期刊文献+
共找到912篇文章
< 1 2 46 >
每页显示 20 50 100
Enhancing layered perovskite ferrites with ultra-high-density nanoparticles via cobalt doping for ceramic fuel cell anode
1
作者 Shuo Zhai Rubao Zhao +9 位作者 Hailong Liao Ling Fu Senran Hao Junyu Cai Yifan Wu Jian Wang Yunhong Jiang Jie Xiao Tao Liu Heping Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期39-48,共10页
Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural co... Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural configuration.Herein,we employ controlled Co doping to effectively enhance the nanoparticle exsolution process in layered perovskite ferrites materials.CoFe alloy nanoparticles with ultra-high-density are exsolved on the(PrBa)_(0.95)(Fe_(0.8)Co_(0.1)Nb_(0.1))2O_(5+δ)(PBFCN_(0.1))surface under reducing atmosphere,providing significant amounts of reaction sites and good durability for hydrocarbon catalysis.Under a reducing atmosphere,cobalt facilitates the reduction of iron cations within PBFCN_(0.1),leading to the formation of CoFe alloy nanoparticles.This formation is accompanied by a cation exchange process,wherein,with the increase in temperature,partial cobalt ions are substituted by iron.Meanwhile,Co doping significantly enhance the electrical conductivity due to the stronger covalency of the Cosingle bondO bond compared with Fesingle bondO bond.A single cell with the configuration of PBFCN_(0.1)-Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)|SDC|Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3−δ)(BSCF)-SDC achieves an extremely low polarization resistance of 0.0163Ωcm^(2)and a high peak power density of 740 mW cm^(−2)at 800℃.The cell also shows stable operation for 120 h in H_(2)with a constant current density of 285 mA cm^(−2).Furthermore,employing wet C_(2)H_(6)as fuel,the cell demonstrates remarkable performance,achieving peak power densities of 455 mW cm^(−2)at 800℃and 320 mW cm^(−2)at 750℃,marking improvements of 36%and 70%over the cell with(PrBa)_(0.95)(Fe_(0.9)Nb_(0.1))_(2)O_(5+δ)(PBFN)-SDC at these respective temperatures.This discovery emphasizes how temperature influences alloy nanoparticles exsolution within doped layered perovskite ferrites materials,paving the way for the development of high-performance ceramic fuel cell anodes. 展开更多
关键词 Solid oxide fuel cell ANODE Ethane fuel NANOPARTICLE EXSOLUTION Layered perovskite ferrites
下载PDF
Microstructure and magnetic properties of Ni-Zn ferrites doped with MnO_2 被引量:2
2
作者 苏桦 张怀武 +1 位作者 唐晓莉 荆玉兰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期109-113,共5页
To improve the performance of Ni-Zn ferrites for power field use,the influence of MnO2 additive on the properties of Ni-Zn ferrites was investigated by the conventional powder metallurgy.The results show that MnO2 doe... To improve the performance of Ni-Zn ferrites for power field use,the influence of MnO2 additive on the properties of Ni-Zn ferrites was investigated by the conventional powder metallurgy.The results show that MnO2 does not form a visible second phase in the doping mass fraction range of(0-2.0%).The average grain size,sintering density and real permeability gradually decrease with the increase of the MnO2 content.And the DC resistivity continuously increases with the increase of MnO2 content.The saturation magnetization(magnetic moment in unit mass) first increases slightly when mass fraction of MnO2 is less than 0.4% MnO2,and then gradually decreases with increasing the MnO2 mass fraction due to the exchange interaction of the cations.When the excitation frequency is less than 1 MHz,the power loss(Pcv) continuously increases with increasing the MnO2 content due to the decrease of average grain size.However,when the excitation frequency exceeds 1 MHz,eddy current loss gradually becomes the predominant contribution to Pcv.And the sample with a higher resistivity favors a lower Pcv,except for the sample with 2.0% MnO2.The sample without additive has the best Pcv when worked at frequencies less than 1 MHz;and the sample with 1.6% MnO2 additive has the best Pcv when worked at frequencies higher than 1 MHz. 展开更多
关键词 Ni-Zn ferrite MNO2 DOPING magnetic properties
下载PDF
Mssbauer spectroscopic characterization of ferrites as adsorbents for reactive adsorption desulfurization 被引量:2
3
作者 陈霄 朱凯新 +2 位作者 M.A.Ahmed 王军虎 梁长海 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第5期727-734,共8页
Sulfur in transportation fuels is a major source of air pollution. New strategies for the desulfurization of fuels have been explored to meet the urgent need to produce cleaner gasoline. Adsorptive desulfurization(AD... Sulfur in transportation fuels is a major source of air pollution. New strategies for the desulfurization of fuels have been explored to meet the urgent need to produce cleaner gasoline. Adsorptive desulfurization(ADS) is one of the most promising complementary and alternative methods. Herein,nanocrystalline ferrite adsorbents were synthesized from metal nitrates and urea using a microwave assisted combustion method. A series of ADS experiments were performed using a fixed‐bed reactor to evaluate the ADS reactivity over the ferrites, which was found to have the order MgFe2O4〉NiFe2O4〉CuZnFe2O4〉ZnFe2O4〉CoFe2O4. This effect is explained by the fact that the low degree of alloying of Mg‐Fe and the doped Mg increased the interaction between Fe and S compounds,leading to a significant improvement in the desulfurization capability of the adsorbent.Additionally, Mg can dramatically promote the decomposition of thiophene. X‐ray diffraction and Mosbauer spectroscopy were used to characterize the fresh, regenerated, and sulfided adsorbents.Although the ferrite adsorbents were partially sulfided to bimetallic sulfides during the adsorption process, they were successfully regenerated after calcining at 500 °C in air. 展开更多
关键词 FERRITE Adsorptive desulfurization Msbauer spectroscopy REGENERATION
下载PDF
Effect of Cu ion substitution on structural and dielectric properties of Ni-Zn ferrites 被引量:1
4
作者 罗广圣 周卫平 +3 位作者 李建德 姜贵文 唐少龙 都有为 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3678-3684,共7页
A series of Cu-substituted Ni_(0.5-x)Cu_xZn_(0.5)Fe_2O_4(x=0.12,0.16,0.20,0.24 and 0.28) spinel ferrites were prepared by conventional ceramic method to investigate the effects of Cu compositional variation on the str... A series of Cu-substituted Ni_(0.5-x)Cu_xZn_(0.5)Fe_2O_4(x=0.12,0.16,0.20,0.24 and 0.28) spinel ferrites were prepared by conventional ceramic method to investigate the effects of Cu compositional variation on the structure and dielectric properties.XRD patterns demonstrate that all the samples are crystallized in single-phase cubic spinel structure and the lattice constant increases with increasing Cu content.White grains observed by SEM are Cu-rich phase.The dielectric constant versus frequency curve displays a normal dielectric behavior of spinel ferrites.While the frequency dependence of dielectric loss tangent is found to be abnormal,exhibiting a peak at certain frequency for all Cu-substituted Ni-Zn ferrites.A maximum of the resistivity is observed at x=0.2 due to the decrease of hopping electrons between Fe^(2+) and Fe^(3+) in per unit volume,which is in contrast with the Cu content dependence of dielectric constant and dielectric loss. 展开更多
关键词 FERRITE Cu ion substitution dielectric constant dielectric dispersion dielectric loss RESISTIVITY
下载PDF
Magnetic properties of La-Zn substituted Sr-hexaferrites by self-propagation high-temperature synthesis 被引量:6
5
作者 游李顺 乔梁 +3 位作者 郑精武 蒋梅燕 姜力强 盛嘉伟 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第1期81-84,共4页
The La-Zn substituted SrM-type ferrites with the composition of Sr1-xLaxFe12-xZnxO19 (x=0-0.4) were prepared by self-propagating high-temperature synthesis (SHS). The single SrM phase was detected by XRD in the as... The La-Zn substituted SrM-type ferrites with the composition of Sr1-xLaxFe12-xZnxO19 (x=0-0.4) were prepared by self-propagating high-temperature synthesis (SHS). The single SrM phase was detected by XRD in the as-received samples by controlling the Fe contents in the reagents. The substitution of La^3+and Zn^2+ obviously increased the magnetic properties of the as-prepared samples. The maximum improvements of Br, Hcb and (BH)m were 14.4%, 15.3% and 30.7%, respectively compared with that of the samples without La-Zn substitution. Microstructure observation by SEM showed that the SHS method benefited forming the better particle features and achieving the higher Hcj in comparison with the traditional firing method. 展开更多
关键词 high-temperature synthesis ferrites SUBSTITUTION magnetic properties rare earths
下载PDF
Microstructure and temperature dependence of magnetic properties of CuO-added MnZn ferrites 被引量:3
6
作者 LI Lezhong LAN Zhongwen +1 位作者 ZHU Xinghua YU Zhong 《Rare Metals》 SCIE EI CAS CSCD 2011年第3期287-291,共5页
MnZn ferrites with the chemical formula Mn0.68Zn0.25Fe2.07O4 have been prepared by a conventional ceramic technique. Then, the effects of CuO addition on the microstructure and temperature dependence of magnetic prope... MnZn ferrites with the chemical formula Mn0.68Zn0.25Fe2.07O4 have been prepared by a conventional ceramic technique. Then, the effects of CuO addition on the microstructure and temperature dependence of magnetic properties of MnZn ferrites were investigated by characterizing the fracture surface micrograph and measuring the magnetic properties over a temperature ranging from 25 to 120 C. The results show that the lattice constant and average grain size increase with the increase of CuO concentration. When the CuO concentration is below 0.07 wt.%, the initial permeability and saturation magnetic flux density increase monotonously, and the temperature of the secondary maximum peak in the curve of initial permeability versus temperature and the lowest power loss shift to a lower temperature with the increase of CuO concentra-tion. However, excessive CuO concentration (0.07 wt.%) results in abnormal grain growth and porosity increase, which causes the initial permeability and saturation magnetic flux density decrease and the power loss increase at room temperature. Furthermore, the temperature of the secondary maximum peak in the curve of initial permeability versus temperature and the lowest power loss shift to a higher temperature. 展开更多
关键词 inorganic compounds ferrites MICROSTRUCTURE magnetic properties copper oxide
下载PDF
Effect of Cation Proportion on the Structural and Magnetic Properties of Ni-Zn Ferrites Nano-Size Particles Prepared By Co-Precipitation Technique 被引量:3
7
作者 Santosh S. Jadhav Sagar E. Shirsath +2 位作者 B. G. Toksha S. J. Shukla K. M. Jadhav 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2008年第4期381-386,共6页
Ferrites having general formula Ni1-xZnxFe2O4 with x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 were prepared by wet chemical co-precipitation method. The structural and magnetic properties were studied by means of X-... Ferrites having general formula Ni1-xZnxFe2O4 with x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 were prepared by wet chemical co-precipitation method. The structural and magnetic properties were studied by means of X-ray diffraction, magnetization, and AC susceptibility measurements. The X-ray analysis confirmed the single-phase formation of the samples. The lattice parameter obtained from XRD data was found to increase with Zn content x. The cation distribution was studied by X-ray intensity ratio calculations. Magnetization results exhibit collinear ferrimagnetic structure for x≤0.4, and which changes to non-collinear for x〉0.4. Curie temperature TC obtained from AC susceptibility data decreases with increasing x. 展开更多
关键词 ferrites MAGNETIZATION Yafet-Kittel angle Curie temperature
下载PDF
Effects of Heating Processing on Microstructure and Magnetic Properties of Mn-Zn Ferrites Prepared via Chemical Co-precipitation 被引量:2
8
作者 陈世杰 XIA Jingbing 代建清 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期684-688,共5页
The fine powders of Mn-Zn ferrites with uniform size were prepared via chemical co- precipitation method. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM)... The fine powders of Mn-Zn ferrites with uniform size were prepared via chemical co- precipitation method. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), frequency dependence of permeability and metallographical microscope were used to investigate the crystal structure, surface topography and magnetic properties of the powders and the sintering samples. The experimental results demonstrate that the precursor powders have formed a pure phase cubic spinel MnxZn1-xfe2O4 while in the reactor and show definite magnetism, which can solve the difficult issue in washing process effectively. When calcined beneath 450 ℃, the powders have intact crystal form and the crystallite size is less than 20 nm. Comparison tests of sintering temperatures show that 1 300 ℃ is the ideal sintering temperature for Mn-Zn ferrites prepared by using the chemical co-precipitation. 展开更多
关键词 Mn-Zn ferrites chemical co-precipitation method surface morphology MAGNETICPROPERTIES
下载PDF
Absorption-Dominant mmWave EMI Shielding Films with Ultralow Reflection using Ferromagnetic Resonance Frequency Tunable M-Type Ferrites 被引量:2
9
作者 Horim Lee Seung Han Ryu +3 位作者 Suk Jin Kwon Jae Ryung Choi Sang‑bok Lee Byeongjin Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期1-23,共23页
Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-domina... Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications. 展开更多
关键词 5G communication MmWave EMI shielding M-type ferrites
下载PDF
Effect of Sintering Temperature and Zinc Content on Some Properties of Li-Zn Ferrites 被引量:2
10
作者 A.M.El-Saird (Inorganic Chemistry Dept., National Research Centre, Dokki, Cairo, Egypt)S.B.Hanna(Refractories and Building Materials Dept., National Research Centre, Dokki, Cairo, Egypt) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1996年第5期329-334,共6页
Li-Zn mixed ferrites with composition formula ZnxLi0.5-x/2Fe2.5-x/2O4 (0.2≤x≤0.8) were prepared by the usual ceramic method in 1000~1150℃. The effects of Zn substitution and sintering temperature on the formation, ... Li-Zn mixed ferrites with composition formula ZnxLi0.5-x/2Fe2.5-x/2O4 (0.2≤x≤0.8) were prepared by the usual ceramic method in 1000~1150℃. The effects of Zn substitution and sintering temperature on the formation, densification, microstructure and a.c. electrical conductivity have been studied. Under the effect of changing the firing temperature and Zn content, high sintered Li-Zn ferrite bodies are achieved. More fine structure bodies having high electrical resistance are obtained at high Zn content 展开更多
关键词 LI BDH Effect of Sintering Temperature and Zinc Content on Some Properties of Li-Zn ferrites ZN
下载PDF
Preparation and Characterization of Some Ferrites from CuO-ZnO-Fe_2O_3 Mixtures 被引量:2
11
作者 A.A.Hanna H.I Saleh and M.Sh.Khalil(Inorg. Chem. Dept., National Research Centre, Dokki, Cairo, Egypt) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第3期236-240,共5页
The ferrites of Cuo-ZnO-Fe2o3 solid solution series near the molar ratio of ZnxCu1-x were prepared by direct heating of their coprecipitated hydroxides using NH4OH as precipitating agent where x=0.0, 0.2, 0.5, 0.8 and... The ferrites of Cuo-ZnO-Fe2o3 solid solution series near the molar ratio of ZnxCu1-x were prepared by direct heating of their coprecipitated hydroxides using NH4OH as precipitating agent where x=0.0, 0.2, 0.5, 0.8 and 1.0. Additional amounts of Cu and Zn sulphates were added to compensate the loss during the coprecipitation of the hydroxides. The ferritized samples were characterized by chemical analysis, XRD. DTA, TGA and SEM. XRD of both Zn0.2Cu0.8Fe2O4 and Zn0.5Cu0.5 Fe2O4 that indicates the formation of a heterogeneous ferrite material of ZnFe2O4 and CuFe2O4 mixed with variable amounts of α-Fe2O3. Zn and Cu ferrites were observed only in Zn0.8Cu0.2Fe2O4.From TGA-time relation, the activation energy of the different transformation phases were calculated. It is found that, the activation energy of ZnFe2O4 is slightly equal to 3/2 of that for CuFe2O4. Dielectric measurements show that the electrical behaviour depends on the ordering and disordering of the phases. 展开更多
关键词 CuO ZnO FE Preparation and Characterization of Some ferrites from CuO-ZnO-Fe2O3 Mixtures
下载PDF
Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route 被引量:1
12
作者 Furhaj Ahmed Sheikh Muhammad Khalid +6 位作者 Muhammad Shahzad Shifa H M Noor ul Huda Khan Asghar Sameen Aslam Ayesha Perveen Jalil ur Rehman Muhammad Azhar Khan Zaheer Abbas Gilani 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第8期408-416,共9页
Spinel ferrites have a significant role in high-tech applications.In the present work nano-crystalline ferrites having general formula Co0.5Cd0.5BixFe2-xO4 with(x=0.0,0.05,0.1,0.15,0.2,and 0.25)are synthesized via mic... Spinel ferrites have a significant role in high-tech applications.In the present work nano-crystalline ferrites having general formula Co0.5Cd0.5BixFe2-xO4 with(x=0.0,0.05,0.1,0.15,0.2,and 0.25)are synthesized via micro-emulsion route.Powder x-ray diffraction(XRD)studies discover the FCC spinel structure.Crystalline size is calculated in a range of 11 nm-15 nm.Lattice parameter calculations are reduced due to its substitution which leads to the exchange of large ionic radius of Fe^3+for small ionic radius of Bi^3+.The x-ray density is analyzed to increase with doping.Fourier transform infrared spectroscopy(FTIR)is performed to analyze absorption band spectra.The two absorption bands are observed in a range of 400 cm^-1-600 cm^-1,and they are the characteristic feature of spinel structure.Thermo-gravimetric analysis(TGA)reveals the total weight loss of nearly 1.98%.Dielectric analysis is carried out by impedance analyzer in a frequency span from 1 MHz to 3 GHz by using the Maxwell Wagner model.Dielectric studies reveal the decrease of dielectric parameters.The alternating current(AC)conductivity exhibits a plane behavior in a low frequency range and it increases with the applied frequency increasing.This is attributed to the grain effects in a high frequency range or may be due to the reduction of porosity.Real and imaginary part of impedance show the decreasing trend which corresponds to the grain boundary action.The imaginary modulus shows the occurrence of peak that helps to understand the interfacial polarization.Cole-Cole graph shows a single semicircle which confirms that the conduction mechanism is due to the grain boundaries at low frequency.Dielectric studies reveal the applicability of these ferrites in high frequency equipment,microwave applications,high storage media,and semiconductor devices. 展开更多
关键词 CO-FERRITE NANOCRYSTALLINE ferrites XRD MICROEMULSION DIELECTRIC properties
下载PDF
Magnetic properties and microstructures of SnO_2 doped Mn-Zn ferrites 被引量:1
13
作者 NG Foong-Kee SALE Frank R. 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期445-449,共5页
The effects of additive SnO2 (0.4wt.%), with and without SiO2 (0.02wt.%) and/or CaO (0.04wt.%), on the microstructure and magnetic properties of Mn-Zn ferrites were reported. The results reveal that SnO2 on its own in... The effects of additive SnO2 (0.4wt.%), with and without SiO2 (0.02wt.%) and/or CaO (0.04wt.%), on the microstructure and magnetic properties of Mn-Zn ferrites were reported. The results reveal that SnO2 on its own increases the initial permeability (μi) slightly, but SnO2 with SiO2 and/or CaO decreases the values of μi. However, ferrites with SnO2 additions have reduced power losses. The separate contributions of hysteresis loss and eddy current loss to the total power loss show that SnO2 (with or without SiO2 and/or CaO) doping increases the hysteresis loss slightly, but SnO2 doping alone reduces the eddy current loss significantly (~14%). The additions of SiO2 or CaO further decrease the eddy current loss, and by interaction of SnO2-CaO-SiO2, the eddy current loss is reduced by more than 20%. These magnetic and microstructural effects were discussed in terms of the additive-impurity interaction, the existence of grain boundary phases, and the effective bulk and grain boundary resistivities of the ferrites. 展开更多
关键词 Mn-Zn ferrites SnO2 doping magnetic properties microstructure
下载PDF
Dissolution Behavior of Delta Ferrites in Martensitic Heat-resistant Steel for Ultra Supercritical Units Blades 被引量:1
14
作者 LI Junru WANG Leiying +3 位作者 WANG Hailong ZHANG Pengfei GUO Fanghui ZHANG Xu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第4期730-734,共5页
The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental resul... The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental results show that the chemical compositions of delta ferrites negligibly change with dissolution time.The decrease of dissolution rate of delta ferrites with dissolution time should be attributed to the change of shape and distribution of delta ferrites.The shape of delta ferrites tends to transfer from polygon to sphere with dissolution time,causing the decrease of specific surface area of delta ferrites.The distribution position of delta ferrites tends to transfer from boundaries of austenite grains to interior of austenite grains with dissolution time,decreasing the diffusion coefficient of alloy atoms.Both them decrease the dissolution rate of delta ferrites. 展开更多
关键词 delta ferrites dissolution rate martensitic heat-resistant steel phase transformation carbides
下载PDF
Effect of V2O5-CaCO3-Nb2O5 Contents on Properties of Low Power Loss Mn-Zn Ferrites 被引量:1
15
作者 宋晓敏 龚小燕 +2 位作者 李纲 彭声谦 邵峰 《Journal of Shanghai University(English Edition)》 CAS 2005年第6期561-564,共4页
Effect of the content of dopants in the manganese-zinc ferrites on the low power loss is studied by measuring magnetic properties and observing the grain boundary structures. The Mn0.738Zn0.206Fe2.066O4 composition po... Effect of the content of dopants in the manganese-zinc ferrites on the low power loss is studied by measuring magnetic properties and observing the grain boundary structures. The Mn0.738Zn0.206Fe2.066O4 composition powders were prepared by using conventional ceramic powder processing technique. The microstructure of grain boundary was observed by scanning electron microscope (SEM). It has been found that power loss is greatly dependent upon the content of the additives. 展开更多
关键词 Mn-Zn ferrites power loss magnetic properties.
下载PDF
Preparation and Magnetic Properties of SrFe12O19 Ferrites Suitable for Use in Self-Biased LTCC Circulators 被引量:1
16
作者 彭龙 胡跃斌 +4 位作者 郭成 李乐中 王瑞 胡云 涂小强 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第1期150-153,共4页
Strontium ferrites with different Bi2O3 content are prepared by the solid phase method, and their magnetic properties are investigated primarily. The Bi2O3 additive and sintering temperature separately exhibit a stron... Strontium ferrites with different Bi2O3 content are prepared by the solid phase method, and their magnetic properties are investigated primarily. The Bi2O3 additive and sintering temperature separately exhibit a strong effect on the sintering density, crystal structure, and magnetic properties of the ferrites. As to the ferrites with 3 wt% Bi2O3, the relatively high sintering density ρs, saturation magnetization Ms, and intrinsic coercivity HCi can be obtained at a low sintering temperature of 900℃ even much lower. Furthermore, the effective magnetic anisotropy constant Keff and magnetic anisotropy field Ha of the ferrites are calculated from the magnetization curve by the law of approach to saturation. It is suggested that the low-temperature sintered SrFe12O19 ferrites with Ms of 285.6 kA/m and Ha of 1564.6 kA/m possess a significant potentiality for applying in the self-biased low-temperature co-fired ceramics circulators from 34 to 40GHz. 展开更多
关键词 Bi Preparation and Magnetic Properties of SrFe ferrites Suitable for Use in Self-Biased LTCC Circulators
下载PDF
Determination of impurity elements in MnZn ferrites by inductively coupled plasma mass spectrometry 被引量:3
17
作者 张萍 符靓 +1 位作者 马俊才 唐有根 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期37-42,共6页
An inductively coupled plasma mass spectrometry(ICP-MS) method was developed for the determination of Na, Mg, Al,K, Ca, Ti, Cr, Co, Ni, Cu, Ga, As, Mo, Ag, Cd and Pb in MnZn ferrites. The sample was digested by HNO3+H... An inductively coupled plasma mass spectrometry(ICP-MS) method was developed for the determination of Na, Mg, Al,K, Ca, Ti, Cr, Co, Ni, Cu, Ga, As, Mo, Ag, Cd and Pb in MnZn ferrites. The sample was digested by HNO3+HCl with microwave digestion followed by dilution with ultrapure water, then the above 16 impurity elements in the solution were analyzed directly by ICP-MS. The impurity elements were introduced by the helium gas or hydrogen gas into the octopole reaction system(ORS) to eliminate the polyatomic interferences caused by the high salty matrixes. The matrix effect was minimized through matrix matching,and Be, Y and Rh were used as internal standard elements. The working parameters of the instrument were optimized. The results show that the method has good precision and high accuracy. The detection limits for the investigated elements are in the range of0.9-37.5 ng/L, the relative standard deviation of each element is within 1.1%-4.8%, and the recovery of each element is 90%-108%. 展开更多
关键词 inductively coupled plasma mass spectrometry(ICP-MS) MnZn ferrites octopole reaction system(ORS) impurity elements
下载PDF
Thermoelectric Power of Cu-Zn Ferrites 被引量:1
18
作者 Hussain Abd-Elkariem Dawoud 《Materials Sciences and Applications》 2011年第11期1572-1577,共6页
A series of Cu-Zn mixed ferrites with composition formula Cu1–xZnxFe2O4 is prepared by the double sintering ceramic technique. Thermoelectric power studies are performed over a temperature range of 300 to 800 k by a ... A series of Cu-Zn mixed ferrites with composition formula Cu1–xZnxFe2O4 is prepared by the double sintering ceramic technique. Thermoelectric power studies are performed over a temperature range of 300 to 800 k by a deferential method. The results showed a negative value for the Seebeck coefficient S for all samples, and all compositions exhibited an n-type semiconductors behavior in the measured range of temperature. The values of charge carrier concentration n and the Fermi energy were determined. The values of n were found to decrease as temperature increased, while Fermi energy directed to more negative values when Zn content is increased. On the basis of these results a mechanism for the conduction in Cu-Zn ferrites is suggested and the properties of the mention compounds were determined. 展开更多
关键词 ferrites THERMOELECTRIC POWER FERMI ENERGY SEEBECK COEFFICIENT
下载PDF
Magnetic Hysteresis and Complex Initial Permeability of Cr<sup>3+</sup>Substituted Mn-Zn Ferrites 被引量:1
19
作者 F. Alam M. L. Rahman +1 位作者 M. H. R. Khan A. K. M. Akther Hossain 《Journal of Modern Physics》 2014年第14期1223-1233,共11页
The impact of Cr3+ ion on the magnetic properties of Mn0.50Zn0.50CrxFe2-xO4 (with x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) has been studied. Ferrite samples were synthesized by combustion method and sintered at various te... The impact of Cr3+ ion on the magnetic properties of Mn0.50Zn0.50CrxFe2-xO4 (with x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) has been studied. Ferrite samples were synthesized by combustion method and sintered at various temperatures (1250°C, 1300°C and 1350°C). The structural properties were investigated by means of X-ray diffraction patterns and indicated that the samples possess single phase cubic spinel structure. The lattice parameter decreases with the increase in Cr3+ content, as the ionic radius of Cr3+ ion is smaller than that of Fe3+. The average grain size (D), bulk density (ρB) and initial permeability (μi’ )decreases with increase in Cr3+ content whereas porosity follows its opposite trend. The ρB was found to increase with increase in Cr3+ content as the sintering temperature (Ts) is increased from 1250°C to 1350°C. The Ts affects the densification, grain growth and (μi’ ) of the samples. The (μi’ ) strongly depends on average grain size, density and intragranular porosity. The B-H loops of the compositions were measured at room temperature. The saturation magnetization (Ms), coercivity (Hc) and hysteresis losses were studied as a function of Cr3+ content. The Ms was found to decrease with the increase of Cr3+ content, which is attributed to the dilution of A-B interaction. 展开更多
关键词 MN-ZN ferrites Initial Permeability SATURATION MAGNETIZATION HYSTERESIS Loss
下载PDF
Study of the Dielectric Behaviour of Cr-Doped Zinc Nano Ferrites Synthesized by Sol-Gel Method 被引量:1
20
作者 Mamilla Lakshmi Katrapally Vijaya Kumar Krishnan Thyagarajan 《Advances in Materials Physics and Chemistry》 2016年第6期141-148,共8页
The series of Cr-Zn nano ferrites having the general composition Cr<sub>x</sub>ZnFe<sub>2-x</sub>O<sub>4</sub> (0 ≤ x ≤ 0.5) have been synthesized successfully in the nanocrystall... The series of Cr-Zn nano ferrites having the general composition Cr<sub>x</sub>ZnFe<sub>2-x</sub>O<sub>4</sub> (0 ≤ x ≤ 0.5) have been synthesized successfully in the nanocrystalline form using the sol-gel method. The samples were sintered at 900°C for 3 hours. The effect of chromium substitution on dielectric properties of Zn-ferrites is reported in this paper. The analysis of XRD patterns revealed the formation of single phase cubic spinel structure for all the Cr-Zn ferrite samples. The FTIR spectra show two strong absorption bands in the range of 400 - 600 cm<sup>-1</sup>, which corroborate the spinel structure of the samples. The average grain size was found to be in the nanometer range and of the order of 43 - 63 nm obtained using TEM images. The lattice parameter and crystallite size decrease with increase in Cr concentration (x). The investigation on dielectric constant (ε'), dissipation factor (D) and ac conductivity (σ<sub>ac</sub>) was carried out at a fixed frequency 1 kHz and in the frequency range of 100 Hz to 1 MHz at room temperature using LCR meter. The plots of dielectric constant (ε') versus frequency show the normal dielectric behavior of spinel ferrites. The value of ac conductivity (σ<sub>ac</sub>) increases with increase in frequency for all the compositions. The appearance of the peak for each composition in the dissipation factor versus frequency curve suggests the presence of relaxing dipoles in the Cr-Zn nano ferrite samples. It is also found that the shifting of the relaxation peak towards lower frequency side with an increase in chromium content (x) is due to the strengthening of dipole-dipole interactions. The composition and frequency dependence of the dielectric constant, dielectric loss and ac-conductivity are explained based on the Koop’s two-layer model, Maxwell-Wagner polarization process, and Debye relaxation theory. 展开更多
关键词 Cr-Zn Nano ferrites Dielectric Constant Dissipation Factor AC Conductivity Dipole-Dipole Interaction
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部