Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacif...Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacific(WNP)during 1951–2021 are classified into six clusters using the fuzzy c-means clustering method(FCM)according to their track patterns.The characteristics of the six hard-clustered ETCs with the highest membership coefficient are shown.Most tropical cyclones(TCs)that were assigned to clusters C2,C5,and C6 made landfall over eastern Asian countries,which severely threatened these regions.Among landfalling TCs,93.2%completed their ET after landfall,whereas 39.8%of ETCs completed their transition within one day.The frequency of ETCs over the WNP has decreased in the past four decades,wherein cluster C5 demonstrated a significant decrease on both interannual and interdecadal timescales with the expansion and intensification of the western Pacific subtropical high(WPSH).This large-scale circulation pattern is favorable for C2 and causes it to become the dominant track pattern,owning to it containing the largest number of intensifying ETCs among the six clusters,a number that has increased insignificantly over the past four decades.The surface roughness variation and three-dimensional background circulation led to C5 containing the maximum number of landfalling TCs and a minimum number of intensifying ETCs.Our results will facilitate a better understanding of the spatiotemporal distributions of ET events and associated environment background fields,which will benefit the effective monitoring of these events over the WNP.展开更多
Based on the Tropical Cyclone(TC) Yearbooks data and JRA-25 reanalysis data from the Japan Meteorological Agency(JMA) during 1979-2008, dynamic composite analysis and computation of kinetic energy budget are used to s...Based on the Tropical Cyclone(TC) Yearbooks data and JRA-25 reanalysis data from the Japan Meteorological Agency(JMA) during 1979-2008, dynamic composite analysis and computation of kinetic energy budget are used to study the intensifying and weakening TCs during Extratropical Transition over China. The TCI shows strong upper-level divergence, strengthened low-level convergence and significantly enhanced upward motion under the influence of strong upper-level troughs and high-level jets. The TCI is correspondingly intensified after Extratropical Transition(ET); TCW exhibits strong upper-level divergence, subdued low-level convergence and slightly enhanced upward motion under the influence of weak upper-level troughs and high-level jets. It then weakens after ET. The increase(decrease) of the generation of kinetic energy by divergence wind in TCI(TCW) at low level is one of the major reasons for TCI's intensification(TCW's weakening) after transformation. The generation of kinetic energy by divergence wind is closely related to the development of a low-level baroclinic frontal zone. The growth of the generation of kinetic energy by rotational wind in TCI at upper level is favorable for TCI's maintenance, which is affected by strong upper-level troughs. The dissipation of the generation of kinetic energy by rotational wind in TCW at upper level is unfavorable for TCW's maintenance, which is affected by weak upper-level troughs.展开更多
Based on an improved objective cyclone detection and tracking algorithm, decadal variations in extratropical cyclones in northern East Asia are studied by using the ECMWF 40 Year Reanalysis (ERA-40) sea-level pressu...Based on an improved objective cyclone detection and tracking algorithm, decadal variations in extratropical cyclones in northern East Asia are studied by using the ECMWF 40 Year Reanalysis (ERA-40) sea-level pressure data during 1958-2001. The results reveal that extratropieal cyclone activity has displayed clear seasonal, interannual, and decadal variability in northern East Asia. Spring is the season when cyclones occur most frequently. The spatial distribution of extratropieal cyclones shows that cyclones occur mainly within the 40°- 50°N latitudinal band in northern East Asia, and the most frequent region of occurrence is in Mongolia. Furthermore, this study also reveals the fact that the frequency of extratropieal cyclones has significantly decreased in the lower latitude region of northern East Asia during 1958 2001, but deeadal variability has dominated in higher latitude bands, with frequent cyclone genesis. The intensity of extratropical cyclones has decreased on an annual and seasonal basis. Variation of the annual number of cyclones in northern East Asia is associated with the mean intensity of the baroelinie frontal zone, which is influenced by climate warming in the higher latitudes. Moreover, the dipole structure of extratopical cyclone change, with increases in the north and decreases in the southern part of northern East Asia, is related to the northward movement of the baroelinic frontal zone on either side of 110°E.展开更多
In this paper, a diagnostic analysis is made for a kind of explosive cyclone ovcr East Asia and the West PacificOcean in cold season, using the level Ⅲ FGGE dataset. The cyclone started developing at 0000 UTC 30 Marc...In this paper, a diagnostic analysis is made for a kind of explosive cyclone ovcr East Asia and the West PacificOcean in cold season, using the level Ⅲ FGGE dataset. The cyclone started developing at 0000 UTC 30 March, 1979.Q vector analysis shows that ageostrophic wind was obvious in cyclone region. The calculation of different kindsof frontogenetical functions indicates that the development of cyclone was closely related to baroclinicity, especially,at lower levels.Isentropic analysis revealed the three-dimensional structure of cyclone development, that is, ascent of southerlywarmer current and descent of northerly colder current existed around the cyclonic center during the developing process of the cyclone and is very favourable to the release of available potential energy and generation of eddy kineticenergy.Not only shear component, but also curvature component of upper level jet contributed to the explosive development of the cyclone.The computation of convergence of moisture flux demonstrated that the moisture probably came from the tropical ocean. The distribution of water vapor supply in this case was very advantageous to the deepening of cyclone, especially, during the well-developing period.Comparison between East Asia Pacific case and North America-Atlantic case (Ogura and Juang, 1990) hasbeen conducted. The common characteristics were that there existed strong baroclinicity in both cases. However, inthe latter case, the latent heat release was of secondary importance and in our case, moisture also played very important role in certain. stages of the cyclogenesis, especially, during well-developing stage when it moved over oceanicsurface.展开更多
The precipitation distributions associated with two landfalling tropical cyclones(TCs) during extratropical transition(ET) were examined in this study.Their distinction is that the bulk of precipitation fell to th...The precipitation distributions associated with two landfalling tropical cyclones(TCs) during extratropical transition(ET) were examined in this study.Their distinction is that the bulk of precipitation fell to the left of the TC track in one TC and to the right in the other.The analyses indicate that,for the TC Haima(2004) case,accompanied by the approach of a deep midlatitude trough throughout the depth of the troposphere,the warm and moist air advection by the southeasterly flow north of TC was favorable for warm advection and frontogenesis to the northwest of the TC.Due to the steepening of equivalent potential temperature(θ e),the air-parcel uplift along the θ e surface,in collaboration with thermally direct circulation related to frontogenesis,led to enhanced precipitation northwest of the TC.In contrast,for TC Matsa(2005) embedded within a moister environment,a weak midlatitude trough was situated at the mid-upper level.The convection was triggered by the conditional instability at the lower level and then sustained by dynamic forcing at the mid-upper level so that the heavy precipitation occurred to the northeast of TC.For the two TC cases,the precipitation enhancement was also linked to the upper-level anomalous divergence associated with the jet-related forcing on the right side of the jet entrance.From the quasigeostrophic perspective,the advection of geostrophic absolute vorticity by the thermal wind most likely served as an indication reflecting the displacement of the vertical motion relative to the center of the TC.展开更多
The Radial Sand Ridges(RSRs)area in the southern Yellow Sea are subject to tropical and extratropical cyclone activities frequently,in which the special geometry feature and moving stationary tidal system result in co...The Radial Sand Ridges(RSRs)area in the southern Yellow Sea are subject to tropical and extratropical cyclone activities frequently,in which the special geometry feature and moving stationary tidal system result in complex storm-induced hydrodynamic processes,especially the tide-surge interactions.We studied a rare weather event influenced simultaneously by an extratropical cyclone EX1410 and Typhoon Vongfong as an example to investigate the characteristics of storm surges,wave-surge,and tide-surge interaction in the RSRs area,and applied a high-resolution integrally-coupled ADCIRC+SWAN model,in which the meteorological forcing inputs are simulated by the WRF-ARW model.The model is validated by records from 4 tide gauges and 2 wave buoys along the Yellow Sea coast.Results show that the tide-surge interactions are of considerable regional heterogeneousness.The surge curves at Lüsi(in south RSRs)and Jianggang(in middle RSRs)have abrupt falls near the time of low tide,where the peak occurrence time of interaction residuals tend to shift towards the mid-ebb period.Significant increase of bed shear stress in shallow waters was proved the dominant factor to affect the tide-surge interaction in broad tidal flats of the RSRs area.Differently,the interaction pattern in the Xiyang Trough(in north RSRs),showed a unique rising in mid-flood period due to the phase advances of real surge waves in relatively deep waters.Therefore,we suggested to the local flood risk management that the tide-surge interaction tends to alleviate the flooding risk in the RSRs area around the time of high tide,but aggravate the risk on the rising tide in the Xiyang Trough and on the falling tide in large-scale tidal flats of the southem RSRs area.展开更多
The complicated evolutive process of how a tropical cyclone transforms into an extratropical cyclone is still an unresolved issue to date, especially one which arises in a weakly baroclinic environment. Typhoon Winnie...The complicated evolutive process of how a tropical cyclone transforms into an extratropical cyclone is still an unresolved issue to date, especially one which arises in a weakly baroclinic environment. Typhoon Winnie (1997) is studied during its extratropical transformation stage of extratropical transition (ET) with observational data and numerical simulations. Results show that Winnie experienced its extratropical transformation to the south of the subtropical high without intrusion of the mid-latitude baroclinic zone. This is significantly different from previous studies. Analyses reveal that the cold air, which appeared in the north edge of Winnie circulation, resulted from the precipitation drag and cooling effect of latent heat absorption associated with the intense precipitation there. The cooling only happened below 3 km and the greatest cooling was below 1 km. With the cold air and its advection by the circulation of Winnie, a front was formed in the lower troposphere. The front above is related not only to the cooling in the lower level but also to the warming effect of latent heat release in the middle-upper levels. The different temperature variation in the vertical caused the temperature gradient over Winnie and resulted in the baroclinicity.展开更多
Based on best-track data and JRA-25 reanalysis,a climatology of western North Pacific extratropical transition (ET) of tropical cyclone (TC) is presented in this paper. It was found that 35% (318 out of 912) of all TC...Based on best-track data and JRA-25 reanalysis,a climatology of western North Pacific extratropical transition (ET) of tropical cyclone (TC) is presented in this paper. It was found that 35% (318 out of 912) of all TCs underwent ET during 1979-2008. The warm-season (June through September) ETs account for 64% of all ET events with the most occurrence in September. The area 120°E-150°E and 20°N-40°N is the most favorable region for ET onsets in western North Pacific. The TCs experiencing ET at latitudes 30°N-40°N have the greatest intensity in contrast to those at other latitude bands. The distribution of ET onset locations shows obviously meridional migration in different seasons. A cyclone phase space (CPS) method was used to analyze the TC evolution during ET. Except for some cases of abnormal ET at relatively high latitudes,typical phase evolution paths-along which TC firstly showed thermal asymmetry and an upper-level cold core and then lost its low-level warm core-can be used to describe the main features of ET processes in western North Pacific. Some seasonal variations of ET evolution paths in CPS were also found at low latitudes south of 15°N,which suggests different ET onset mechanisms there. Further composite analysis concluded that warm-season ETs have generally two types of evolutions,but only one type in cold season (October through next May). The first type of warm-season ETs has less baroclinicity due to long distance between the TC and upper-level mid-latitude system. However,significant interactions between a mid-latitude upper-level trough and TC,which either approaches or is absorbed into the trough,and TC's relations with downstream and upstream upper-level jets,are the fingerprints for both a second type of warm-season ETs and almost all the cold-season ETs. For each type of ETs,detailed structural characteristics as well as precipitation distribution are illustrated by latitude.展开更多
The synoptic situation and mesoscale structure of an explosive extratropical cyclone over the Northwestern Pacific in March 2007 are investigated through weather station observations and data reanalysis. The cyclone i...The synoptic situation and mesoscale structure of an explosive extratropical cyclone over the Northwestern Pacific in March 2007 are investigated through weather station observations and data reanalysis. The cyclone is located beneath the poleward side of the exit of a 200 hPa jet, which is a strong divergent region aloft. At mid-level, the cyclone lies on the downstream side of a well-developed trough, where a strong ascending motion frequently occurs. Cross-section analyses with weather station data show that the cyclone has a warm and moist core. A ‘nose' of the cold front, which is characterized by a low-level protruding structure in the equivalent potential temperature field, forms when the cyclone moves offshore. This ‘nose' structure is hypothesized to have been caused by the heating effect of the Kuroshio Current. Two low-level jet streams are also identified on the western and eastern sides of the cold front. The western jet conveys cold and dry air at 800–900 hPa. The wind in the northern part is northeasterly, and the wind in the southern part is northwesterly. By contrast, the eastern jet carries warm and moist air into the cyclone system, ascending northward from 900 hPa to 600–700 hPa. The southern part is dominated by the southerly wind, and the wind in the northern part is southwesterly. The eastern and western jets significantly increase the air temperature and moisture contrast in the vicinity of the cold front. This increase could play an important role in improving the rapid cyclogenesis process.展开更多
This study reexamines the propagation mechanism and geostrophic property of the classical two-dimensional Rossby waves in a non-divergent barotropic atmosphere. It will be found that propagation of large scale atmosph...This study reexamines the propagation mechanism and geostrophic property of the classical two-dimensional Rossby waves in a non-divergent barotropic atmosphere. It will be found that propagation of large scale atmospheric waves depends crucially on horizontal divergence. A small Rossby number in Rossby waves is not sufficient for the waves to have a small ageostrophic component, because the two-dimensional classical Rossby waves do not manifest the geostrophic balance as good as observed in the atmosphere.展开更多
With the use of data from the National Centers for Environmental Prediction Climate Forecast System Reanalysis,the environment and structure of typhoon Toraji(2001)are investigated during the re-intensification(RI)sta...With the use of data from the National Centers for Environmental Prediction Climate Forecast System Reanalysis,the environment and structure of typhoon Toraji(2001)are investigated during the re-intensification(RI)stage of its extratropical transition(ET),a process in which a tropical cyclone transforms into an extratropical or mid-latitude cyclone.The results provide detailed insight into the ET system and identify the specific features of the system,including wind field,a cold and dry intrusion,and a frontal structure in the RI stage.The irrotational wind provides the values of upper-and lower-level jets within the transitioning tropical cyclone and the cyclone over Shandong Peninsula,accompanied with the reduced radius of maximum surface winds around the cyclone center in the lower troposphere.Simultaneously,dry air intrusion enhances the formation of fronts and leads to strong potential instability in the southwest and northeast quadrants.The distribution of frontogenesis shows that the tilting term associated with vertical motion dominates the positive frontogenesis surrounding the cyclone center,especially in the RI stage.The diagnostics of the kinetic energy budget suggest that the divergent kinetic energy generation whose time evolution corresponds well to that of cyclone center pressure is the primary factor for the development of Toraji in the lower troposphere.The ET of Toraji is a compound pattern that contains a development similar to that of a B-type extratropical cyclone within the maintaining phase and an A-type extratropical cyclone within the strengthening period,which corresponds to the distribution of the E-P fluxes with vertically downward propagation in the maintaining stage and upwards momentum in the strengthening phase.展开更多
This study uses the Climate Forecast System Reanalysis(CFSR) to investigate the responses of the Southern Hemisphere(SH) extratropical climate to two types of El Nino–Southern Oscillation(ENSO)-the eastern Pacific(EP...This study uses the Climate Forecast System Reanalysis(CFSR) to investigate the responses of the Southern Hemisphere(SH) extratropical climate to two types of El Nino–Southern Oscillation(ENSO)-the eastern Pacific(EP) type and the central Pacific(CP) type in different seasons. The responses are denoted by the anomalies of climate variables associated with one-standard-deviation increase in the Nino3 or Nino4 index. The results show that in austral spring the differences in the ENSO-related anomaly(ERA) patterns of atmospheric circulation between the EP ENSO period(1979–1998) and CP ENSO period(1999–2010) are mainly associated with the change in the ENSO-PSA2 relationship. Such differences affect the ERA fields of surface air temperature and mixed layer temperature, and finally result in significant differences in sea-ice concentration anomalies in the Atlantic sector. In austral summer, significant correlation exists between the variations of SAM and both of the variations of Nino3 and Nino4 in 1979–1998, while the correlation between SAM and Nino4 disappears in 1999–2010. For all seasons, the strength of the climate ERAs depend on if there are close relationship between ENSO and the major climate variation modes of the SH extratropics. For the climate variables, the ERA patterns of surface air temperature are generally controlled by surface wind anomalies and mirrored by the mixed layer temperature anomalies. The mixed layer depth anomalies are primarily modulated by surface heat flux anomalies and occasionally by anomalous wind. There are strikingly strong anomalies of surface heat flux in the autumn of 1979–1998 related to the Nino3 variation, the period when there is only significant correlation between ENSO and PSA2. There are no evidence that the SH extratropical climate variability induced by Nino3 variations are stronger in the EP-ENSO period, and that variability induced by Nino4 variations are stronger in the CP-ENSO period.展开更多
During mid-January 2011,a rarely seen twin-extratropical-cyclone event appeared over the western North Pacific Ocean.One of the twin cyclones developed into an extreme explosive extratropical cyclone(EEC),which was co...During mid-January 2011,a rarely seen twin-extratropical-cyclone event appeared over the western North Pacific Ocean.One of the twin cyclones developed into an extreme explosive extratropical cyclone(EEC),which was comparable to the intensity of a typhoon.Rotational and divergent wind kinetic energy(KE)analyses were applied to understand the low-level wind’s rapid enhancement associated with the cyclone.It was found that:(i)the total wind KE associated with the EEC showed a remarkable enhancement in the lower troposphere during the cyclone’s maximum development stage,with the maximum/minimum wind acceleration appearing in the southeastern/northwestern quadrant of the EEC;(ii)the rotational wind KE experienced an obvious increase,which corresponded to the total wind KE enhancement,whereas the divergent wind KE,which was much smaller than the rotational wind,mainly featured a decreasing trend;(iii)the rotational wind KE enhancement showed variational features consistent with the horizontal enlargement and upward stretching of the EEC;(iv)the nonorthogonal wind KE enhanced the total wind KE in regions with strong rotational wind,which resulted in the maximum lower-tropospheric maximum wind,whereas in regions with strong divergent wind it mainly reduced the total wind KE;(v)the northward transport of total wind KE and the rotational wind KE production due to the work done by pressure gradient force were dominant factors for the enhancement of winds associated with the EEC,particularly in its southeastern section.In contrast,an overall conversion from rotational wind KE to divergent wind KE decelerated the rotational wind enhancement.展开更多
The extratropical transition (ET) of tropical cyclone (TC) Haima (2004) was simulated to understand the impact of TC on midlatitude frontal systems. Two experiments were conducted using the Advanced Research ver...The extratropical transition (ET) of tropical cyclone (TC) Haima (2004) was simulated to understand the impact of TC on midlatitude frontal systems. Two experiments were conducted using the Advanced Research version of the Weather Research and Forecast (WRF) model. In the control run (CTL), a vortex was extracted from the 24-hour pre-run output and then inserted into the National Centers for Environmental Prediction (NCEP) global final (FNL) analysis as an initial condition, while TC circulation was removed from the initial conditions in the sensitivity run (NOTC). Comparisons of the experiments demonstrate that the midlatitude front has a wider meridional extent in the NOTC run than that in the CTL run. Furthermore, the CTL run produces convection suppression to the southern side of the front due to strong cold advection related to the TC circulation. The easterly flow north of the TC not only decelerates the eastward displacement of the front and contracts its zonal scale but also transports more moisture westward and lifts the air along equivalent potential temperature surfaces ahead of the front. As a result, the ascending motion and diabatic heating are enhanced in the northeastern edge of the front, and the anticyclonic outflow in the upper-level is intensified. The increased pressure gradient and divergent ftow aloft strengthen the upper-level jet and distort the trough axis in a northwest-southeast orientation. The thermal contrast between the two systems and the dynamic contribution related to the TC circulation can facilitate scalar and rotational frontogenesis to modulate the frontal structure.展开更多
Moist potential vorticity (MPV) and its generation may be important in the development of mesoscale structures such as rainbands within cyclones. In an adiabatic and frictionless flow, MPV generation is possible if th...Moist potential vorticity (MPV) and its generation may be important in the development of mesoscale structures such as rainbands within cyclones. In an adiabatic and frictionless flow, MPV generation is possible if the flow is three-dimensional and the air is unsaturated. Moist potential vorticity can be generated through the combined effects of gradients in the potential temperature and moisture fields. The diagnosis of MPV generation in an extratropical cyclone was performed with the ECMWF objectively analyzed fields for a system that developed during February 1992. It was found that at various stages during the development of the cyclone, negative MPV was generated: at the north end of the cold front; along the occluded front and the cold front; and in the region of the warm core. This pattern of negative MPV generation is in excellent agreement with the predictions of previous theoretical and numerical studies. After the cyclone ceased to deepen, the region of negative MPV generated in the cyclone was horizontally advected into a saturated area. The area of negative MPV generated both along the occluded front in this case study and in the region of the bent-back warm front in a numerical simulation showed a mesoscale structure with a width of about 200-500 km. It was found that the intrusion of moist or dry air into baroclinic zones was important for MPV generation. In addition, baroclinicity increase (adjacent to the area of condensation) in the regions of high moisture gradients led to significant MPV production.展开更多
We have examined, in Part Ⅰ, the propagation mechanism and geostrophic property of classical Rossby waves in a non-divergent barotropic atmosphere. As we found that the non-divergent Rossby waves do not propagate in ...We have examined, in Part Ⅰ, the propagation mechanism and geostrophic property of classical Rossby waves in a non-divergent barotropic atmosphere. As we found that the non-divergent Rossby waves do not propagate in a hydrostatically equilibrium atmosphere, and do not manifest a good geostrophic property, an alternative large scale circulation pattern of geostrophic waves has been proposed (McHall, 1991a). The propagation mechanism and geostrophic property of these waves are examined in the present study.展开更多
In this study,the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) is used to simulate Typhoon Mindulle (2004) at high resolution (3-km grid size...In this study,the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) is used to simulate Typhoon Mindulle (2004) at high resolution (3-km grid size).The data from measurements show that in the upper atmosphere the existence of an upper jet is important to the transition cyclone.When Mindulle moved to the area of the upper jet entrance,where high-altitude divergence existed, the pumping of the high-altitude divergence would enhance the vertical motion and low-level cyclone convergence. The enhanced vertical motion was confirmed by the simulation results and indicated that the existence of upper divergence enhanced the vertical motion which was favorable for the maintenance of Typhoon Mindulle.The process of extratropical transition (ET) and re-intensification always accompanies the process of cold air invasion. This process enhances the baroclinicity of the atmosphere and the formation of front at high altitudes, which converts baroclinic potential energy into kinetic energy and strengthens the cyclone vortex.The distributions of equivalent potential temperature (θe) and temperature anomalies show that the warm-core of the typhoon at the tropopause aids the re-intensification of the system. As the typhoon reenters the ocean, latent heat flux (LHF) increases in the north and west and the strong reflectivity and vertical motion occur in the east and southeast,and the west.With the re-intensification of the typhoon the wind field evolves from an oval to a circle at the lower atmosphere, the area coverage by high winds increases, and the distribution of the tangential wind shows an asymmetric pattern.展开更多
Boreal wintertime extratropical circulation is studied in relation to the tropical convection during the 1982/83 El Niño and 1988/89 La Niña. The anomaly structure of 1982/83 and 1988/89 over the ext...Boreal wintertime extratropical circulation is studied in relation to the tropical convection during the 1982/83 El Niño and 1988/89 La Niña. The anomaly structure of 1982/83 and 1988/89 over the extratropics reveals remarkably different features as the longitudinal tropical forcing region changes. The Rossby wave source (Positive) shows the largest maximum over East Asia in both years due to the persistent heating from the western Pacific warm pool area. However, the sink term shows contrasting features over the subtropics and extratropics between the two years. In the El Niño year, enhanced tropical convection over the eastern Pacific produces the Rossby wave sink at 10°N and shifted eastward over the North Pacific, while in the La Niña year, the sink area is shifted westward over the North Pacific. The contrasting features between the two events in mean-eddy interaction appears especially over the downstream area of the East Asian Jet. The extension (retraction) of the meanflow eastward (westward) to the east (west) of the dateline is related with the effect of the westward (eastward) E-vector and the strengthening (weakening) of the negative anomalies of the barotropic growth of kinetic energy. Hence, almost opposite characteristics between the two events can explain the close relationship of tropical convection and the extratropical internal variability.展开更多
An algorithm for identifying extratropical cyclones(ECs)on the basis of gridded data is proposed in this study.The algorithm,which is named the eight-section slope detecting(ESSD)method,hasfive key procedures to ident...An algorithm for identifying extratropical cyclones(ECs)on the basis of gridded data is proposed in this study.The algorithm,which is named the eight-section slope detecting(ESSD)method,hasfive key procedures to identify an EC by using the mean sea level pressure(MSLP)or geopotential height.They are:(i)finding the location of every minimum of the MSLP/geopotential-height;(ii)establishing a targeted box for each minimum;(iii)dividing the targeted box into eight subregions;(iv)calculating eight relative slopes within the eight sub-regions;(v)confirming an EC only if all eight relative slopes are above an appropriate threshold.Based on the 0.75°×0.75°ERAInterim reanalysis field,comparisons show that the ESSD method performs better in identifying ECs than the other three previous EC detection algorithms,as it can lower the error caused by mistaking a trough for an EC.Moreover,a test of detecting ECs in the Northern Hemisphere using the ESSD method repeated 500 times(randomly distributed across 40 years)shows that the accuracy of this method varies from 79%to 91%,with an annual mean accuracy of^85%.This means that the ESSD method can provide credible results with respect to EC identification.展开更多
Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall...Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall as Winnie, although it struck Liaodong Peninsula directly while Winnie passed through the Bohai Sea. The relations between the ET processes and the precipitation over Liaodong Peninsula are examined. The result shows that the precipitation difference between Winnie and Matsa was closely related to the interactions between the westerly systems and typhoons during their ET processes. Winnie was captured by the upper westerly trough and then coupled with it when moving to the mid-latitudes, and the positive anomaly of moist potential vorticity (MPV) was transported downward from the upper troposphere over the remnant circulation of the tropical cyclone (TC). It was favorable to the interaction between tropical warm and wet air and westerly cold air, causing convective cloud clusters to form and develop. The rain belt composed of several meso-β cloud clusters over the Liaodong Peninsula, resulting in heavy rainfall. On the other hand, Matsa did not couple with any upper trough during its ET process and the positive anomaly of MPV in the upper troposphere and its downward transfer were weak. Only one meso-β cloud cluster occurred in Matsa’s rain belt during its ET process that tended to lessen rainfall over Liaodong Peninsula.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42075053 and 41975128)。
文摘Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacific(WNP)during 1951–2021 are classified into six clusters using the fuzzy c-means clustering method(FCM)according to their track patterns.The characteristics of the six hard-clustered ETCs with the highest membership coefficient are shown.Most tropical cyclones(TCs)that were assigned to clusters C2,C5,and C6 made landfall over eastern Asian countries,which severely threatened these regions.Among landfalling TCs,93.2%completed their ET after landfall,whereas 39.8%of ETCs completed their transition within one day.The frequency of ETCs over the WNP has decreased in the past four decades,wherein cluster C5 demonstrated a significant decrease on both interannual and interdecadal timescales with the expansion and intensification of the western Pacific subtropical high(WPSH).This large-scale circulation pattern is favorable for C2 and causes it to become the dominant track pattern,owning to it containing the largest number of intensifying ETCs among the six clusters,a number that has increased insignificantly over the past four decades.The surface roughness variation and three-dimensional background circulation led to C5 containing the maximum number of landfalling TCs and a minimum number of intensifying ETCs.Our results will facilitate a better understanding of the spatiotemporal distributions of ET events and associated environment background fields,which will benefit the effective monitoring of these events over the WNP.
基金National Key Technology R&D Program(2012BAC22B03)NSFC General Program(41275094)
文摘Based on the Tropical Cyclone(TC) Yearbooks data and JRA-25 reanalysis data from the Japan Meteorological Agency(JMA) during 1979-2008, dynamic composite analysis and computation of kinetic energy budget are used to study the intensifying and weakening TCs during Extratropical Transition over China. The TCI shows strong upper-level divergence, strengthened low-level convergence and significantly enhanced upward motion under the influence of strong upper-level troughs and high-level jets. The TCI is correspondingly intensified after Extratropical Transition(ET); TCW exhibits strong upper-level divergence, subdued low-level convergence and slightly enhanced upward motion under the influence of weak upper-level troughs and high-level jets. It then weakens after ET. The increase(decrease) of the generation of kinetic energy by divergence wind in TCI(TCW) at low level is one of the major reasons for TCI's intensification(TCW's weakening) after transformation. The generation of kinetic energy by divergence wind is closely related to the development of a low-level baroclinic frontal zone. The growth of the generation of kinetic energy by rotational wind in TCI at upper level is favorable for TCI's maintenance, which is affected by strong upper-level troughs. The dissipation of the generation of kinetic energy by rotational wind in TCW at upper level is unfavorable for TCW's maintenance, which is affected by weak upper-level troughs.
基金supported by project 2006C-B400503Project 2007BAC29B02
文摘Based on an improved objective cyclone detection and tracking algorithm, decadal variations in extratropical cyclones in northern East Asia are studied by using the ECMWF 40 Year Reanalysis (ERA-40) sea-level pressure data during 1958-2001. The results reveal that extratropieal cyclone activity has displayed clear seasonal, interannual, and decadal variability in northern East Asia. Spring is the season when cyclones occur most frequently. The spatial distribution of extratropieal cyclones shows that cyclones occur mainly within the 40°- 50°N latitudinal band in northern East Asia, and the most frequent region of occurrence is in Mongolia. Furthermore, this study also reveals the fact that the frequency of extratropieal cyclones has significantly decreased in the lower latitude region of northern East Asia during 1958 2001, but deeadal variability has dominated in higher latitude bands, with frequent cyclone genesis. The intensity of extratropical cyclones has decreased on an annual and seasonal basis. Variation of the annual number of cyclones in northern East Asia is associated with the mean intensity of the baroelinie frontal zone, which is influenced by climate warming in the higher latitudes. Moreover, the dipole structure of extratopical cyclone change, with increases in the north and decreases in the southern part of northern East Asia, is related to the northward movement of the baroelinic frontal zone on either side of 110°E.
文摘In this paper, a diagnostic analysis is made for a kind of explosive cyclone ovcr East Asia and the West PacificOcean in cold season, using the level Ⅲ FGGE dataset. The cyclone started developing at 0000 UTC 30 March, 1979.Q vector analysis shows that ageostrophic wind was obvious in cyclone region. The calculation of different kindsof frontogenetical functions indicates that the development of cyclone was closely related to baroclinicity, especially,at lower levels.Isentropic analysis revealed the three-dimensional structure of cyclone development, that is, ascent of southerlywarmer current and descent of northerly colder current existed around the cyclonic center during the developing process of the cyclone and is very favourable to the release of available potential energy and generation of eddy kineticenergy.Not only shear component, but also curvature component of upper level jet contributed to the explosive development of the cyclone.The computation of convergence of moisture flux demonstrated that the moisture probably came from the tropical ocean. The distribution of water vapor supply in this case was very advantageous to the deepening of cyclone, especially, during the well-developing period.Comparison between East Asia Pacific case and North America-Atlantic case (Ogura and Juang, 1990) hasbeen conducted. The common characteristics were that there existed strong baroclinicity in both cases. However, inthe latter case, the latent heat release was of secondary importance and in our case, moisture also played very important role in certain. stages of the cyclogenesis, especially, during well-developing stage when it moved over oceanicsurface.
基金supported by National Basic Research Program of China (Grant No.2009CB421505)Special Scientific Research project for Public Interest (Grant No. GYHY201006021)National Natural Science Foundation of China (Grant No.40921160379),respectively
文摘The precipitation distributions associated with two landfalling tropical cyclones(TCs) during extratropical transition(ET) were examined in this study.Their distinction is that the bulk of precipitation fell to the left of the TC track in one TC and to the right in the other.The analyses indicate that,for the TC Haima(2004) case,accompanied by the approach of a deep midlatitude trough throughout the depth of the troposphere,the warm and moist air advection by the southeasterly flow north of TC was favorable for warm advection and frontogenesis to the northwest of the TC.Due to the steepening of equivalent potential temperature(θ e),the air-parcel uplift along the θ e surface,in collaboration with thermally direct circulation related to frontogenesis,led to enhanced precipitation northwest of the TC.In contrast,for TC Matsa(2005) embedded within a moister environment,a weak midlatitude trough was situated at the mid-upper level.The convection was triggered by the conditional instability at the lower level and then sustained by dynamic forcing at the mid-upper level so that the heavy precipitation occurred to the northeast of TC.For the two TC cases,the precipitation enhancement was also linked to the upper-level anomalous divergence associated with the jet-related forcing on the right side of the jet entrance.From the quasigeostrophic perspective,the advection of geostrophic absolute vorticity by the thermal wind most likely served as an indication reflecting the displacement of the vertical motion relative to the center of the TC.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402000,2018YFC0407503)the Fundamental Research Fund for Central Public-interest Scientific Institution(No.Y218009)
文摘The Radial Sand Ridges(RSRs)area in the southern Yellow Sea are subject to tropical and extratropical cyclone activities frequently,in which the special geometry feature and moving stationary tidal system result in complex storm-induced hydrodynamic processes,especially the tide-surge interactions.We studied a rare weather event influenced simultaneously by an extratropical cyclone EX1410 and Typhoon Vongfong as an example to investigate the characteristics of storm surges,wave-surge,and tide-surge interaction in the RSRs area,and applied a high-resolution integrally-coupled ADCIRC+SWAN model,in which the meteorological forcing inputs are simulated by the WRF-ARW model.The model is validated by records from 4 tide gauges and 2 wave buoys along the Yellow Sea coast.Results show that the tide-surge interactions are of considerable regional heterogeneousness.The surge curves at Lüsi(in south RSRs)and Jianggang(in middle RSRs)have abrupt falls near the time of low tide,where the peak occurrence time of interaction residuals tend to shift towards the mid-ebb period.Significant increase of bed shear stress in shallow waters was proved the dominant factor to affect the tide-surge interaction in broad tidal flats of the RSRs area.Differently,the interaction pattern in the Xiyang Trough(in north RSRs),showed a unique rising in mid-flood period due to the phase advances of real surge waves in relatively deep waters.Therefore,we suggested to the local flood risk management that the tide-surge interaction tends to alleviate the flooding risk in the RSRs area around the time of high tide,but aggravate the risk on the rising tide in the Xiyang Trough and on the falling tide in large-scale tidal flats of the southem RSRs area.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.40233036,40305004)the Ministry of Science and Technology Project of China(Grant No.2001CCA02200).
文摘The complicated evolutive process of how a tropical cyclone transforms into an extratropical cyclone is still an unresolved issue to date, especially one which arises in a weakly baroclinic environment. Typhoon Winnie (1997) is studied during its extratropical transformation stage of extratropical transition (ET) with observational data and numerical simulations. Results show that Winnie experienced its extratropical transformation to the south of the subtropical high without intrusion of the mid-latitude baroclinic zone. This is significantly different from previous studies. Analyses reveal that the cold air, which appeared in the north edge of Winnie circulation, resulted from the precipitation drag and cooling effect of latent heat absorption associated with the intense precipitation there. The cooling only happened below 3 km and the greatest cooling was below 1 km. With the cold air and its advection by the circulation of Winnie, a front was formed in the lower troposphere. The front above is related not only to the cooling in the lower level but also to the warming effect of latent heat release in the middle-upper levels. The different temperature variation in the vertical caused the temperature gradient over Winnie and resulted in the baroclinicity.
基金National Natural Science Foundation of China (NSFC) General Program (40705016)100 Talents Programme of The Chinese Academy of Sciences (KCL14014)+2 种基金NSFC Key Program (40730948)NSFC General Program (40675029)the Knowledge Innovation Program of the Chinese Academy of Sciences (0766079301)
文摘Based on best-track data and JRA-25 reanalysis,a climatology of western North Pacific extratropical transition (ET) of tropical cyclone (TC) is presented in this paper. It was found that 35% (318 out of 912) of all TCs underwent ET during 1979-2008. The warm-season (June through September) ETs account for 64% of all ET events with the most occurrence in September. The area 120°E-150°E and 20°N-40°N is the most favorable region for ET onsets in western North Pacific. The TCs experiencing ET at latitudes 30°N-40°N have the greatest intensity in contrast to those at other latitude bands. The distribution of ET onset locations shows obviously meridional migration in different seasons. A cyclone phase space (CPS) method was used to analyze the TC evolution during ET. Except for some cases of abnormal ET at relatively high latitudes,typical phase evolution paths-along which TC firstly showed thermal asymmetry and an upper-level cold core and then lost its low-level warm core-can be used to describe the main features of ET processes in western North Pacific. Some seasonal variations of ET evolution paths in CPS were also found at low latitudes south of 15°N,which suggests different ET onset mechanisms there. Further composite analysis concluded that warm-season ETs have generally two types of evolutions,but only one type in cold season (October through next May). The first type of warm-season ETs has less baroclinicity due to long distance between the TC and upper-level mid-latitude system. However,significant interactions between a mid-latitude upper-level trough and TC,which either approaches or is absorbed into the trough,and TC's relations with downstream and upstream upper-level jets,are the fingerprints for both a second type of warm-season ETs and almost all the cold-season ETs. For each type of ETs,detailed structural characteristics as well as precipitation distribution are illustrated by latitude.
基金supported by the National Natural Science Foundation of China (No.41275049 and 41775042)
文摘The synoptic situation and mesoscale structure of an explosive extratropical cyclone over the Northwestern Pacific in March 2007 are investigated through weather station observations and data reanalysis. The cyclone is located beneath the poleward side of the exit of a 200 hPa jet, which is a strong divergent region aloft. At mid-level, the cyclone lies on the downstream side of a well-developed trough, where a strong ascending motion frequently occurs. Cross-section analyses with weather station data show that the cyclone has a warm and moist core. A ‘nose' of the cold front, which is characterized by a low-level protruding structure in the equivalent potential temperature field, forms when the cyclone moves offshore. This ‘nose' structure is hypothesized to have been caused by the heating effect of the Kuroshio Current. Two low-level jet streams are also identified on the western and eastern sides of the cold front. The western jet conveys cold and dry air at 800–900 hPa. The wind in the northern part is northeasterly, and the wind in the southern part is northwesterly. By contrast, the eastern jet carries warm and moist air into the cyclone system, ascending northward from 900 hPa to 600–700 hPa. The southern part is dominated by the southerly wind, and the wind in the northern part is southwesterly. The eastern and western jets significantly increase the air temperature and moisture contrast in the vicinity of the cold front. This increase could play an important role in improving the rapid cyclogenesis process.
文摘This study reexamines the propagation mechanism and geostrophic property of the classical two-dimensional Rossby waves in a non-divergent barotropic atmosphere. It will be found that propagation of large scale atmospheric waves depends crucially on horizontal divergence. A small Rossby number in Rossby waves is not sufficient for the waves to have a small ageostrophic component, because the two-dimensional classical Rossby waves do not manifest the geostrophic balance as good as observed in the atmosphere.
基金supported by the National Natural Science Foundation of China (No. 41130859)the Science Fund for Creative Research Groups (No. 41221063)
文摘With the use of data from the National Centers for Environmental Prediction Climate Forecast System Reanalysis,the environment and structure of typhoon Toraji(2001)are investigated during the re-intensification(RI)stage of its extratropical transition(ET),a process in which a tropical cyclone transforms into an extratropical or mid-latitude cyclone.The results provide detailed insight into the ET system and identify the specific features of the system,including wind field,a cold and dry intrusion,and a frontal structure in the RI stage.The irrotational wind provides the values of upper-and lower-level jets within the transitioning tropical cyclone and the cyclone over Shandong Peninsula,accompanied with the reduced radius of maximum surface winds around the cyclone center in the lower troposphere.Simultaneously,dry air intrusion enhances the formation of fronts and leads to strong potential instability in the southwest and northeast quadrants.The distribution of frontogenesis shows that the tilting term associated with vertical motion dominates the positive frontogenesis surrounding the cyclone center,especially in the RI stage.The diagnostics of the kinetic energy budget suggest that the divergent kinetic energy generation whose time evolution corresponds well to that of cyclone center pressure is the primary factor for the development of Toraji in the lower troposphere.The ET of Toraji is a compound pattern that contains a development similar to that of a B-type extratropical cyclone within the maintaining phase and an A-type extratropical cyclone within the strengthening period,which corresponds to the distribution of the E-P fluxes with vertically downward propagation in the maintaining stage and upwards momentum in the strengthening phase.
基金The General Program of the National Natural Science Foundation of China under contract Nos 41876221 and 41861134040
文摘This study uses the Climate Forecast System Reanalysis(CFSR) to investigate the responses of the Southern Hemisphere(SH) extratropical climate to two types of El Nino–Southern Oscillation(ENSO)-the eastern Pacific(EP) type and the central Pacific(CP) type in different seasons. The responses are denoted by the anomalies of climate variables associated with one-standard-deviation increase in the Nino3 or Nino4 index. The results show that in austral spring the differences in the ENSO-related anomaly(ERA) patterns of atmospheric circulation between the EP ENSO period(1979–1998) and CP ENSO period(1999–2010) are mainly associated with the change in the ENSO-PSA2 relationship. Such differences affect the ERA fields of surface air temperature and mixed layer temperature, and finally result in significant differences in sea-ice concentration anomalies in the Atlantic sector. In austral summer, significant correlation exists between the variations of SAM and both of the variations of Nino3 and Nino4 in 1979–1998, while the correlation between SAM and Nino4 disappears in 1999–2010. For all seasons, the strength of the climate ERAs depend on if there are close relationship between ENSO and the major climate variation modes of the SH extratropics. For the climate variables, the ERA patterns of surface air temperature are generally controlled by surface wind anomalies and mirrored by the mixed layer temperature anomalies. The mixed layer depth anomalies are primarily modulated by surface heat flux anomalies and occasionally by anomalous wind. There are strikingly strong anomalies of surface heat flux in the autumn of 1979–1998 related to the Nino3 variation, the period when there is only significant correlation between ENSO and PSA2. There are no evidence that the SH extratropical climate variability induced by Nino3 variations are stronger in the EP-ENSO period, and that variability induced by Nino4 variations are stronger in the CP-ENSO period.
基金supported by the National Key R&D Program of China grant number 2018YFC0809400the National Natural Science Foundation of China grant numbers41775046 and 91637211the Youth Innovation Promotion Association,Chinese Academy of Sciences。
文摘During mid-January 2011,a rarely seen twin-extratropical-cyclone event appeared over the western North Pacific Ocean.One of the twin cyclones developed into an extreme explosive extratropical cyclone(EEC),which was comparable to the intensity of a typhoon.Rotational and divergent wind kinetic energy(KE)analyses were applied to understand the low-level wind’s rapid enhancement associated with the cyclone.It was found that:(i)the total wind KE associated with the EEC showed a remarkable enhancement in the lower troposphere during the cyclone’s maximum development stage,with the maximum/minimum wind acceleration appearing in the southeastern/northwestern quadrant of the EEC;(ii)the rotational wind KE experienced an obvious increase,which corresponded to the total wind KE enhancement,whereas the divergent wind KE,which was much smaller than the rotational wind,mainly featured a decreasing trend;(iii)the rotational wind KE enhancement showed variational features consistent with the horizontal enlargement and upward stretching of the EEC;(iv)the nonorthogonal wind KE enhanced the total wind KE in regions with strong rotational wind,which resulted in the maximum lower-tropospheric maximum wind,whereas in regions with strong divergent wind it mainly reduced the total wind KE;(v)the northward transport of total wind KE and the rotational wind KE production due to the work done by pressure gradient force were dominant factors for the enhancement of winds associated with the EEC,particularly in its southeastern section.In contrast,an overall conversion from rotational wind KE to divergent wind KE decelerated the rotational wind enhancement.
基金supported by National Basic Research Program of China (Grant No. 2009CB421505)National Natural Science Foundation of China (Grant No. 41275001)
文摘The extratropical transition (ET) of tropical cyclone (TC) Haima (2004) was simulated to understand the impact of TC on midlatitude frontal systems. Two experiments were conducted using the Advanced Research version of the Weather Research and Forecast (WRF) model. In the control run (CTL), a vortex was extracted from the 24-hour pre-run output and then inserted into the National Centers for Environmental Prediction (NCEP) global final (FNL) analysis as an initial condition, while TC circulation was removed from the initial conditions in the sensitivity run (NOTC). Comparisons of the experiments demonstrate that the midlatitude front has a wider meridional extent in the NOTC run than that in the CTL run. Furthermore, the CTL run produces convection suppression to the southern side of the front due to strong cold advection related to the TC circulation. The easterly flow north of the TC not only decelerates the eastward displacement of the front and contracts its zonal scale but also transports more moisture westward and lifts the air along equivalent potential temperature surfaces ahead of the front. As a result, the ascending motion and diabatic heating are enhanced in the northeastern edge of the front, and the anticyclonic outflow in the upper-level is intensified. The increased pressure gradient and divergent ftow aloft strengthen the upper-level jet and distort the trough axis in a northwest-southeast orientation. The thermal contrast between the two systems and the dynamic contribution related to the TC circulation can facilitate scalar and rotational frontogenesis to modulate the frontal structure.
文摘Moist potential vorticity (MPV) and its generation may be important in the development of mesoscale structures such as rainbands within cyclones. In an adiabatic and frictionless flow, MPV generation is possible if the flow is three-dimensional and the air is unsaturated. Moist potential vorticity can be generated through the combined effects of gradients in the potential temperature and moisture fields. The diagnosis of MPV generation in an extratropical cyclone was performed with the ECMWF objectively analyzed fields for a system that developed during February 1992. It was found that at various stages during the development of the cyclone, negative MPV was generated: at the north end of the cold front; along the occluded front and the cold front; and in the region of the warm core. This pattern of negative MPV generation is in excellent agreement with the predictions of previous theoretical and numerical studies. After the cyclone ceased to deepen, the region of negative MPV generated in the cyclone was horizontally advected into a saturated area. The area of negative MPV generated both along the occluded front in this case study and in the region of the bent-back warm front in a numerical simulation showed a mesoscale structure with a width of about 200-500 km. It was found that the intrusion of moist or dry air into baroclinic zones was important for MPV generation. In addition, baroclinicity increase (adjacent to the area of condensation) in the regions of high moisture gradients led to significant MPV production.
文摘We have examined, in Part Ⅰ, the propagation mechanism and geostrophic property of classical Rossby waves in a non-divergent barotropic atmosphere. As we found that the non-divergent Rossby waves do not propagate in a hydrostatically equilibrium atmosphere, and do not manifest a good geostrophic property, an alternative large scale circulation pattern of geostrophic waves has been proposed (McHall, 1991a). The propagation mechanism and geostrophic property of these waves are examined in the present study.
基金supported by the National Natural Science Foundation of China(Nos.40876004,40890155 and 40675060)National 973 Project(Nos.2009CB-421500 and 2007CB411801)
文摘In this study,the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) is used to simulate Typhoon Mindulle (2004) at high resolution (3-km grid size).The data from measurements show that in the upper atmosphere the existence of an upper jet is important to the transition cyclone.When Mindulle moved to the area of the upper jet entrance,where high-altitude divergence existed, the pumping of the high-altitude divergence would enhance the vertical motion and low-level cyclone convergence. The enhanced vertical motion was confirmed by the simulation results and indicated that the existence of upper divergence enhanced the vertical motion which was favorable for the maintenance of Typhoon Mindulle.The process of extratropical transition (ET) and re-intensification always accompanies the process of cold air invasion. This process enhances the baroclinicity of the atmosphere and the formation of front at high altitudes, which converts baroclinic potential energy into kinetic energy and strengthens the cyclone vortex.The distributions of equivalent potential temperature (θe) and temperature anomalies show that the warm-core of the typhoon at the tropopause aids the re-intensification of the system. As the typhoon reenters the ocean, latent heat flux (LHF) increases in the north and west and the strong reflectivity and vertical motion occur in the east and southeast,and the west.With the re-intensification of the typhoon the wind field evolves from an oval to a circle at the lower atmosphere, the area coverage by high winds increases, and the distribution of the tangential wind shows an asymmetric pattern.
文摘Boreal wintertime extratropical circulation is studied in relation to the tropical convection during the 1982/83 El Niño and 1988/89 La Niña. The anomaly structure of 1982/83 and 1988/89 over the extratropics reveals remarkably different features as the longitudinal tropical forcing region changes. The Rossby wave source (Positive) shows the largest maximum over East Asia in both years due to the persistent heating from the western Pacific warm pool area. However, the sink term shows contrasting features over the subtropics and extratropics between the two years. In the El Niño year, enhanced tropical convection over the eastern Pacific produces the Rossby wave sink at 10°N and shifted eastward over the North Pacific, while in the La Niña year, the sink area is shifted westward over the North Pacific. The contrasting features between the two events in mean-eddy interaction appears especially over the downstream area of the East Asian Jet. The extension (retraction) of the meanflow eastward (westward) to the east (west) of the dateline is related with the effect of the westward (eastward) E-vector and the strengthening (weakening) of the negative anomalies of the barotropic growth of kinetic energy. Hence, almost opposite characteristics between the two events can explain the close relationship of tropical convection and the extratropical internal variability.
基金supported by the the Science and Technology Foundation of State Grid Corporation of Chinagrant number 5200-201955490A-0-0-00。
文摘An algorithm for identifying extratropical cyclones(ECs)on the basis of gridded data is proposed in this study.The algorithm,which is named the eight-section slope detecting(ESSD)method,hasfive key procedures to identify an EC by using the mean sea level pressure(MSLP)or geopotential height.They are:(i)finding the location of every minimum of the MSLP/geopotential-height;(ii)establishing a targeted box for each minimum;(iii)dividing the targeted box into eight subregions;(iv)calculating eight relative slopes within the eight sub-regions;(v)confirming an EC only if all eight relative slopes are above an appropriate threshold.Based on the 0.75°×0.75°ERAInterim reanalysis field,comparisons show that the ESSD method performs better in identifying ECs than the other three previous EC detection algorithms,as it can lower the error caused by mistaking a trough for an EC.Moreover,a test of detecting ECs in the Northern Hemisphere using the ESSD method repeated 500 times(randomly distributed across 40 years)shows that the accuracy of this method varies from 79%to 91%,with an annual mean accuracy of^85%.This means that the ESSD method can provide credible results with respect to EC identification.
基金National Key Fundamental Project for Research Development and Plan (2004CB418301)Natural Science Foundation of China (40575018, 40675033)
文摘Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall as Winnie, although it struck Liaodong Peninsula directly while Winnie passed through the Bohai Sea. The relations between the ET processes and the precipitation over Liaodong Peninsula are examined. The result shows that the precipitation difference between Winnie and Matsa was closely related to the interactions between the westerly systems and typhoons during their ET processes. Winnie was captured by the upper westerly trough and then coupled with it when moving to the mid-latitudes, and the positive anomaly of moist potential vorticity (MPV) was transported downward from the upper troposphere over the remnant circulation of the tropical cyclone (TC). It was favorable to the interaction between tropical warm and wet air and westerly cold air, causing convective cloud clusters to form and develop. The rain belt composed of several meso-β cloud clusters over the Liaodong Peninsula, resulting in heavy rainfall. On the other hand, Matsa did not couple with any upper trough during its ET process and the positive anomaly of MPV in the upper troposphere and its downward transfer were weak. Only one meso-β cloud cluster occurred in Matsa’s rain belt during its ET process that tended to lessen rainfall over Liaodong Peninsula.