期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Micro defects formation and dynamic response analysis of steel plate of quasi-cracking area subjected to explosive load
1
作者 Zheng-qing Zhou Ze-chen Du +5 位作者 Xiao Wang Hui-ling Jiang Qiang Zhou Yu-long Zhang Yu-zhe Liu Pei-ze Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期580-593,共14页
As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-crackin... As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center. 展开更多
关键词 explosive load Quasi-cracking area Micro defects Steel plate Dynamic response Numerical simulation
下载PDF
Microscopic defects formation and dynamic mechanical response analysis of Q345 steel plate subjected to explosive load
2
作者 Zhengqing Zhou Zechen Du +6 位作者 Yulong Zhang Guili Yang Ruixiang Wang Yuzhe Liu Peize Zhang Yaxin Zhang Xiao Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期430-442,共13页
As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate unde... As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response. 展开更多
关键词 explosive load Q345 steel Micro defect Finite element simulation Dynamic response Data fitting
下载PDF
Crack propagation and damage evolution of metallic cylindrical shells under internal explosive loading
3
作者 Yusong Luo Weibing Li +2 位作者 Junbao Li Wenbin Li Xiaoming Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期133-146,共14页
This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB ... This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB steel was conducted through experiments and subsequently applied to simulations.The numerical simulation results employing the four failure criteria were compared with the differences and similarities observed in freeze-recovery tests and ultra-high-speed tests.This analysis addressed the critical issue of determining failure criteria for the fracture of a metal shell under internal explosive loads.Building upon this foundation,the damage parameter D_(c),linked to the cumulative crack density,was defined based on the evolution characteristics of a substantial number of cracks.The relationship between the damage parameter and crack velocity over time was established,and the influence of the internal central pressure on the damage parameter and crack velocity was investigated.Variations in the fracture modes were found under different failure criteria,with the principal strain failure criterion proving to be the most effective for simulating 3D crack propagation in a pure shear fracture mode.Through statistical analysis of the shell penetration fracture radius data,it was determined that the fracture radius remained essentially constant during the crack evolution process and could be considered a constant.The propagation velocity of axial cracks ranged between 5300 m/s and 12600 m/s,surpassing the Rayleigh wave velocity of the shell material and decreasing linearly with time.The increase in shell damage exhibited an initial rapid phase,followed by deceleration,demonstrating accelerated damage during the propagation stage of the blast wave and decelerated damage after the arrival of the rarefaction wave.This study provides an effective approach for investigating crack propagation and damage evolution.The derived crack propagation and damage evolution law serves as a valuable reference for the development of crack velocity theory and the construction of shell damage evolution modes. 展开更多
关键词 Internal explosive loading Failure criterion Crack propagation Damage evolution Freeze-recovery test
下载PDF
Study on energy release characteristics of reactive material casings under explosive loading 被引量:6
4
作者 Ning Du Wei Xiong +3 位作者 Tao Wang Xian-feng Zhang Hai-hua Chen Meng-ting Tan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1791-1803,共13页
Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can ... Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can increase the lethality of warheads due to their dual functionality.This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading.Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs,temperature distribution,peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material(RM)warhead casings by using high-speed camera,infrared thermal imager temperature and peak overpressure testing and scanning electron microscope.Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings.The RM casings can improve the peak overpressure of the air shock wave under explosion loading,though the results are different with different charge ratios.According to the energy release characteristics of the RM,increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave,while reducing the thickness will increase the peak overpressure of the far-field air shock wave. 展开更多
关键词 Reactive materials explosive loading Shock-induced chemical reaction Energy release characteristics FRAGMENTATION
下载PDF
Fragment spatial distribution of prismatic casing under internal explosive loading 被引量:3
5
作者 Tianbao Ma Xinwei Shi +1 位作者 Jian Li Jianguo Ning 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期910-921,共12页
Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional c... Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional cylindrical casings.In this study,numerical and experimental investigations into the fragment spatial distribution of a prismatic casing were conducted.A new numerical method,which adds the Lagrangian marker points to the Eulerian grid,was proposed to track the multi-material interfaces and material dynamic fractures.Physical quantity mappings between the Lagrangian marker points and Eulerian grid were achieved by their topological relationship.Thereafter,the fragment spatial distributions of the prismatic casing with different fragment sizes,fragment shapes,and casing geometries were obtained using the numerical method.Moreover,fragment spatial distribution experiments were conducted on the prismatic casing with different fragment sizes and shapes,and the experimental data were compared with the numerical results.The effects of the fragment and casing geometry on the fragment spatial distributions were determined by analyzing the numerical results and experimental data.Finally,a formula including the casing geometry parameters was fitted to predict the fragment spatial distribution of the prismatic casing under internal explosive loading. 展开更多
关键词 Fragment spatial distribution Prismatic casing Internal explosive loading Numerical fitting formula Marker-point weighted method
下载PDF
Numerical Simulation of Concrete Plate Damaged Under Explosive Loading
6
作者 HUAN Shi JIANG Guoping +1 位作者 Chen Shengming TANG Xiangqian 《Transactions of Tianjin University》 EI CAS 2006年第B09期158-160,共3页
The grisliness after-effects can be induced by explosion accident with the collapsing of the structures, the demolishing of the equipments and the casualty of the human beings. Isolation belt constructed between the b... The grisliness after-effects can be induced by explosion accident with the collapsing of the structures, the demolishing of the equipments and the casualty of the human beings. Isolation belt constructed between the blast point and the construction is one of the useful design schemes for blast resistance. The nonlinear procedure ANSYS/LSDYNA970 is used to simulate the contact detonation and the isolation belt of blast resistance filled with the air or water respectively. The results indicate that the maximal damage can be caused by the contact detonation, and the isolation belt of blast resistent filled with water can reduce the damage greatly. 展开更多
关键词 CONCRETE explosive loading state equation numerical simulation
下载PDF
Numerical Simulation and Dynamic Fracture Criteria of Thin Cylindrical Shells under Inner Explosive Loading 被引量:1
7
作者 高重阳 施惠基 +2 位作者 姚振汉 王晓华 白春华 《Tsinghua Science and Technology》 EI CAS 2000年第1期13-17,共5页
An FAE (Fuel Air Explosives) device is used to develop a numerical and theoretical analysis of a thin cylindrical shell with inner explosive loading. The dynamic fracture process is simulated numerically in the DYNA... An FAE (Fuel Air Explosives) device is used to develop a numerical and theoretical analysis of a thin cylindrical shell with inner explosive loading. The dynamic fracture process is simulated numerically in the DYNA3D program using the finite element method. The material’s dynamic properties are described by a strain hardening viscoplastic constitution. A damage variable is introduced in the determination of the dynamic fracture criterion. Final rupture of structure is decided by a rupture strain criterion which is deduced in terms of a critical damage variable. The numerical results have been compared with theoretical solutions. 展开更多
关键词 numerical simulation cylindrical shells dynamic fracture criteria explosive loading DAMAGE
原文传递
Numerical investigation on failure behavior of steel plate under explosive loading 被引量:1
8
作者 ZHENG Kai WANG ZhiHua 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第6期1311-1324,共14页
The failure behavior of metal materials under strong dynamic loading such as explosive and impact loading has important applications in the fields of defense industry and civil security. In this study, a novel coupled... The failure behavior of metal materials under strong dynamic loading such as explosive and impact loading has important applications in the fields of defense industry and civil security. In this study, a novel coupled bidirectional weighted mapping method between Lagrange particles and Euler meshes is proposed to numerically simulate the dynamic response and failure process of steel structure under explosive loading. In this method, the Lagrange particles and Euler meshes are used to describe the materials that need to be accurately tracked and can more accurately characterize the deformation history and failure process of the material. A comparison between the numerical results and experimental data shows that this method can be used to solve large deformation problem of multi-medium materials and the failure problems of complex structures under strong impact loading. 展开更多
关键词 steel plate explosive loading coupled bidirectional mapping method failure behavior
原文传递
Numerical 3D-modeling of spall and shear fractures in shells of austenitic 12Kh18N10T steel and 30KhGSA steel under their spherical and quasi-spherical explosive loading
9
作者 Evgeny A.Kozlov Oleg V.Ol’khov Ekaterina V.Shuvalova 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2015年第1期173-211,共39页
To pursue VNIIEF–VNIITF joint investigations,this paper briefly describes the experimental setup and provides numerical 3D-computation results(LEGAK-3D technique)on special features in the convergence dynamics of st... To pursue VNIIEF–VNIITF joint investigations,this paper briefly describes the experimental setup and provides numerical 3D-computation results(LEGAK-3D technique)on special features in the convergence dynamics of steel shells under their quasi-spherical explosive loading in the system with the 40-mm outer radius of the explosive layer.The computation results were compared with the data experimentally registered for shells of the 30KhGSA steel,both as-received and quenched to HRC 35...40,and the austenitic 12Kh18N10T stainless steel.The comparison was also made with laserinterferometry results obtained directly under explosive loading,as well as with gammatomography and scanning electron microscopy investigations of the recovered shells. 展开更多
关键词 Convergence dynamics of shell spall and shear damages explosive loading
原文传递
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
10
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 explosive load Explosion resistance performance Model test POLYUREA Concrete box girder Numerical simulation
下载PDF
Double casing warhead with sandwiched charge:The axial distribution of fragments velocities
11
作者 Ping Ye Yongxiang Dong +5 位作者 Qitian Sun Peizhuo Shi Wang Yao Yongnan Li Yujing Li Mingze Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期201-216,共16页
The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine... The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine the maximum fragment velocity.The current work builds on the published formula to further develop a formula for calculating the axial distribution characteristics of the fragment velocity.For this type of warhead,the simulation of the dispersion characteristics of the detonation products at different positions shows that the detonation products at the ends have a much larger axial velocity than those in the middle,and the detonation products have a greater axial dispersion velocity when they are closer to the central axis.The loading process and the fragment velocity vary with the axial position for both casing layers,and the total velocity of the fragments is the vector sum of the radial velocity and the axial velocity.At the same axial position,the acceleration time of the inner casing is greater than that of the outer casing.For the same casing,the fragments generated at the ends have a longer acceleration time than the fragments from the middle.The proposed formula is validated with the X-ray radiography results of the four warheads previously tested experimentally and the 3D smoothedparticle hydrodynamics numerical simulation results of several series of new warheads with different configurations.The formula can accurately and reliably calculate the fragment velocity when the lengthto-diameter ratio of the charge is greater than 1.5 and the thickness of the casing is less than 20%its inner radius.This work thus provides a key reference for the theoretical analysis and the design of warheads with multiple casings. 展开更多
关键词 Double casing warhead Sandwiched charge Fragment velocity Rarefaction wave Gurney formula explosive loading
下载PDF
Preliminary study of impaction mechanism of interfacial wave in explosive welding
12
作者 史长根 侯鸿宝 +2 位作者 尤峻 汪育 洪津 《China Welding》 EI CAS 2013年第2期67-71,共5页
The characteristics of both the detonation and explosive loading are studied comparatively. The width of the detonation reaction zone is from 0. 1 to 1 mm approximately, and it about equals the wavelength of interfaci... The characteristics of both the detonation and explosive loading are studied comparatively. The width of the detonation reaction zone is from 0. 1 to 1 mm approximately, and it about equals the wavelength of interfacial wave in explosive welding. Both of them increase with the increasing of the thickness and detonation velocity of the explosive. The pressure of the detonation reaction zone is also wavy. The amplitude of the interfacial wave is decided by the detonation loading and the rate of the strength of the base and drive plate materials, and the wavelength is equal to the width of detonation reaction zone. So, a new impaction mechanism of pressure and inlaying due to wavy loading is put forward. 展开更多
关键词 explosive welding explosive loading reaction zone interfacial wave
下载PDF
Response of Box-Type Structures Under Internal-Blast Loading 被引量:2
13
作者 WANG Zhongqi WU Jianguo +1 位作者 BAI Chunhua LU Yong 《Transactions of Tianjin University》 EI CAS 2006年第B09期112-116,共5页
The tests of box-type structures under internal-blast loading are carried out. Then a numerical analysis of the test structures is done using a fully coupled numerical finite element model. The break-up process of the... The tests of box-type structures under internal-blast loading are carried out. Then a numerical analysis of the test structures is done using a fully coupled numerical finite element model. The break-up process of the structure is simulated. The failure modes of the simulated structure agree well with the experimental results. The effects of the size of the reinforcing bars and the detailing of connections among the rebars in the concrete on the throw velocity of the fragments are discussed. 展开更多
关键词 internal-blast explosion loading concrete structure structural response FRAGMENT
下载PDF
Strength and Toughness of Steel Fibre Reinforced Reactive Powder Concrete Under Blast Loading 被引量:3
14
作者 KUZNETSOV Valerian A REBENTROST Mark WASCHL John 《Transactions of Tianjin University》 EI CAS 2006年第B09期70-74,共5页
The blast resistance of structures used in buildings needs to be investigated due to the increased threat of a terrorist attack. The damage done by Composition B or Powergel to steel fibre reinforced reactive powder c... The blast resistance of structures used in buildings needs to be investigated due to the increased threat of a terrorist attack. The damage done by Composition B or Powergel to steel fibre reinforced reactive powder concrete (SFRPC) panels and ordinary reinforced concrete (RC) panels of equivalent static flexural strength is compared. A 0. 5 kg charge was detonated at a distance of 0. 1 m from the 1. 3 m × 1. 0 m × 0. 1 m (thick) panels, which were simply supported and spaning 1.3 m. Dynamic displacement measurements, high-speed video recording and visual examination of the panels for spall and breach were undertaken. The SFRPC panels withstood the bare charge blast better than the reinforced ordinary concrete panels. Neither type of panel was breached using a O. 5 kg charge, The RC panel exhibited more spalling when Composition B was used. Under successive Composition B loading conditions, the RC panel was breached. In comparison the SFRPC panel was not breached. Exposure to fragmenting charge loading conditions confirmed these performance differences between the SFRPC panel and the reinforced ordinary concrete panel. 展开更多
关键词 steel fibre reinforced reactive powder concrete blast loading SPALLING explosive blast loading
下载PDF
Empirical model of concrete block fragment behavior under explosion loads
15
作者 YANG Shuai NING JianGuo +1 位作者 REN HuiLan XU XiangZhao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第8期2515-2529,共15页
Concrete structures undergo integral fragmentation under explosion loads. The fragmentation degree and particle-size distribution of concrete blocks under explosion loads must be considered during mining to ensure saf... Concrete structures undergo integral fragmentation under explosion loads. The fragmentation degree and particle-size distribution of concrete blocks under explosion loads must be considered during mining to ensure safety. In this study, the impulse is calculated based on the relationship between overpressure and time, and the impact energy of the explosion wave is obtained based on blast theory. Subsequently, the Mohr-Coulomb shear strength fracture criterion is introduced to determine the ultimate shear stress of the concrete materials, and an empirical model that can effectively calculate the energy consumption of concrete blocks under explosion loads is established. Furthermore, concrete fragments with different particle sizes under explosion scenarios are quantitatively predicted with the principle of energy conservation. Finally, explosion tests with different top standoff distances are conducted, and the concrete fragments after the explosion tests are recovered, sieved, weighed, and counted to obtain experimental data. The effectiveness of the fragment empirical model is verified by comparing the model calculation results with the experimental data. The proposed model can be used as a reference for civil blasting, protective engineering design, and explosion-damage assessment. 展开更多
关键词 concrete structures explosion loads fragment behavior empirical model
原文传递
Radial explosion strain and its fracture effect from confined explosion with charge of cyclonite 被引量:2
16
作者 徐国元 段乐珍 +1 位作者 古德生 闫长斌 《Journal of Central South University of Technology》 EI 2004年第4期429-433,共5页
Instrumented experiments were conducted in concrete models to study the explosion-induced radial strain and fracture effect of rock-like media under confined explosion with a charge of cyclonite. As a charge was explo... Instrumented experiments were conducted in concrete models to study the explosion-induced radial strain and fracture effect of rock-like media under confined explosion with a charge of cyclonite. As a charge was exploded, two different radial strain waves were sequentially recorded by a strain gage at a distance of 80 mm from the center of charge. Through the attenuation formula of the maximum compressive strain(εrmax), the distribution of εrmax and its strain rate( ) between the charge and gage were obtained. The effect of the two waves propagating outwards on the radial fracture of surrounding media was discussed. The results show that the two waves are pertinent to the loading of shock energy (Es) and bubble energy (Eb) against concrete surrounding charge, respectively. The former wave lasts for much shorter time than the latter. The peak values of εrmax and of the former are higher than those of the latter, respectively. 展开更多
关键词 confined explosion loading radial strain radial fracture CONCRETE shock energy bubble energy
下载PDF
Numerical study on explosion-induced fractures of reinforced concrete structure by beam-particle model 被引量:3
17
作者 LIU Jun ZHAO ChangBing YUN Bin 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第2期412-419,共8页
In the field of disaster prevention mitigation and protection engineering,it is important to identify the mechanical behaviors of reinforced concrete(RC)under explosive load by simulation.A three dimensional beam-part... In the field of disaster prevention mitigation and protection engineering,it is important to identify the mechanical behaviors of reinforced concrete(RC)under explosive load by simulation.A three dimensional beam-particle model(BPM),which is suitable to simulate the fracture process of RC under explosive load,has been developed in the frame of discrete element method (DEM).In this model,only the elastic deformations of beams between concrete particles were considered.The matrix displacement method(MDM)was employed to describe the relationship between the deformation and forces of the beam.A fracture criterion expressed by stress was suggested to identify the state of the beam.A BPM for steel bar,which can simulate the deformation of steel bar under high loading rate,was also developed based on the Cowper-Symonds theory.A program has been coded using C++language.Experiments of RC slab under explosive load were carried out using the program.Good agreement was achieved between the experimental and simulated results.It is indicated that the proposed theoretical model can well simulate the fracture characteristics of RC slab under explosive load such as blasting pit formation,cracks extension, spallation formation,etc. 展开更多
关键词 explosive load reinforced concrete slab beam-particle model steel bar high loading rate FRACTURE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部