Let RP(k) denote the k-dimensional real projective space. This article determines which cobordism classes are represented by the total space of a fibering with prescribed base space RP(3)× RP(1), RP(2) ...Let RP(k) denote the k-dimensional real projective space. This article determines which cobordism classes are represented by the total space of a fibering with prescribed base space RP(3)× RP(1), RP(2) × RP(1), RP(2)× RP(1)× RP(1) or RP(3)× RP(2).展开更多
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit...Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.展开更多
Butyrate is a short-chain fatty acid of four carbons in length that is a by-product produced by the microbial fermentation of dietary fiber and undigested carbohydrates within the colon.Over the years,butyrate has att...Butyrate is a short-chain fatty acid of four carbons in length that is a by-product produced by the microbial fermentation of dietary fiber and undigested carbohydrates within the colon.Over the years,butyrate has attracted significant attention due to its diverse roles within cells.展开更多
The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio...The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.展开更多
Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(gen...Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(generally 5%–10%)during Li^(+)storage causes unsatisfactory long-term cyclability.Here,“zero-strain”NiNb_(2)O_(6) fibers are explored as a new anode material with comprehensively good electrochemical properties.During Li^(+)storage,the expansion of electrochemical inactive NiO_(6) octahedra almost fully offsets the shrinkage of active NbO_(6) octahedra through reversible O movement.Such superior volume-accommodation capability of the NiO_(6) layers guarantees the“zero-strain”behavior of NiNb_(2)O_(6) in a broad temperature range(0.53%//0.51%//0.74%at 25//−10//60℃),leading to the excellent cyclability of the NiNb_(2)O_(6) fibers(92.8%//99.2%//91.1%capacity retention after 1000//2000//1000 cycles at 10C and 25//−10//60℃).This NiNb_(2)O_(6) material further exhibits a large reversible capacity(300//184//318 mAh g−1 at 0.1C and 25//−10//60℃)and outstanding rate performance(10 to 0.5C capacity percentage of 64.3%//50.0%//65.4%at 25//−10//60℃).Therefore,the NiNb_(2)O_(6) fibers are especially suitable for large-capacity,fast-charging,long-life,and all-climate lithium-ion batteries.展开更多
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways...Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.展开更多
Let κ be non-negative integer. The unoriented bordism classes, which can be represented as [RP(ξ^κ)] where ξ^κ is a k-plane bundle, form an ideal of the unoriented bordism ring MO.. A group of generators of thi...Let κ be non-negative integer. The unoriented bordism classes, which can be represented as [RP(ξ^κ)] where ξ^κ is a k-plane bundle, form an ideal of the unoriented bordism ring MO.. A group of generators of this ideal expressed by a base of MO. and a necessary and sufficient condition for a bordism class to belong to this ideal are given.展开更多
Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond th...Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.展开更多
Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes ...Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.展开更多
This study investigates the influence of electropolymerization conditions on the deposition of polypyrrole(PPy)onto cotton-derived carbon fiber(CF)modified with reduced graphene oxide(rGO)for supercapacitors applicati...This study investigates the influence of electropolymerization conditions on the deposition of polypyrrole(PPy)onto cotton-derived carbon fiber(CF)modified with reduced graphene oxide(rGO)for supercapacitors applications using an experimental/theorical approach.The surface modification of CF by rGO and/or by PPy electrodeposited at 10,25 and 50 mV s^(-1) was thoroughly examined physicochemical and electrochemically.Composite electrodes comprising CF-rGo-PPy,synthesized via electropolymerization at 25 mV s^(-1),demonstrated a remarkable increase in capacitance,showcasing~742 F g^(-1) compared to 153 F g^(-1) for CF.SEM,N_(2)-surface area,XPS,and TD-DFT approach revealed that the higher capacitance observed in CF-rGo-PPy electrodes underscores the influence of morphology and charged nitrogen species on the electrochemical performance of these modified electrodes.Notably,this electrode material achieves a specific capacitance retention of~96%of their initial capacitance after 10000 cycles at 0.5 A g^(-1) measured in a two-electrodes cell configuration.This work also discusses the influence of the scan rate used for pyrrole electropolymerization on the pseudocapacitance contribution of PPy and its possible effect on the porosity of the material.These results highlight the importance of appropriate electropolymerization conditions that allow obtaining the synergistic effect between CF,rGO and PPy.展开更多
Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herei...Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.展开更多
Directly modulated 850-nm vertical-cavity surface-emitting lasers(VCSELs)with the advantages of low cost,high modulation speed,good reliability,and low power consumption,are the key sources in the optical interconnect...Directly modulated 850-nm vertical-cavity surface-emitting lasers(VCSELs)with the advantages of low cost,high modulation speed,good reliability,and low power consumption,are the key sources in the optical interconnects with multimode fibers for the supercomputers,data centers,and machine learning applications[1−3].Typically,non-return-tozero(NRZ)modulation format is used.展开更多
Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period,and that the latter has a greater impact on the long-t...Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period,and that the latter has a greater impact on the long-term prognosis of the patient.However,current stroke studies have typically focused only on lesions in the central nervous system,ignoring secondary damage caused by this disease.Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system.Further,the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial,leading scholars to explore more pragmatic intervention strategies.As treatment measures targeting limb symptoms can greatly improve a patient’s quality of life,they have become a critical intervention strategy.As the most vital component of the limbs,skeletal muscles have become potential points of concern.Despite this,to the best of our knowledge,there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle.The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy,inflammation,neuroregeneration,mitochondrial changes,and nutritional dysregulation in stroke survivors.In addition,the challenges,as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed.展开更多
Cotton is a pivotal economic crop for natural textile fibers that also serves as an important source of edible oil(Long et al.2023).Cottonseed oil contains approximately14%oleic acid and 59%linoleic acid.An increase i...Cotton is a pivotal economic crop for natural textile fibers that also serves as an important source of edible oil(Long et al.2023).Cottonseed oil contains approximately14%oleic acid and 59%linoleic acid.An increase in monounsaturated fatty acids,particularly oleic acid,enhances the oxidative stability and nutritional value of edible oil(Chen et al.2021).展开更多
Cotton fiber quality is a persistent concern that determines planting benefits and the quality of finished textile products.However,the limitations of measurement instruments have hindered the accurate evaluation of s...Cotton fiber quality is a persistent concern that determines planting benefits and the quality of finished textile products.However,the limitations of measurement instruments have hindered the accurate evaluation of some important fiber characteristics such as fiber maturity,fineness,and neps,which in turn has impeded the genetic improvement and industrial utilization of cotton fiber.Here,12 single fiber quality traits were measured using Advanced Fiber Information System(AFIS)equipment among 383 accessions of upland cotton(Gossypium hirsutum L.).In addition,eight conventional fiber quality traits were assessed by the High Volume Instrument(HVI)System.Genome-wide association study(GWAS),linkage disequilibrium(LD)block genotyping and functional identification were conducted sequentially to uncover the associated elite loci and candidate genes of fiber quality traits.As a result,the previously reported pleiotropic locus FL_D11 regulating fiber length-related traits was identified in this study.More importantly,three novel pleiotropic loci(FM_A03,FF_A05,and FN_A07)regulating fiber maturity,fineness and neps,respectively,were detected based on AFIS traits.Numerous highly promising candidate genes were screened out by integrating RNA-seq and qRT-PCR analyses,including the reported GhKRP6 for fiber length,the newly identified GhMAP8 for maturity and GhDFR for fineness.The origin and evolutionary analysis of pleiotropic loci indicated that the selection pressure on FL_D11,FM_A03 and FF_A05 increased as the breeding period approached the present and the origins of FM_A03 and FF_A05 were traced back to cotton landraces.These findings reveal the genetic basis underlying fiber quality and provide insight into the genetic improvement and textile utilization of fiber in G.hirsutum.展开更多
Pectin is a major constituent of the plant cell wall.Pectate lyase(PEL,EC 4.2.2.2)uses anti-β-elimination chemistry to cleave theα-1,4 glycosidic linkage in the homogalacturonan region of pectin.However,limited info...Pectin is a major constituent of the plant cell wall.Pectate lyase(PEL,EC 4.2.2.2)uses anti-β-elimination chemistry to cleave theα-1,4 glycosidic linkage in the homogalacturonan region of pectin.However,limited information is available on the comprehensive and evolutionary analysis of PELs in the Malvaceae.In this study,we identified 597PEL genes from 10 Malvaceae species.Phylogenetic and motif analyses revealed that these PELs are classified into six subfamilies:Clades I,II,III,IV,Va,and Vb.The two largest subfamilies,Clades I and II,contained 237 and222 PEL members,respectively.The members of Clades Va and Vb only contained four or five motifs,far fewer than the other subfamilies.Gene duplication analysis showed that segmental duplication played a crucial role in the expansion of the PEL gene family in Gossypium species.The PELs from Clades I,IV,Va,and Vb were expressed during the fiber elongation stage,but nearly all PEL genes from Clades II and III showed no expression in any of the investigated fiber developmental stages.We further performed single-gene haplotype association analysis in 2,001G.hirsutum accessions and 229 G.barbadense accessions.Interestingly,14 PELs were significantly associated with fiber length and strength traits in G.barbadense with superior fiber quality,while only eight GhPEL genes were found to be significantly associated with fiber quality traits in G.hirsutum.Our findings provide important information for further evolutionary and functional research on the PEL gene family members and their potential use for fiber quality improvement in cotton.展开更多
We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase lockin...We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.展开更多
Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m...Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.展开更多
基金Project Supported by NSFC (10371029),HNSF (103144)and SRF for ROCS, SEM
文摘Let RP(k) denote the k-dimensional real projective space. This article determines which cobordism classes are represented by the total space of a fibering with prescribed base space RP(3)× RP(1), RP(2) × RP(1), RP(2)× RP(1)× RP(1) or RP(3)× RP(2).
基金supported by the National Natural Science Foundation of China,No.82202718the Natural Science Foundation of Beijing,No.L212050the China Postdoctoral Science Foundation,Nos.2019M664007,2021T140793(all to ZL)。
文摘Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.
基金supported by an NHMRC Project Grant GNT2012895(to ASL)。
文摘Butyrate is a short-chain fatty acid of four carbons in length that is a by-product produced by the microbial fermentation of dietary fiber and undigested carbohydrates within the colon.Over the years,butyrate has attracted significant attention due to its diverse roles within cells.
基金supported by the National Natural Science Foundation of China,Nos.32371070 (to JT),31761163005 (to JT),32100824 (to QX)the Shenzhen Science and Technology Program,Nos.RCBS20210609104606024 (to QX),JCY20210324101813035 (to DL)+4 种基金the Guangdong Provincial Key S&T Program,No.2018B030336001 (to JT)the Key Basic Research Program of Shenzhen Science and Technology Innovation Commission,Nos.JCYJ20200109115405930 (to JT),JCYJ20220818101615033 (to DL),JCYJ20210324115811031 (to QX),JCYJ20200109150717745 (to QX)Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases,No.ZDSYS20220304163558001 (to JT)Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,No.2023B1212060055 (to JT)the China Postdoctoral Science Foundation,No.2021M693298 (to QX)。
文摘The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.
基金supported by the National Natural Science Foundation of China(51762014,52231007,12327804,T2321003,22088101)in part by the National Key Research Program of China under Grant 2021YFA1200600.
文摘Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(generally 5%–10%)during Li^(+)storage causes unsatisfactory long-term cyclability.Here,“zero-strain”NiNb_(2)O_(6) fibers are explored as a new anode material with comprehensively good electrochemical properties.During Li^(+)storage,the expansion of electrochemical inactive NiO_(6) octahedra almost fully offsets the shrinkage of active NbO_(6) octahedra through reversible O movement.Such superior volume-accommodation capability of the NiO_(6) layers guarantees the“zero-strain”behavior of NiNb_(2)O_(6) in a broad temperature range(0.53%//0.51%//0.74%at 25//−10//60℃),leading to the excellent cyclability of the NiNb_(2)O_(6) fibers(92.8%//99.2%//91.1%capacity retention after 1000//2000//1000 cycles at 10C and 25//−10//60℃).This NiNb_(2)O_(6) material further exhibits a large reversible capacity(300//184//318 mAh g−1 at 0.1C and 25//−10//60℃)and outstanding rate performance(10 to 0.5C capacity percentage of 64.3%//50.0%//65.4%at 25//−10//60℃).Therefore,the NiNb_(2)O_(6) fibers are especially suitable for large-capacity,fast-charging,long-life,and all-climate lithium-ion batteries.
基金supported by the German Research Council(Deutsche Forschungsgemeinschaft,HA3309/3-1/2,HA3309/6-1,HA3309/7-1)。
文摘Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.
基金This work is supported by HNSF(Grant No:103144) NNSF of China(10371029)
文摘Let κ be non-negative integer. The unoriented bordism classes, which can be represented as [RP(ξ^κ)] where ξ^κ is a k-plane bundle, form an ideal of the unoriented bordism ring MO.. A group of generators of this ideal expressed by a base of MO. and a necessary and sufficient condition for a bordism class to belong to this ideal are given.
基金We acknowledge the funding support from the National Science Fund for Distinguished Young Scholars of National Natural Science Foundation of China(Grant No.42225702)the National Natural Science Foundation of China(Grant No.42077235).
文摘Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.
基金supported by the National Natural Science Foundation of China (32170367 and 32000146)the Fundamental Research Funds for the Central Universities, China (2021TS066 and GK202103063)the Excellent Graduate Training Program of Shaanxi Normal University, China (LHRCCX23181).
文摘Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.
基金CONCYTEC and PROCIENCIA agencies from Peru in the framework of the call for Basic Research Projects2019-01[contract number401-2019-FONDECYT].
文摘This study investigates the influence of electropolymerization conditions on the deposition of polypyrrole(PPy)onto cotton-derived carbon fiber(CF)modified with reduced graphene oxide(rGO)for supercapacitors applications using an experimental/theorical approach.The surface modification of CF by rGO and/or by PPy electrodeposited at 10,25 and 50 mV s^(-1) was thoroughly examined physicochemical and electrochemically.Composite electrodes comprising CF-rGo-PPy,synthesized via electropolymerization at 25 mV s^(-1),demonstrated a remarkable increase in capacitance,showcasing~742 F g^(-1) compared to 153 F g^(-1) for CF.SEM,N_(2)-surface area,XPS,and TD-DFT approach revealed that the higher capacitance observed in CF-rGo-PPy electrodes underscores the influence of morphology and charged nitrogen species on the electrochemical performance of these modified electrodes.Notably,this electrode material achieves a specific capacitance retention of~96%of their initial capacitance after 10000 cycles at 0.5 A g^(-1) measured in a two-electrodes cell configuration.This work also discusses the influence of the scan rate used for pyrrole electropolymerization on the pseudocapacitance contribution of PPy and its possible effect on the porosity of the material.These results highlight the importance of appropriate electropolymerization conditions that allow obtaining the synergistic effect between CF,rGO and PPy.
基金Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province,Grant/Award Number:LR20E020001Foundation of State Key Laboratory of Coal Conversion,Grant/Award Number:J20-21-909+4 种基金Science and Technology Department of Zhejiang Province,Grant/Award Number:2023C01231National Natural Science Foundation of China,Grant/Award Numbers:52372235,52073252,52002052,22379020,U20A20253,21972127,22279116Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,Grant/Award Number:SKLPEE-KF202206Key Research and Development Project of Science and Technology Department of Sichuan Province,Grant/Award Number:2022YFSY0004Ministry of Education,Grant/Award Number:KFM 202202。
文摘Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.
基金supported by the National Natural Science Foundation of China(Nos.62075209,62275243,and 61675193)the Beijing Natural Science Foundation(No.Z200006).
文摘Directly modulated 850-nm vertical-cavity surface-emitting lasers(VCSELs)with the advantages of low cost,high modulation speed,good reliability,and low power consumption,are the key sources in the optical interconnects with multimode fibers for the supercomputers,data centers,and machine learning applications[1−3].Typically,non-return-tozero(NRZ)modulation format is used.
基金supported by the National Natural Science Foundation of China for Young Scientists,No.82104732(to RY)Xinglin Scholar Project of Chengdu University of Traditional Chinese Medicine,No.BSH2020022(to RY)the Open Research Fund of Chengdu University of Traditional Chinese Medicine Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China,No.2020XSGG002(to NZ)。
文摘Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period,and that the latter has a greater impact on the long-term prognosis of the patient.However,current stroke studies have typically focused only on lesions in the central nervous system,ignoring secondary damage caused by this disease.Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system.Further,the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial,leading scholars to explore more pragmatic intervention strategies.As treatment measures targeting limb symptoms can greatly improve a patient’s quality of life,they have become a critical intervention strategy.As the most vital component of the limbs,skeletal muscles have become potential points of concern.Despite this,to the best of our knowledge,there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle.The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy,inflammation,neuroregeneration,mitochondrial changes,and nutritional dysregulation in stroke survivors.In addition,the challenges,as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed.
基金supported by the Science and Technology Innovation Talents in Universities of Henan Province,China(24HASTIT053)the National Natural Science Foundation of China(32172041)+1 种基金the Natural Science Foundation of Henan Province,China(232300421026)the Science and Technology Innovation 2030,China(2022ZD0402001-04)。
文摘Cotton is a pivotal economic crop for natural textile fibers that also serves as an important source of edible oil(Long et al.2023).Cottonseed oil contains approximately14%oleic acid and 59%linoleic acid.An increase in monounsaturated fatty acids,particularly oleic acid,enhances the oxidative stability and nutritional value of edible oil(Chen et al.2021).
基金supported by the National Key Research and Development Program of China(2022YFD1200300)the Central Plain Scholar Program,China(234000510004)the National Supercomputing Center in Zhengzhou,China。
文摘Cotton fiber quality is a persistent concern that determines planting benefits and the quality of finished textile products.However,the limitations of measurement instruments have hindered the accurate evaluation of some important fiber characteristics such as fiber maturity,fineness,and neps,which in turn has impeded the genetic improvement and industrial utilization of cotton fiber.Here,12 single fiber quality traits were measured using Advanced Fiber Information System(AFIS)equipment among 383 accessions of upland cotton(Gossypium hirsutum L.).In addition,eight conventional fiber quality traits were assessed by the High Volume Instrument(HVI)System.Genome-wide association study(GWAS),linkage disequilibrium(LD)block genotyping and functional identification were conducted sequentially to uncover the associated elite loci and candidate genes of fiber quality traits.As a result,the previously reported pleiotropic locus FL_D11 regulating fiber length-related traits was identified in this study.More importantly,three novel pleiotropic loci(FM_A03,FF_A05,and FN_A07)regulating fiber maturity,fineness and neps,respectively,were detected based on AFIS traits.Numerous highly promising candidate genes were screened out by integrating RNA-seq and qRT-PCR analyses,including the reported GhKRP6 for fiber length,the newly identified GhMAP8 for maturity and GhDFR for fineness.The origin and evolutionary analysis of pleiotropic loci indicated that the selection pressure on FL_D11,FM_A03 and FF_A05 increased as the breeding period approached the present and the origins of FM_A03 and FF_A05 were traced back to cotton landraces.These findings reveal the genetic basis underlying fiber quality and provide insight into the genetic improvement and textile utilization of fiber in G.hirsutum.
基金supported by the Ministry of Agriculture and Rural Affairs,China(2023ZD04039-01)the National Natural Science Foundation of China(32172008)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang,China(2019R01002)。
文摘Pectin is a major constituent of the plant cell wall.Pectate lyase(PEL,EC 4.2.2.2)uses anti-β-elimination chemistry to cleave theα-1,4 glycosidic linkage in the homogalacturonan region of pectin.However,limited information is available on the comprehensive and evolutionary analysis of PELs in the Malvaceae.In this study,we identified 597PEL genes from 10 Malvaceae species.Phylogenetic and motif analyses revealed that these PELs are classified into six subfamilies:Clades I,II,III,IV,Va,and Vb.The two largest subfamilies,Clades I and II,contained 237 and222 PEL members,respectively.The members of Clades Va and Vb only contained four or five motifs,far fewer than the other subfamilies.Gene duplication analysis showed that segmental duplication played a crucial role in the expansion of the PEL gene family in Gossypium species.The PELs from Clades I,IV,Va,and Vb were expressed during the fiber elongation stage,but nearly all PEL genes from Clades II and III showed no expression in any of the investigated fiber developmental stages.We further performed single-gene haplotype association analysis in 2,001G.hirsutum accessions and 229 G.barbadense accessions.Interestingly,14 PELs were significantly associated with fiber length and strength traits in G.barbadense with superior fiber quality,while only eight GhPEL genes were found to be significantly associated with fiber quality traits in G.hirsutum.Our findings provide important information for further evolutionary and functional research on the PEL gene family members and their potential use for fiber quality improvement in cotton.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12103059,12033007,12303077,and 12303076)the Fund from the Xi’an Science and Technology Bureau,China(Grant No.E019XK1S04)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.1188000XGJ).
文摘We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.
基金Key Research and Development Program of Xinjiang(2022B02001-1)National Natural Science Foundation of China(42105172,41975146).
文摘Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.