gao Jingnan Wu Jingyi Xiong Ming Wan Tingting Cong Yuda Li Ergang Wang Xunchang Wang Renqiang Yang 《Aggregate》 EI CAS 2024年第5期501-511,共11页
Exciton binding energy(E_(b))has been regarded as a critical parameter in charge separation during photovoltaic conversion.Minimizing the E_(b) of the photovoltaic materials can facilitate the exciton dissociation in ... Exciton binding energy(E_(b))has been regarded as a critical parameter in charge separation during photovoltaic conversion.Minimizing the E_(b) of the photovoltaic materials can facilitate the exciton dissociation in low-driving force organic solar cells(OSCs)and thus improve the power conversion efficiency(PCE);nevertheless,diminishing the E_(b) with deliberate design principles remains a significant challenge.Herein,bulky side chain as steric hindrance structure was inserted into Y-series acceptors to minimize the E_(b) by modulating the intra-and intermolecular interaction.Theoretical and experimental results indicate that steric hindrance-induced optimal intra-and intermolecular interaction can enhance molecular polarizability,promote electronic orbital overlap between molecules,and facilitate delocalized charge trans-fer pathways,thereby resulting in a low E_(b).The conspicuously reduced E_(b) obtained in Y-ChC5 with pinpoint steric hindrance modulation can minimize the detrimental effects on exciton dissociation in low-driving-force OSCs,achieving a remarkable PCE of 19.1%with over 95%internal quantum efficiency.Our study provides a new molecular design rationale to reduce the E_(b). 展开更多
关键词 exciton binding energy exciton dissociation organic solar cells steric hindrance
原文传递
Thermally-enhanced photo-electric response of an organic semiconductor with low exciton binding energy for simultaneous and distinguishable detection of light and temperature
4
作者 Yongxu Hu Li Yu +9 位作者 Yinan Huang Zhongwu Wang Shuguang Wang Xiaosong Chen Deyang Ji Huanli Dong Jie Li Yajing Sun Liqiang Li Wenping Hu 《Science China Chemistry》 SCIE EI CSCD 2022年第1期145-152,共8页
Simultaneous and distinguishable detection of external stimuli such as light and temperature is of great interest for a variety of scientific and industrial applications.Theoretically,an organic semiconductor with low... Simultaneous and distinguishable detection of external stimuli such as light and temperature is of great interest for a variety of scientific and industrial applications.Theoretically,an organic semiconductor with low exciton binding energy,low thermal activation energy and good charge transporting property produces thermally enhanced photo-electric response in organic phototransistors(OPTs),which thus provides an ideal and effective way to realize the simultaneous and distinguishable detection of temperature and light.However,there is no report on such a kind of organic semiconductor until now.Herein,we designed and synthesized a narrow band gap organic small molecule semiconductor 2,5-bis(2-butyloctyl)-3,6-bis(5-(4-(diphenylamino)phenyl)thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione(DPP-T-TPA)with low exciton binding energy(about 37 meV)and small activation energy(about 61 meV)for distinct thermal-dependence of charge carrier and exciton.The low exciton binding energy enables the semiconductor to exhibit strong thermal dependence of exciton dissociation,which contributes to the thermally-enhanced photo-electric response.Furthermore,the low thermal activation energy produces the weak thermal dependence of charge transport,which avoids the disturbance of thermally-modulated charge transport on photo-electric response.Benefiting from these two features,phototransistors based on DPP-T-TPA show great potential in simultaneous and distinguishable detection of light and temperature,which represents a novel and efficient way for bifunctional detection. 展开更多
关键词 PHOTOTRANSISTOR thermally activated photo-electric response exciton binding energy thermal activation energy
原文传递
Dielectric confinement on exciton binding energy and nonlinear optical properties in a strained Zn_(1-x_(in))Mg_(x(in))Se/Zn_(1-x(out))Mg_(x(out))Se quantum well
5
作者 J.Abraham Hudson Mark A.John Peter 《Journal of Semiconductors》 EI CAS CSCD 2012年第9期1-7,共7页
The band offsets for a Zn1-xin Mgxin Se/Zn1-xout Mgxout Se quantum well heterostructure are determined using the model solid theory. The heavy hole exciton binding energies are investigated with various Mg alloy conte... The band offsets for a Zn1-xin Mgxin Se/Zn1-xout Mgxout Se quantum well heterostructure are determined using the model solid theory. The heavy hole exciton binding energies are investigated with various Mg alloy contents. The effect of mismatch between the dielectric constants between the well and the barrier is taken into account. The dependence of the excitonic transition energies on the geometrical confinement and the Mg alloy is discussed. Non-linear optical properties are determined using the compact density matrix approach. The linear, third order non-linear optical absorption coefficient values and the refractive index changes of the exciton are calculated for different concentrations of magnesium. The results show that the occurred blue shifts of the resonant peak due to the Mg incorporation give the information about the variation of two energy levels in the quantum well width. 展开更多
关键词 interband emission energy exciton binding energy quantum well
原文传递
Polaronic Effects of an Exciton in a Cylindrical Quantum Wire 被引量:1
6
作者 WANGRui-Qiang XIEHong-Jing GUOKang-Xian YUYou-Bin DENGYong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第1期169-174,共6页
The effects of exciton-optical phonon interaction on the binding energy and the total and reduced effective masses of an exciton in a cylindrical quantum wire have been investigated. We adopt a perturbative-PLL [T.D. ... The effects of exciton-optical phonon interaction on the binding energy and the total and reduced effective masses of an exciton in a cylindrical quantum wire have been investigated. We adopt a perturbative-PLL [T.D. Lee,F. Low, and D. Pines, Phys. Rev. B90 (1953) 297] technique to construct an effective Hamiltonian and then use a variational solution to deal with the exciton-phonon system. The interactions of exciton with the longitudinal-optical phonon and the surface-optical phonon have been taken into consideration. The numerical calculations for GaAs show that the influences of phonon modes on the exciton in a quasi-one-dimensional quantum wire are considerable and should not be neglected. Moreover the numerical results for heavy- and light-hole exciton are obtained, which show that the polaronic effects on two types of excitons are very different but both depend heavily on the sizes of the wire. 展开更多
关键词 exciton binding energy polaronic effect cylindrical quantum wire
下载PDF
Fractional-dimensional approach for excitons in Ga As films on AlxGa(1-x)As substrates
7
作者 武振华 陈蕾 田强 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期375-379,共5页
Binding energies of excitons in GaAs films on AlxGal-xAs substrates are studied theoretically with the fractional- dimensional approach. In this approach, the real anisotropic "exciton + film" semiconductor system ... Binding energies of excitons in GaAs films on AlxGal-xAs substrates are studied theoretically with the fractional- dimensional approach. In this approach, the real anisotropic "exciton + film" semiconductor system is mapped into an effective fractional-dimensional isotropic space. For different aluminum concentrations and substrate thicknesses, the exci- ton binding energies are obtained as a function of the film thickness. The numerical results show that, for different aluminum concentrations and substrate thicknesses, the exciton binding energies in GaAs films on AlxGal_xAs substrates all exhibit their maxima with increasing film thickness. It is also shown that the binding energies of heavy-hole and light-hole excitons both have their maxima with increasing film thickness. 展开更多
关键词 exciton binding energy GaAs film fractional-dimensional approach
下载PDF
Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis
8
作者 Yue Pan Wenping Si +3 位作者 Yahao Li Haotian Tan Ji Liang Feng Hou 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第12期160-164,共5页
Carbon nitride,a typical low-dimensional conjugated polymer photocatalyst,features a high exciton binding energy due to the weak dielectric screening and the strong Coulombic attraction of photogenerated electrons and... Carbon nitride,a typical low-dimensional conjugated polymer photocatalyst,features a high exciton binding energy due to the weak dielectric screening and the strong Coulombic attraction of photogenerated electrons and holes.The reduction of the exciton binding energy of carbon nitride to promote the conversion from excitons into free carriers is the first priority for the improvement of charge-transfer-dependent photocatalytic reaction activity.In this paper,by introducing a variety of polar metal cations to carbon nitride,it is demonstrated that the charge distribution of the heptazine ring can be improved by ion polarization,which effectively promotes the dissociation of excitons into electrons and holes.The sodium ion shows the best modification effect,which enhances the rate of both photocatalytic hydrogen and hydrogen peroxide production by about 50%.Characterization shows that the introduction of strongly polar metal cations contributes to the reduction of the exciton dissociation energy of carbon nitride.This study provides a new perspective and a convenient method for the exciton modulation engineering of low-dimensional photocatalysts. 展开更多
关键词 exciton dissociation Carbon nitride PHOTOCATALYSIS Alkali metal ions exciton binding energy
原文传递
Microcavity exciton polaritons at room temperature 被引量:4
9
作者 Sanjib Ghosh Rui Su +9 位作者 Jiaxin Zhao Antonio Fieramosca Jinqi Wu Tengfei Li Qing Zhang Feng Li Zhanghai Chen Timothy Liew Daniele Sanvitto Qihua Xiong 《Photonics Insights》 2022年第1期60-103,共44页
The quest for realizing novel fundamental physical effects and practical applications in ambient conditions has led to tremendous interest in microcavity exciton polaritons working in the strong coupling regime at roo... The quest for realizing novel fundamental physical effects and practical applications in ambient conditions has led to tremendous interest in microcavity exciton polaritons working in the strong coupling regime at room temperature.In the past few decades,a wide range of novel semiconductor systems supporting robust exciton polaritons have emerged,which has led to the realization of various fascinating phenomena and practical applications.This paper aims to review recent theoretical and experimental developments of exciton polaritons operating at room temperature,and includes a comprehensive theoretical background,descriptions of intriguing phenomena observed in various physical systems,as well as accounts of optoelectronic applications.Specifically,an in-depth review of physical systems achieving room temperature exciton polaritons will be presented,including the early development of ZnO and GaN microcavities and other emerging systems such as organics,halide perovskite semiconductors,carbon nanotubes,and transition metal dichalcogenides.Finally,a perspective of outlooking future developments will be elaborated. 展开更多
关键词 microcavity exciton polariton Bose-Einstein condensation exciton binding energy quantum simulation nonequilibrium dynamics
原文传递
Pyrimidine donor induced built-in electric field between melon chains in crystalline carbon nitride to facilitate excitons dissociation
10
作者 Guoqiang Zhang Yangsen Xu +5 位作者 Guoshuai Liu Yongliang Li Chuanxin He Xiangzhong Ren Peixin Zhang Hongwei Mi 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第3期546-552,共7页
The strong intrinsic Coulomb interactions of Frenkel excitons in crystalline carbon nitride(CCN) greatly limits their dissociation into electrons and holes, resulting in unsatisfactory charges separation and photocata... The strong intrinsic Coulomb interactions of Frenkel excitons in crystalline carbon nitride(CCN) greatly limits their dissociation into electrons and holes, resulting in unsatisfactory charges separation and photocatalytic efficiency. Herein, we propose a strategy to facilitate excitons dissociation by molecular regulation induced built-in electric field(BIEF). The electron-rich pyrimidine-ring into CCN changes the charge density distribution over heptazine-rings to induce BIEF between melon chains. Such BIEF is sufficient to overcome the considerable exciton binding energy(EBE) and reduce it from 38.4 meV to 16.4 meV,increasing the excitons dissociation efficiency(EDE) from 21.5% to 51.9%. Our results establish a strategy to facilitate excitons dissociation through molecular regulation induced BIEF, targeting the intrinsic high EBE and low EDE of polymer photocatalysts. 展开更多
关键词 Crystalline carbon nitride exciton binding energy Built-in electric field Pyrimidine donor excitons dissociation
原文传递
Polarization engineering in porous organic polymers for charge separation efficiency and its applications in photocatalytic aerobic oxidations
11
作者 Kun Wu Pei-Wen Cheng +6 位作者 Xin-Yi Liu Ji Zheng Xiao-Wei Zhu Mo Xie Puxin Weng Weigang Lu Dan Li 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第3期1000-1007,共8页
Photocatalytic aerobic oxidation reactions are largely governed by the efficiency of charge separation and subsequent reactive oxygen species(ROS) generation. Herein, we report a polarization engineering strategy to p... Photocatalytic aerobic oxidation reactions are largely governed by the efficiency of charge separation and subsequent reactive oxygen species(ROS) generation. Herein, we report a polarization engineering strategy to promote the charge separation and ROS generation efficiency by substituting the benzene unit with furan/thiophene in porous organic polymers(POPs). Benefiting from the extent of local polarization, the thiophene-containing POP(JNU-218) exhibits the best photocatalytic performance in aerobic oxidation reactions, with a yield much higher than those for the furan-containing POP(JNU-217) and the benzenecontaining POP(JNU-216). Experimental studies and theoretical calculations reveal that the increase of local polarization can indeed reduce the exciton binding energy, and therefore facilitate the separation of electron-hole pairs. This work demonstrates a viable strategy to tune charge separation and ROS generation efficiency by modulating the dipole moments of the building blocks in porous polymeric organic semiconductors. 展开更多
关键词 porous organic polymer local polarization photocatalytic aerobic oxidation charge separation reactive oxygen species exciton binding energy
原文传递
Incorporation sodium ions into monodisperse lead-free double perovskite Cs_(2)AgBiCl_(6) nanocrystals to improve optical properties
12
作者 Song Wang Ying Xie +3 位作者 Wenchao Jiang Binghang Liu Keying Shi Kai Pan 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期549-553,共5页
Lead-free double perovskite nanocrystals(NCs)have emerged as a promising candidate in the optical field,owing to their non-toxic,good moist heat and chemical stability.However,their poor optical properties limited the... Lead-free double perovskite nanocrystals(NCs)have emerged as a promising candidate in the optical field,owing to their non-toxic,good moist heat and chemical stability.However,their poor optical properties limited their application.To improve the optical properties of lead-free double perovskite NCs,metal ion doping or alloying had been suggested as a promising strategy.Here,we prepared monodisperse,uniformly sized,cubic morphology of Cs_(2)AgBiCl_(6)NCs with different Na^(+)incorporation amounts via a simple hot-injection method.The Na^(+)incorporation broke the parity-forbidden transition by reducing the inversion symmetry of the electron wave function at the Ag site,which changed the parity of the self-trapped exciton wave function and thus allowed radiative recombination.As a result,the photoluminescence quantum yield(PLQY)of Na^(+)-alloyed Cs_(2)AgBiCl_(6)NCs(12.1%)was higher than that of Cs_(2)AgBiCl_(6)NCs(2.4%),and the exciton lifetime of Na^(+)-alloyed Cs_(2)AgBiCl_(6)NCs increased to 36.98 ns from 17.58 ns for Cs_(2)AgBiCl_(6)NCs.By adjusting the amount of Na^(+)incorporation,the band gap of Cs_(2)AgBiCl_(6)NCs can be significantly tuned from~2.90 eV to~3.50 eV.Furthermore,the temperature-dependent photoluminescence spectra indicated that the Na^(+)-alloyed Cs_(2)AgBiCl_(6)NCs possessed higher longitudinal optical phonon energy and exciton binding energy compared to Cs_(2)AgBiCl_(6)NCs.This suggested that there were strong exciton-phonon interactions during exciton recombination,a reduced probability of non-radiative processes,and excellent thermal stability.It offers a promising strategy for improving the optical properties of lead-free double perovskite NCs,and have the potential to replace traditional lead halide perovskite NCs in future optoelectronic applications. 展开更多
关键词 NANOCRYSTALS Alloy Double perovskites Optical properties exciton binding energy
原文传递
Temperature-dependent photoluminescent behavior of millimeter-scale Cs_(4)PbBr_(6)/CsPbBr_(3) bulk crystals and their application to white light-emitting diodes
13
作者 Qi Wang Sirous Khabbaz Abkenar +3 位作者 Matilde Cirignano Hailong Yu Wenzhi Wu Giorgio Divitini 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第12期57-65,共9页
The zero-dimensional perovskite composite Cs_(4)PbBr_(6)/CsPbBr_(3) has attracted significant attention for its remarkable photoluminescence(PL),which remains highly effective even in solid state.This work presents a ... The zero-dimensional perovskite composite Cs_(4)PbBr_(6)/CsPbBr_(3) has attracted significant attention for its remarkable photoluminescence(PL),which remains highly effective even in solid state.This work presents a detailed analysis of the steady-state and time-resolved PL(TRPL)behavior of millimeter-scale Cs_(4)PbBr_(6)/CsPbBr_(3) crystals over a temperature range of 80 to 360 K,which covers exciton binding en-ergy,phonon energy,and PL peak energy shifting with increasing temperature.According to the results,Cs_(4)PbBr_(6)/CsPbBr_(3) exhibits high exciton binding energy and phonon energy,with calculated values of 358.7 and 94.8 meV,respectively.Specifically,when the temperature is below~235 K,thermal expan-sion dominates to influence the TRPL and peak energy,whereas electron-phonon interaction becomes the dominant factor as temperature rises from 235 to 325 K.It is found that Cs_(4)PbBr_(6)/CsPbBr_(3) has a PL behavior similar to CsPbBr_(3),and characterization and TRPL results demonstrate that nanometer-scale CsPbBr_(3) crystals embed in the Cs_(4)PbBr_(6) bulk matrix.Meanwhile,a white light-emitting diode(WLED)device based on Cs_(4)PbBr_(6)/CsPbBr_(3) with luminous efficiency of 64.56 Im/W is fabricated,and its color coordinate is measured as(0.34,0.31)under 20 mA,which is in close proximity to the standard white color coordinate.Moreover,the color gamut of the device is measured as 128.66%of the National Televi-sion Systems Committee(NTSC).The WLED electroluminescence(EL)spectra show high Correlated Color Temperature(CCT)stability for the working current varying from 5 to 100 mA,and after continuous oper-ation for 12 h,the EL intensity decreases and stabilizes at~70%of the initial EL intensity.These findings suggest that Cs_(4)PbBr_(6)/CsPbBr_(3) crystals are a promising candidate for WLEDs. 展开更多
关键词 Zero-dimensional perovskites PHOTOLUMINESCENCE exciton binding energy White light-emitting diode
原文传递
Strain- and twist-engineered optical absorption of few-layer black phosphorus 被引量:2
14
作者 Qian Jia XiangHua Kong +1 位作者 JingSi Qiao Wei Ji 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第9期86-92,共7页
Density functional and many-body perturbation theories calculations were carried out to investigate fundamental and optical bandgap, exciton binding energy and optical absorption property of normal and strain- and twi... Density functional and many-body perturbation theories calculations were carried out to investigate fundamental and optical bandgap, exciton binding energy and optical absorption property of normal and strain- and twist-engineered few-layer black phosphorus (BP). We found that the fundamental bandgaps of few layer BP can be engineered by layer stacking and in-plane strain, with linear relationships to their associated exciton binding energies. The strain-dependent optical absorption behaviors are also anisotropic that the position of the first absorption peak monotonically blue-shifts as the strain applies to either direction for incident light polarized along the armchair direction, but this is not the case for that along the zigzag direction. Given those striking properties, we proposed two prototype devices for building potentially more balanced light absorbers and light filter passes, which promotes further applications and investigations of BP in nanoelectronics and optoelectronics. 展开更多
关键词 black phosphorus light absorption strain-engineering exciton binding energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部