期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Partial Atomic Tin Nanocomplex Pillared Few-Layered Ti_(3)C_(2)Tx MXenes for Superior Lithium-Ion Storage 被引量:8
1
作者 Shunlong Zhang Hangjun Ying +2 位作者 Bin Yuan Renzong Hu Wei-Qiang Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第6期176-189,共14页
MXenes have attracted great interest in various fields,and pillared MXenes open a new path with larger interlayer spacing.However,the further study of pillared MXenes is blocked at multilayered state due to serious re... MXenes have attracted great interest in various fields,and pillared MXenes open a new path with larger interlayer spacing.However,the further study of pillared MXenes is blocked at multilayered state due to serious restacking phenomenon of few-layered MXene nanosheets.In this work,for the first time,we designed a facile NH4+method to fundamentally solve the restacking issues of MXene nanosheets and succeeded in achieving pillared few-layered MXene.Sn nanocomplex pillared few-layered Ti3C2Tx(STCT)composites were synthesized by introducing atomic Sn nanocomplex into interlayer of pillared few-layered Ti3C2Tx MXenes via pillaring technique.The MXene matrix can inhibit Sn nanocomplex particles agglomeration and serve as conductive network.Meanwhile,the Sn nanocomplex particles can further open the interlayer spacing of Ti3C2Tx during lithiation/delithiation processes and therefore generate extra capacity.Benefiting from the“pillar effect,”the STCT composites can maintain 1016 mAh g^?1 after 1200 cycles at 2000 mA g^?1 and deliver a stable capacity of 680 mAh g^?1 at 5 A g^?1,showing one of the best performances among MXene-based composites.This work will provide a new way for the development of pillared MXenes and their energy storage due to significant breakthrough from multilayered state to few-layered one. 展开更多
关键词 PILLARED MXene few-layered MXene TIN nanocomplex LITHIUM-ION STORAGE
下载PDF
Decoration of carbon encapsulated nitrogen-rich MoxN with few-layered MoSe2 nanosheets for high-performance sodium-ion storage 被引量:1
2
作者 Tao Lu Baoquan Liu +5 位作者 Fanyan Zeng Guo Cheng Shile Chu Meilan Xie Zhi Chen Zhaohui Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期332-340,I0009,共10页
Transition metal nitrides have become the focus of research in sodium ion batteries(SIBs)due to their unique metal properties and high theoretical capacity.However,the low actual capacity is still the main bottleneck ... Transition metal nitrides have become the focus of research in sodium ion batteries(SIBs)due to their unique metal properties and high theoretical capacity.However,the low actual capacity is still the main bottleneck for their application.Herein,using Mo-aniline frameworks as precursors,the carbon encapsulated nitrogen-rich Mo_(x)N is decorated by few-layered MoSe_(2) nanosheets(MoSe_(2)@Mo_(x)N/C-I)after the facile calcinating,selenizing,and nitriding.The carbon encapsulation can effectively strengthen the structural stability of Mo_(x)N.The nitrogen-rich Mo_(x)N and decoration of few-layered MoSe_(2) can create rich heterointerfaces and extra active sites for rapid sodium-ion storage,thus promoting reaction kinetics and improving actual capacity.The MoSe_(2)@Mo_(x)N/C-I as an anode achieves a large reversible capacity of 522.8 mAh g^(-1)at 0.1 A g^(-1),and 254.3 mAh g^(-1)capacity is obtained after 6000 cycles at 5.0 A g^(-1),showing signally improved sodium-ion storage properties.The storage mechanisms and kinetic behaviors are described systematically via the advanced testing techniques and density functional theory(DFT)calculations.It is found that the nitrogen-rich Mo_(x)N as the substrate is the basis of long cycling stability,and the few-layered MoSe_(2) are the key to improving actual capacity.This work indicates that the decoration of few-layered selenides has a broad application prospect in high-performance metal-ion batteries. 展开更多
关键词 few-layered MoSe_(2)nanosheets DECORATION Carbon encapsulation Nitrogen-rich MoxN Sodium ion batteries
下载PDF
Few-layered MoS_(2)anchored on 2D porous C_(3)N_(4)nanosheets for Ptfree photocatalytic hydrogen evolution 被引量:4
3
作者 Nan Wang Dongxu Wang +7 位作者 Aiping Wu Siyu Wang Zhihui Li Chengxu Jin Youming Dong Fanyi Kong Chungui Tian Honggang Fu 《Nano Research》 SCIE EI CSCD 2023年第2期3524-3535,共12页
The Pt-free photocatalytic hydrogen evolution(PHE)has been the focus in the photocatalytic field.The catalytic system with the large accessible surface and good mass-transfer ability,as well as the intimate combinatio... The Pt-free photocatalytic hydrogen evolution(PHE)has been the focus in the photocatalytic field.The catalytic system with the large accessible surface and good mass-transfer ability,as well as the intimate combination of co-catalyst with semiconductor is promising for the promotion of the application.Here,we have reported the design of the two-dimensional(2D)porous C_(3)N_(4)nanosheets(PCN NS)intimately combined with few-layered MoS_(2)for the high-effective Pt-free PHE.The PCN NS were synthesized based on peeling the melamine–cyanuric acid precursor(MC precursor)by the triphenylphosphine(TP)molecular followed by the calcination,mainly due to the matched size of the(100)plane distance of the precursor(0.8 nm)and the height of TP molecular.The porous structure is favorable for the mass-transfer and the 2D structure having large accessible surface,both of which are positive to promote the photocatalytic ability.The few-layered MoS_(2)are grown on PCN to give 2D MoS_(2)/PCN composites based on anchoring phosphomolybdic acid(PMo_(12))cluster on polyetherimide(PEI)-modified PCN followed by the vulcanization.The few-layered MoS_(2)have abundant edge active sites,and its intimate combination with porous PCN NS is favorable for the faster transfer and separation of the electrons.The characterization together with the advantage of 2D porous structure can largely promote the photocatalytic ability.The MoS_(2)/PCN showed good PHE activity with the high hydrogen production activity of 4,270.8μmol·h^(−1)·g^(−1)under the simulated sunlight condition(AM1.5),which was 7.9 times of the corresponding MoS_(2)/bulk C_(3)N_(4)and 12.7 times of the 1 wt.%Pt/bulk C_(3)N_(4).The study is potentially meaningful for the synthesis of PCN-based catalytic systems. 展开更多
关键词 two-dimensional porous C_(3)N_(4)nanosheets photocatalysis few-layered MoS_(2) Pt-free hydrogen evolution
原文传递
Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries 被引量:12
4
作者 Hao Ren Jin Zhao +3 位作者 Lan Yang Qinghua Liang Srinivasan Madhavi Qingyu Yan 《Nano Research》 SCIE EI CAS CSCD 2019年第6期1347-1353,共7页
Considering the high safety,low-cost and high capacity,aqueous zinc ion batteries have been a potential candidate for energy storage ensuring smooth electricity supply.Herein,we have synthesized inverse opal manganese... Considering the high safety,low-cost and high capacity,aqueous zinc ion batteries have been a potential candidate for energy storage ensuring smooth electricity supply.Herein,we have synthesized inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets by a solution template method at mild temperature.The ultrathin nanosheets with the thickness as small as 1 nm are well separated without obvious aggregation.Used as cathode material for aqueous zinc ion batteries,the few-layered ultrathin nanosheets combined with the inverse opal structure guarantee excellent performance.A high specific discharge capacity of 262.9 mAh·g^-1 is retained for the 100th cycle at a current density of 300 mA·g^-1 with a high capacity retention of 95.6%.A high specific discharge capacity of 121 mAh·g^-1 at a high current density of 2,000 mA·g^-1 is achieved even after 5,000 long-term cycles.The ex-situ X-ray diffraction (XRD) patterns,selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) results demonstrate that the discharge/charge processes involve the reversible formation of zinc sulfate hydroxide hydrate on the cathode while in-plane crystal structure of the layered bimessite MnO2 could be maintained.This unique structured MnO2 is a promising candidate as cathode material for high capacity,high rate capability and long-term aqueous zinc-ion batteries. 展开更多
关键词 inverse OPAL ULTRATHIN few-layered NANOSHEETS MnO2 zinc ion batteries
原文传递
Efficient and Large-Scale Synthesis of Few-Layered Graphene Using an Arc-Discharge Method and Conductivity Studies of the Resulting Films 被引量:8
5
作者 Yingpeng Wu Bin Wang +4 位作者 Yanfeng Ma Yi Huang Na Li Fan Zhang Yongsheng Chen 《Nano Research》 SCIE EI CSCD 2010年第9期661-669,共9页
An arc-discharge method using a buffer gas containing carbon dioxide has been developed for the efficient and large-scale synthesis of few-layered graphene.The resulting samples of few-layered graphene,well-dispersed ... An arc-discharge method using a buffer gas containing carbon dioxide has been developed for the efficient and large-scale synthesis of few-layered graphene.The resulting samples of few-layered graphene,well-dispersed in organic solvents such as N,N-dimethylformamide(DMF)and 1,2-dichlorobenzene(o-DCB),were examined by transmission electron microscopy(TEM),X-ray diffraction(XRD),Raman spectroscopy,atomic force microscopy(AFM),and thermal gravimetric analysis(TGA).The electrical conductivity and transparency of flexible films prepared using a direct solution process have also been studied. 展开更多
关键词 Graphene ARC-DISCHARGE few-layered film CONDUCTIVITY
原文传递
Fabrication of Fe nanocomplex pillared few-layered Ti_(3)C_(2)T_(x)MXene with enhanced rate performance for lithium-ion batteries 被引量:5
6
作者 Pengfei Huang Shunlong Zhang +4 位作者 Hangjun Ying Wentao Yang Jianli Wang Rongnan Guo Weiqiang Han 《Nano Research》 SCIE EI CAS CSCD 2021年第4期1218-1227,共10页
Pillaring technologies have been considered as an effective way to improve lithium storage performance of Ti_(3)C_(2)T_(x)MXene.Nevertheless,the pillared hybrids suffer from sluggish Li^(+)diffusion kinetics and elect... Pillaring technologies have been considered as an effective way to improve lithium storage performance of Ti_(3)C_(2)T_(x)MXene.Nevertheless,the pillared hybrids suffer from sluggish Li^(+)diffusion kinetics and electronic transportation due to the compact multi-layered MXene structure,thus exhibiting inferior rate performance.Herein,the few-layered Ti_(3)O_(2)MXene(f-Ti_(3)C_(2)MXene)which is free from restacking can be prepared quickly based on the NH4^(+)ions method.Besides,Fe nanocomplex pillared few-layered Ti_(3)C_(2)T_(x)(FPTC)heterostructures are fabricated via the intercalation of Fe ions into the interlayer of f-Ti_(3)C_(2)MXene.The f-Ti_(3)C_(2)MXene which is immune to restacking can provide a highly conductive substrate for the rapid transport of Li+ions and electrons and possess adequate electrolyte accessible area.Moreover,f-Ti_(3)C_(2)MXene can efficiently relieve the aggregation,prevent the pulverization and buffer the large volume change of Fe nanocomplex during lithiation/delithiation process,leading to enhanced charge transfer kinetics and excellent structural stability of FPTC composites.Consequently,the FPTC hybrids exhibit a high capacity of 535 mAh·g^(-1)after 150 cycles at 0.5 A·g^(-1)and an enhanced rate performance with 310 mAh·g^(-1)after 850 cycles at 5 A·g^(-1).This strategy is facile,universal and can be extended tofabricate various few-layered MXene-derived hybrids with superior rate capability. 展开更多
关键词 Feions intercalation few-layered MXene pillared MXene lithium-ion batteries
原文传递
The confined growth of few-layered and ultrashort-slab Ni-promoted MoS_(2)on reduced graphene oxide for deep-degree hydrodesulfurization 被引量:3
7
作者 Dongxu Wang Lei Wang +6 位作者 Yanqing Jiao Aiping Wu Haijing Yan Xin Kang Chungui Tian Jiancong Liu Honggang Fu 《Nano Research》 SCIE EI CSCD 2022年第8期7052-7062,共11页
Hydrodesulfurization(HDS)is an essential process in clean fuel oil production,however,the huge challenge is the synthesis of the catalyst with plentiful active sites.Here,we have shown the design of few-layered,ultras... Hydrodesulfurization(HDS)is an essential process in clean fuel oil production,however,the huge challenge is the synthesis of the catalyst with plentiful active sites.Here,we have shown the design of few-layered,ultrashort Ni-Mo-S slabs dispersed on reduced graphene oxide(Ni-Mo-S/rGO-A)based on anchoring[PMo_(12)O_(40)]3−clusters and Ni^(2+)on polyethyleneimine(PEI)-modified graphite oxide.Structural characterizations(transmission electron microscopy(TEM),X-ray absorption fine structure(XAFS),etc.)show that Ni-Mo-S slabs with predominant monolayer and partial substitution of edge Mo atoms by isolated Ni atoms have rich accessible edge Ni-Mo-S sites and high sulfurization degree.All virtues endow it with plentiful edge-active sites,and consequently,the enhanced performance for hydrodesulfurization of dibenzothiophene(DBT).The hydrodesulfurization proceeds via a more-favorable direct desulfurization(DDS)route with a reaction rate constant(kHDS)of 48.6×10^(−7)mol·g^(−1)·s^(−1)over Ni-Mo-S/rGO-A catalyst,which is 4.3 times greater than that over traditional Ni-Mo-S/Al_(2)O_(3)catalyst and at the forefront of reported catalysts. 展开更多
关键词 few-layered Ni-promoted MoS_(2) confined growth reduced graphene oxide high sulfurization degree HYDRODESULFURIZATION
原文传递
Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance 被引量:3
8
作者 Tao Yang Hui-juan Liu +4 位作者 Fan Bai En-hui Wang Jun-hong Chen Kuo-Chih Chou Xin-mei Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第2期220-231,共12页
Currently,developing supercapacitors with robust cycle stability and suitability for wide-temperature-range operations is still a huge challenge.In the present work,few-layer hexagonal boron nitride nanosheets(h-BNNSs... Currently,developing supercapacitors with robust cycle stability and suitability for wide-temperature-range operations is still a huge challenge.In the present work,few-layer hexagonal boron nitride nanosheets(h-BNNSs)with a thickness of 2−4 atomic layers were fabricated via vacuum freeze-drying and nitridation.Then,the h-BNNSs/reduced graphene oxide(rGO)composite were further prepared using a hydrothermal method.Due to the combination of two two-dimensional(2D)van der Waals-bonded materials,the as-prepared h-BNNSs/rGO electrode exhibited robustness to wide-temperature-range operations from−10 to 50℃.When the electrodes worked in a neutral aqueous electrolyte(1 M Na2SO4),they showed a great stable cycling performance with almost 107%reservation of the initial capacitance at 0℃ and 111% at 50℃ for 5000 charge−discharge cycles. 展开更多
关键词 few-layer hexagonal boron nitride wide-temperature-range operation cycling performance
下载PDF
Monitoring dynamics of defects and single Fe atoms in N-functionalized few-layer graphene by in situ temperature programmed scanning transmission electron microscopy
9
作者 Rosa Arrigo Takeo Sasaki +2 位作者 June Callison Diego Gianolio Manfred Erwin Schuster 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期520-530,I0014,共12页
In this study,we aim to contribute an understanding of the pathway of formation of Fe species during top-down synthesis of dispersed Fe on N-functionalized few layer graphene,widely used in electrocatalysis.We use X-r... In this study,we aim to contribute an understanding of the pathway of formation of Fe species during top-down synthesis of dispersed Fe on N-functionalized few layer graphene,widely used in electrocatalysis.We use X-ray absorption spectroscopy to determine the electronic structure and coordination geometry of the Fe species and in situ high angle annular dark field scanning transmission electron microscopy combined with atomic resolved electron energy loss spectroscopy to localize these,identify their chemical configuration and monitor their dynamics during thermal annealing.We show the high mobility of peripheral Fe atoms,first diffusing rapidly at the trims of the graphene layers and at temperatures as high as 573 K,diffusing from the edge planes towards in-plane locations of the graphene layers forming three-,four-coordinated metal sites and more complexes polynuclear Fe species.This process occurs via bond C-C breaking which partially reduces the extension of the graphene domains.However,the vast majority of Fe is segregated as a metal phase.This dynamic interconversion depends on the structural details of the surrounding graphitic environment in which these are formed as well as the Fe loading.N species appear stabilizing isolated and polynuclear Fe species even at temperatures as high as 873 K.The significance of our results lies on the fact that single Fe atoms in graphene are highly mobile and therefore a structural description of the electroactive sites as such is insufficient and more complex species might be more relevant,especially in the case of multielectron transfer reactions.Here we provide the experimental evidence of the formation of these polynuclear Fe-N sites and their structural characteristics. 展开更多
关键词 HAADF-STEM Single Fe atom sites N-doped few-layer graphene Dinuclear Fe species
下载PDF
Millimeter-sized few-layer graphene sheets with aligned channels for fast lithium-ion charging kinetics
10
作者 Yu-Qi Zhou Xiao-Ling Dong +3 位作者 Wen-Cui Li Guang-Ping Hao Dong Yan An-Hui Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期62-69,共8页
Assembly of the top-down graphene units mostly results in 3D porous structure with randomly organized pores.The direct bottom-up synthesis of macroscopic 2D graphene sheets with organized pores are long sought in mate... Assembly of the top-down graphene units mostly results in 3D porous structure with randomly organized pores.The direct bottom-up synthesis of macroscopic 2D graphene sheets with organized pores are long sought in materials chemistry field,but rarely achieved.Herein,we present a self-catalysisassisted bottom-up route usingL-glutamic acid and iron chloride as starting materials for the fabrication of the millimeter-sized few-layer graphene sheets with aligned porous channels parallel to the 2D direction.The amino-and carboxyl-functional groups inL-glutamic acid can coordinate with iron cations,thus allowing an atomic dispersion of iron cations.The pyrolysis thus initiated the growth of graphene catalyzed by in-situ generated iron nanoparticles,and a dynamic flow of iron nanoparticles eventually led to the formation of millimeter-sized few-layer graphene sheets with aligned channels(60-85 nm in diameter).Used as anodes in lithium-ion batteries,these graphene sheets showed a good rate capability(142 m A h g^(-1) at 2 A g^(-1))and high capacity retention of 93%at 2 A g^(-1) after 1200 cycles.Kinetic analysis revealed that lithium ions storage was dominated by diffusion behavior and capacitive behavior together,in that graphene sheets with aligned channels could accelerate electron transfer and shorten lithium ions transport pathway.This work provides a novel approach to prepare unique porous graphene materials with specific structure for energy storage. 展开更多
关键词 few-layer graphene Aligned channels Catalytic growth Lithium-ion batteries
下载PDF
Moir patterns and step edges on few-layer graphene grown on nickel films
11
作者 柯芬 尹秀丽 +6 位作者 佟鼐 林陈昉 刘楠 赵汝光 付磊 刘忠范 胡宗海 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期445-449,共5页
Few-layer graphene grown on Ni thin films has been studied by scanning tunneling microscopy. In most areas on the surfaces, moir6 patterns resulted from rotational stacking faults were observed. At a bias lower than 2... Few-layer graphene grown on Ni thin films has been studied by scanning tunneling microscopy. In most areas on the surfaces, moir6 patterns resulted from rotational stacking faults were observed. At a bias lower than 200 mV, only one sublattice shows up in regions without moir6 patterns while both sublattices are seen in regions with moir6 pattens. This phenomenon can be used to identify AB stacked regions. The scattering characteristics at various types of step edges are different from those of monolayer graphene edges, either armchair or zigzag. 展开更多
关键词 scanning tunneling microscopy few-layer graphene stacking order step edge
下载PDF
Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors
12
作者 郑和梅 孙顺明 +5 位作者 刘浩 还亚炜 杨建国 朱宝 刘文军 丁士进 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第12期49-51,共3页
A capping layer for black phosphorus(BP) field-effect transistors(FETs) can provide effective isolation from the ambient air; however, this also brings inconvenience to the post-treatment for optimizing devices. W... A capping layer for black phosphorus(BP) field-effect transistors(FETs) can provide effective isolation from the ambient air; however, this also brings inconvenience to the post-treatment for optimizing devices. We perform low-temperature hydrogenation on Al2 O3 capped BP FETs. The hydrogenated BP devices exhibit a pronounced improvement of mobility from 69.6 to 107.7 cm2 v-1 s-1, and a dramatic decrease of subthreshold swing from8.4 to 2.6 V/dec. Furthermore, high/low frequency capacitance-voltage measurements suggest reduced interface defects in hydrogenated BP FETs. This could be due to the passivation of interface traps at both Al2 O3/BP and BP/SiO2 interfaces with hydrogen revealed by secondary ion mass spectroscopy. 展开更多
关键词 Performance Improvement in Hydrogenated few-layer Black Phosphorus Field-Effect Transistors BP Al
下载PDF
Microsized SnS/Few-Layer Graphene Composite with Interconnected Nanosized Building Blocks for Superior Volumetric Lithium and Sodium Storage
13
作者 Deliang Cheng Lichun Yang +2 位作者 Renzong Hu Jiangwen Liu Min Zhu 《Energy & Environmental Materials》 SCIE CSCD 2021年第2期229-238,共10页
To develop anode materials with superior volumetric storage is crucial for practical application of lithium/sodium-ion batteries.Here,we have developed a micro/nanostructured Sn S/few-layer graphene(Sn S/FLG)composite... To develop anode materials with superior volumetric storage is crucial for practical application of lithium/sodium-ion batteries.Here,we have developed a micro/nanostructured Sn S/few-layer graphene(Sn S/FLG)composite by facile scalable plasma milling.Inside the hybrid,SnS nanoparticles are tightly supported by FLG,forming nanosized primary particles as building blocks and assembling to microsized secondary granules.With this unique micro/nanostructure,the Sn S/FLG composite possesses a high tap density of 1.98 g cm^(-3)and thus ensures a high volumetric storage.The combination of Sn S nanoparticles and FLG nanosheets can not only enhance the overall electrical conductivity and facilitate the ion diffusion greatly,but alleviate the large volume expansion of Sn S effectively and maintain the electrode integrity during cycling.Thus,the densely compacted Sn S/FLG composite exhibits superior volumetric lithium and sodium storage,including high volumetric capacities of 1926.5/1051.4 m Ah cm^(-3)at 0.2 A g^(-1),and high retained capacities of 1754.3/760.3 m Ah cm^(-3)after 500cycles at 1.0 A g^(-1).With superior volumetric storage performance and facile scalable synthesis,the Sn S/FLG composite can be a promising anode for practical batteries application. 展开更多
关键词 micro/nanostructure SnS nanoparticle few-layer graphene volumetric storage anode
下载PDF
Visible-infrared-terahertz optical modulation of few-layer graphene through lithium intercalation
14
作者 Ganying Zeng Zhenyu Fang +6 位作者 Weibao He Zixuan Wang Yijie Li Liantuan Xiao Suotang Jia Chengbing Qin Renyan Zhang 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第9期108-113,共6页
Optical modulation is significant and ubiquitous to telecommunication technologies,smart windows,and military devices.However,due to the limited tunability of traditional doping,achieving broadband optical property ch... Optical modulation is significant and ubiquitous to telecommunication technologies,smart windows,and military devices.However,due to the limited tunability of traditional doping,achieving broadband optical property change is a tough problem.Here,we demonstrate a remarkable transformation of optical transmittance in few-layer graphene(FLG)covering the electromagnetic spectra from the visible to the terahertz wave after lithium(Li)intercalation.It results in the transmittance being higher than 90%from the wavelengths of 480 to 1040 nm,and it increases most from 86.4%to 94.1%at 600 nm,reduces from∼80%to∼68%in the wavelength range from 2.5 to 11μm,has∼20%reduction over a wavelength range from 0.4 to 1.2 THz,and reduces from 97.2%to 68.2%at the wavelength of 1.2 THz.The optical modification of lithiated FLG is attributed to the increase of Fermi energy(Ef)due to the charge transfer from Li to graphene layers.Our results may provide a new strategy for the design of broadband optical modulation devices. 展开更多
关键词 few-layer graphene INTERCALATION LiC12 optical modulation charge transfer
原文传递
Chemical interaction motivated structure design of layered metal carbonate hydroxide/MXene composites for fast and durable lithium ion storage 被引量:1
15
作者 Huibin Guan Hanna He +1 位作者 Tianbiao Zeng Chuhong Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期633-641,I0015,共10页
Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow ... Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow active materials with promoted reaction reversibility,accelerated kinetic and restricted volume change still remains a huge challenge.Herein,a novel chemical interaction motivated structure design strategy has been proposed,and a chemically bonded Co(CO_(3))_(0.5)OH·0.11 H_(2)O@MXene(CoCH@MXene)layered-composite was fabricated for the first time.In such a composite,the chemical interaction between Co^(2+)and MXene drives the growth of smaller-sized CoCH crystals and the subsequent formation of interwoven CoCH wires sandwiched in-between MXene nanosheets.This unique layered structure not only encourages charge transfer for faster reaction dynamics,but buffers the volume change of CoCH during lithiation-delithiation process,owing to the confined crystal growth between conductive MXene layers with the help of chemical bonding.Besides,the sandwiched interwoven CoCH wires also prevent the stacking of MXene layers,further conducive to the electrochemical performance of the composite.As a result,the as-prepared CoCH@MXene anode demonstrates a high reversible capacity(903.1 mAh g^(-1)at 100 mA g^(-1))and excellent cycling stability(maintains 733.6 mAh g^(-1)at1000 mA g^(-1)after 500 cycles)for lithium ion batteries.This work highlights a novel concept of layerby-layer chemical interaction motivated architecture design for futuristic high performance electrode materials in energy storage systems. 展开更多
关键词 Chemical interaction motivated structure design Layer-by-layer structure Metal carbonate hydroxide few-layer MXene Fast and durable lithium ion storage
下载PDF
Moiréflat bands of twisted few-layer graphite 被引量:2
16
作者 Zhen Ma Shuai Li +5 位作者 Meng-Meng Xiao Ya-Wen Zheng Ming Lu Haiwen Liu Jin-Hua Gao XCXie 《Frontiers of physics》 SCIE CSCD 2023年第1期97-104,共8页
We report that the twisted few layer graphite(tFL-graphite)is a new family of moiréheterostructures(MHSs),which has richer and highly tunable moiréflat band structures entirely distinct from all the known MH... We report that the twisted few layer graphite(tFL-graphite)is a new family of moiréheterostructures(MHSs),which has richer and highly tunable moiréflat band structures entirely distinct from all the known MHSs.A tFL-graphite is composed of two few-layer graphite(Bernal stacked multilayer graphene),which are stacked on each other with a small twisted angle.The moiréband structure of the tFL-graphite strongly depends on the layer number of its composed two van der Waals layers.Near the magic angle,a tFL-graphite always has two nearly flat bands coexisting with a few pairs of narrowed dispersive(parabolic or linear)bands at the Fermi level,thus,enhances the DOS at EF.This coexistence property may also enhance the possible superconductivity as been demonstrated in other multiband superconductivity systems.Therefore,we expect strong multiband correlation effects in tFL-graphite.Meanwhile,a proper perpendicular electric field can induce several isolated nearly flat bands with nonzero valley Chern number in some simple tFL-graphites,indicating that tFL-graphite is also a novel topological flat band system. 展开更多
关键词 few-layer graphite flat band moiréheterostructures
原文传递
Natural overlaying behaviors push the limit of planar cyclic deformation performance in few-layer MoS_(2) nanosheets
17
作者 Peifeng Li Guangjie Zhang +10 位作者 Zhuo Kang Xin Zheng Yong Xie Chunyuan Liang Yizhi Zhang Xiaoyang Fang Rong Sun Zhiquan Liu Yeqiang Bu Yang Lu Yue Zhang 《InfoMat》 SCIE CSCD 2023年第9期64-77,共14页
As a typical two-dimensional(2D)transition metal dichalcogenides(TMDCs)material with nonzero band gap,MoS_(2)has a wide range of potential applications as building blocks in the field of nanoelectronics.The stability ... As a typical two-dimensional(2D)transition metal dichalcogenides(TMDCs)material with nonzero band gap,MoS_(2)has a wide range of potential applications as building blocks in the field of nanoelectronics.The stability and reliability of the corresponding nanoelectronic devices depend critically on the mechanical performance and cyclic reliability of 2D MoS_(2).Although an in situ technique has been used to analyze the mechanical properties of 2D materials,the cyclic mechanical behavior,that is,fatigue,remains a major challenge in the practical application of the devices.This study was aimed at analyzing the planar cyclic performance and deformation behavior of three-layer MoS_(2)nanosheets(NSs)using an in situ transmission electron microscopy(TEM)variable-amplitude uniaxial low-frequency and cyclic loading-unloading tensile acceleration test.We also elucidated the strengthening effect of the natural overlaying affix fragments(other external NSs)or wrinkle folds(internal folds from the NS itself)on cycling performances and service life of MoS_(2)NSs by delaying the whole process of fatigue crack initiation,propagation,and fracture.The results have been confirmed by molecular dynamics(MDs)simulations.The overlaying enhancement effect effectively ensures the long-term reliability and stability of nanoelectronic devices made of few-layer 2D materials. 展开更多
关键词 cyclic deformation performance few-layer MoS_(2) in situ TEM nanomechanics natural overlays strengthening effect
原文传递
Graphene Flakes in Arc Plasma: Conditions for the Fast Single-Layer Growth
18
作者 Igor Levchenko Uroš Cvelbar Michael Keidar 《Graphene》 2016年第2期81-89,共9页
The results of systematic numerical studies of graphene flakes growth in low-temperature arc discharge plasmas are presented. Diffusion-based growth model was developed, verified using the previously published experim... The results of systematic numerical studies of graphene flakes growth in low-temperature arc discharge plasmas are presented. Diffusion-based growth model was developed, verified using the previously published experiments, and used to investigate the principal effects of the process parameters such as plasma density, electron temperature, surface temperature and time of growth on the size and structure of the plasma-grown graphene flakes. It was demonstrated that the higher growth temperatures result in larger graphene flakes reaching 5 μm, and simultaneously, lead to much lower density of the carbon atoms adsorbed on the flake surface. The low density of the carbon adatoms reduces the probability of the additional graphene layer nucleation on surface of growing flake, thus eventually resulting in the synthesis of the most valuable single-layered graphenes. 展开更多
关键词 Graphene Flakes Arc Plasma GROWTH few-layer Graphene
下载PDF
Resistive-type sensors based on few-layer MXene and SnO_(2)hollow spheres heterojunctions:Facile synthesis,ethanol sensing performances
19
作者 Lihua Chu Hao Yan +5 位作者 Wanfeng Xie Yuxin Shi Muhammad Hilal Changxu Sun Ze Li Meicheng Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期502-507,共6页
High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising stra... High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising strategy to further improve the sensing performances.In this study,the hollow SnO_(2)nanospheres and few-layer MXene are assembled rationally via facile electrostatic synthesis processes,then the SnO_(2)/Ti_(3)C_(2)T_(x)nanocomposites were obtained.Compared with that based on either pure SnO_(2)nanoparticles or hollow nanospheres of SnO_(2),the SnO_(2)/Ti_(3)C_(2)T_(x)composite-based sensor exhibits much better sensing performances such as higher response(36.979),faster response time(5 s),and much improved selectivity as well as stability(15 days)to 100ppm C2H5OH at low working temperature(200°C).The improved sensing performances are mainly attributed to the large specific surface area and significantly increased oxygen vacancy concentration,which provides a large number of active sites for gas adsorption and surface catalytic reaction.In addition,the heterostructure interfaces between SnO_(2)hollow spheres and MXene layers are beneficial to gas sensing behaviors due to the synergistic effect. 展开更多
关键词 HETEROSTRUCTURE few-layer MXene SnO_(2)hollow spheres Ethanol sensor Synergistic effect SnO_(2)/Ti_(3)C_(2)T_(x)composites
原文传递
Even-odd layer-dependent multiferroic in freestanding rare-earth orthorhombic perovskite
20
作者 Shaowen Xu Fanhao Jia Ning Dai 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第7期151-157,共7页
Freestanding oxide perovskites possess strong interlayer coupling between adjacent atomic layers,thus exerting a determinative effect on the magnetism and ferroelectricity of these atomic-scale materials.Here,we propo... Freestanding oxide perovskites possess strong interlayer coupling between adjacent atomic layers,thus exerting a determinative effect on the magnetism and ferroelectricity of these atomic-scale materials.Here,we propose an effective strategy to manipulate magnetism and ferroelectricity in freestanding rare-earth orthorhombic perovskite via modulation of layer thickness.By performing first-principles calculations,an even-odd oscillation is demonstrated in few-layer GdAlO_(3)perovskite(GAP).Specifically,odd-layer systems with charged atomic layers are ferromagnetic polar metals,while even-layer systems are antiferromagnetic ferroelectric semiconductors.This thickness-dependent magnetic phase transition originates from carrier doping,as rationalized by the Stoner criterion.Furthermore,we demonstrate the promotion of in-plane ferroelectricity via the concurrent application of two distinct antiferrodistortive displacements,each driven by formation and breaking of bonds.Analogous multiferroic phases may emerge in other transition metal oxide perovskites supporting multiple valence states,e.g.,few-layer Gd MO_(3)(M=V,Cr,Mn,and Ni).This work puts forward a strategy for layer thickness engineering of magnetism and ferroelectricity in 2D oxide perovskite multiferroic materials. 展开更多
关键词 few-layer rare-earth perovskite multiferroicity size effect first principles calculations
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部