A non-halogen highly flame-retardant 0.9mm optical fiber and 2.0mm simplex optical cord, which are harmonized with the ecosystem, have been developed. The characteristics of them are presented in this paper.
The complex pathophysiology of spinal cord injury may explain the current lack of an effective therapeutic approach for the regeneration of damaged neuronal cells and the recovery of motor functions. Many efforts have...The complex pathophysiology of spinal cord injury may explain the current lack of an effective therapeutic approach for the regeneration of damaged neuronal cells and the recovery of motor functions. Many efforts have been performed to design and develop suitable scaffolds for spinal cord regeneration, keeping in mind that the reconstruction of a pro-regenerative environment is the key challenge for an effective neurogenesis. The aim of this review is to outline the main features of an ideal scaffold, based on biomaterials, produced by the electrospinning technique and intended for the spinal cord regeneration. An overview of the poly- mers more investigated in the production of neural fibrous scaffolds is also provided.展开更多
OBJECTIVE: To identify global research trends in transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury. DATA RETRIEVAL: We performed a bibliometric analysis of st...OBJECTIVE: To identify global research trends in transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury. DATA RETRIEVAL: We performed a bibliometric analysis of studies on transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury published from 2002 to 2011 and retrieved from the Web of Science, using the key words spinal cord injury along with either neural stem cell, Schwann cell or olfactory ensheathing cell. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed published articles on neural stem cells, Schwann cells or olfactory ensheathing cells for spinal cord injury indexed in the Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial materials and news items; and (c) published between 2002 and 2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) corrected papers. MAIN OUTCOME MEASURES: (1)Annual publication output, distribution by journal, distribution by institution and top-cited articles on neural stem cells; (2) annual publication output, distribution by journal, distribution by institution and top-cited articles on Schwann cells; (3) annual publication output, distribution by journal, distribution by institution and top-cited articles on olfactory ensheathing cells. RESULTS: This analysis, based on articles indexed in the Web of Science, identified several research trends among studies published over the past 10 years in transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury. The number of publications increased over the 10-year period examined. Most papers appeared in journals with a focus on neurology, such as Journal of Neurotrauma, Experimental Neurology and Gila. Research institutes publishing on the use of neural stem cells to repair spinal cord injury were mostly in the USA and Canada. Those publishing on the use of Schwann cells were mostly in the USA and Canada as well. Those publishing on the use of olfactory ensheathing cells were mostly in the UK, the USA and Canada. CONCLUSION: On the basis of the large number of studies around the world, cell transplantation has proven to be the most promising therapeutic approach for spinal cord injury.展开更多
Axonal regeneration and ifber regrowth is limited in the adult central nervous system, but re-search over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorgani...Axonal regeneration and ifber regrowth is limited in the adult central nervous system, but re-search over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance ifber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of struc-tural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The for-mation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identiifed as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the exis-tence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic inter-ventions (e.g., ifber-growth enhancing interventions, rehabilitation). This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of pro-priospinal circuits to maximize functional recovery after spinal cord injury.展开更多
探讨在进行性压迫性脊髓损伤过程中白质纤维溃变的规律。方法:采用自行设计的压迫装置制作进行性压迫性脊髓损伤模型。运用H-E、Luxol fast blue(LFB)、透射电镜和免疫荧光等方法,分别于压迫后1、3、7d观察脊髓白质纤维变化。结果...探讨在进行性压迫性脊髓损伤过程中白质纤维溃变的规律。方法:采用自行设计的压迫装置制作进行性压迫性脊髓损伤模型。运用H-E、Luxol fast blue(LFB)、透射电镜和免疫荧光等方法,分别于压迫后1、3、7d观察脊髓白质纤维变化。结果:脊髓受压1ct后,白质髓鞘化神经纤维出现水肿,排列疏松、髓鞘缺失等退行性溃变;随着压迫时间延长,神经纤维溃变加重,纤维数目逐渐减少,与对照组和正常组比较差异有统计学意义。髓鞘碱性蛋白阳性神经纤维变性,数量减少。结论:进行性压迫性脊髓损伤可诱发神经纤维脱髓鞘病变,并随着压迫时间推移溃变逐渐加重。展开更多
文摘A non-halogen highly flame-retardant 0.9mm optical fiber and 2.0mm simplex optical cord, which are harmonized with the ecosystem, have been developed. The characteristics of them are presented in this paper.
文摘The complex pathophysiology of spinal cord injury may explain the current lack of an effective therapeutic approach for the regeneration of damaged neuronal cells and the recovery of motor functions. Many efforts have been performed to design and develop suitable scaffolds for spinal cord regeneration, keeping in mind that the reconstruction of a pro-regenerative environment is the key challenge for an effective neurogenesis. The aim of this review is to outline the main features of an ideal scaffold, based on biomaterials, produced by the electrospinning technique and intended for the spinal cord regeneration. An overview of the poly- mers more investigated in the production of neural fibrous scaffolds is also provided.
基金supported by the Foundation of Science and Technology Development Program of Jilin Provincial Science and Technology Department,No.200905183
文摘OBJECTIVE: To identify global research trends in transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury. DATA RETRIEVAL: We performed a bibliometric analysis of studies on transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury published from 2002 to 2011 and retrieved from the Web of Science, using the key words spinal cord injury along with either neural stem cell, Schwann cell or olfactory ensheathing cell. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed published articles on neural stem cells, Schwann cells or olfactory ensheathing cells for spinal cord injury indexed in the Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial materials and news items; and (c) published between 2002 and 2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) corrected papers. MAIN OUTCOME MEASURES: (1)Annual publication output, distribution by journal, distribution by institution and top-cited articles on neural stem cells; (2) annual publication output, distribution by journal, distribution by institution and top-cited articles on Schwann cells; (3) annual publication output, distribution by journal, distribution by institution and top-cited articles on olfactory ensheathing cells. RESULTS: This analysis, based on articles indexed in the Web of Science, identified several research trends among studies published over the past 10 years in transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury. The number of publications increased over the 10-year period examined. Most papers appeared in journals with a focus on neurology, such as Journal of Neurotrauma, Experimental Neurology and Gila. Research institutes publishing on the use of neural stem cells to repair spinal cord injury were mostly in the USA and Canada. Those publishing on the use of Schwann cells were mostly in the USA and Canada as well. Those publishing on the use of olfactory ensheathing cells were mostly in the UK, the USA and Canada. CONCLUSION: On the basis of the large number of studies around the world, cell transplantation has proven to be the most promising therapeutic approach for spinal cord injury.
文摘Axonal regeneration and ifber regrowth is limited in the adult central nervous system, but re-search over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance ifber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of struc-tural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The for-mation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identiifed as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the exis-tence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic inter-ventions (e.g., ifber-growth enhancing interventions, rehabilitation). This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of pro-priospinal circuits to maximize functional recovery after spinal cord injury.
文摘探讨在进行性压迫性脊髓损伤过程中白质纤维溃变的规律。方法:采用自行设计的压迫装置制作进行性压迫性脊髓损伤模型。运用H-E、Luxol fast blue(LFB)、透射电镜和免疫荧光等方法,分别于压迫后1、3、7d观察脊髓白质纤维变化。结果:脊髓受压1ct后,白质髓鞘化神经纤维出现水肿,排列疏松、髓鞘缺失等退行性溃变;随着压迫时间延长,神经纤维溃变加重,纤维数目逐渐减少,与对照组和正常组比较差异有统计学意义。髓鞘碱性蛋白阳性神经纤维变性,数量减少。结论:进行性压迫性脊髓损伤可诱发神经纤维脱髓鞘病变,并随着压迫时间推移溃变逐渐加重。