In this work, the exp(-φ (ξ )) -expansion method is used for the first time to investigate the exact traveling wave solutions involving parameters of nonlinear evolution equations. When these parameters are taken to...In this work, the exp(-φ (ξ )) -expansion method is used for the first time to investigate the exact traveling wave solutions involving parameters of nonlinear evolution equations. When these parameters are taken to be special values, the solitary wave solutions are derived from the exact traveling wave solutions. The validity and reliability of the method are tested by its applications to Nano-ionic solitons wave’s propagation along microtubules in living cells and Nano-ionic currents of MTs which play an important role in biology.展开更多
We present a class of the second order optimal splines difference schemes derived from ex- ponential cubic splines for self-adjoint singularly perturbed 2-point boundary value problem. We prove an optimal error estima...We present a class of the second order optimal splines difference schemes derived from ex- ponential cubic splines for self-adjoint singularly perturbed 2-point boundary value problem. We prove an optimal error estimate and give illustrative numerical example.展开更多
文摘In this work, the exp(-φ (ξ )) -expansion method is used for the first time to investigate the exact traveling wave solutions involving parameters of nonlinear evolution equations. When these parameters are taken to be special values, the solitary wave solutions are derived from the exact traveling wave solutions. The validity and reliability of the method are tested by its applications to Nano-ionic solitons wave’s propagation along microtubules in living cells and Nano-ionic currents of MTs which play an important role in biology.
文摘We present a class of the second order optimal splines difference schemes derived from ex- ponential cubic splines for self-adjoint singularly perturbed 2-point boundary value problem. We prove an optimal error estimate and give illustrative numerical example.