Pancreatic ductal adenocarcinoma stands out as an exceptionally fatal cancer owing to the complexities associated with its treatment and diagnosis,leading to a notably low five-year survival rate.This study offers a d...Pancreatic ductal adenocarcinoma stands out as an exceptionally fatal cancer owing to the complexities associated with its treatment and diagnosis,leading to a notably low five-year survival rate.This study offers a detailed exploration of epidemiological trends in pancreatic cancer and key molecular drivers,such as mutations in CDKN2A,KRAS,SMAD4,and TP53,along with the influence of cancer-associated fibroblasts(CAFs)on disease progression.In particular,we focused on the pivotal roles of signaling pathways such as the transforming growth factor-βand Wnt/β-catenin pathways in the development of pancreatic cancer and investigated their application in emerging therapeutic strategies.This study provides new scientific perspectives on pancreatic cancer treatment,especially in the development of precision medicine and targeted therapeutic strategies,and demonstrates the importance of signaling pathway research in the development of effective therapeutic regimens.Future studies should explore the subtypes of CAFs and their specific roles in the tumor microenvironment to devise more effective therapeutic methods.展开更多
The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne...The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.展开更多
Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv...Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is the most common subtype of liver cancer.The primary treatment strategies for HCC currently include liver transplantation and surgical resection.However,these methods often yi...BACKGROUND Hepatocellular carcinoma(HCC)is the most common subtype of liver cancer.The primary treatment strategies for HCC currently include liver transplantation and surgical resection.However,these methods often yield unsatisfactory outcomes,leading to a poor prognosis for many patients.This underscores the urgent need to identify and evaluate novel therapeutic targets that can improve the prognosis and survival rate of HCC patients.AIM To construct a radiomics model that can accurately predict the EZH2 expression in HCC.METHODS Gene expression,clinical parameters,HCC-related radiomics,and fibroblastrelated genes were acquired from public databases.A gene model was developed,and its clinical efficacy was assessed statistically.Drug sensitivity analysis was conducted with identified hub genes.Radiomics features were extracted and machine learning algorithms were employed to generate a radiomics model related to the hub genes.A nomogram was used to illustrate the prognostic significance of the computed Radscore and the hub genes in the context of HCC patient outcomes.RESULTS EZH2 and NRAS were independent predictors for prognosis of HCC and were utilized to construct a predictive gene model.This model demonstrated robust performance in diagnosing HCC and predicted an unfavorable prognosis.A negative correlation was observed between EZH2 expression and drug sensitivity.Elevated EZH2 expression was linked to poorer prognosis,and its diagnostic value in HCC surpassed that of the risk model.A radiomics model,developed using a logistic algorithm,also showed superior efficiency in predicting EZH2 expression.The Radscore was higher in the group with high EZH2 expression.A nomogram was constructed to visually demonstrate the significant roles of the radiomics model and EZH2 expression in predicting the overall survival of HCC patients.CONCLUSION EZH2 plays significant roles in diagnosing HCC and therapeutic efficacy.A radiomics model,developed using a logistic algorithm,efficiently predicted EZH2 expression and exhibited strong correlation with HCC prognosis.展开更多
Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported t...Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.展开更多
Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and ...Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and type 2 diabetes(90%-95%of diabetic cases)are the main types of diabetes in the clinic.Accumulating evidence shows that the fibroblast growth factor(FGF)family plays important roles in many metabolic disorders,including type 1 and type 2 diabetes.FGF consists of 23 family members(FGF-1-23)in humans.Here,we review current findings of FGFs in the treatment of diabetes and management of diabetic complications.Some FGFs(e.g.,FGF-15,FGF-19,and FGF-21)have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes,and their therapeutic roles in diabetes are currently under investigation in clinical trials.Overall,the roles of FGFs in diabetes and diabetic complications are involved in numerous processes.First,FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production.Second,modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components,promote diabetic wound healing process and bone repair,and inhibit cancer cell proliferation and migration.Finally,FGFs can regulate the activation of glucoseexcited neurons and the expression of thermogenic genes.展开更多
针对智能学习桌开发设计过程中过度依赖生产企业和设计人员的主观判断、缺少用户参与导致用户对于现有产品满意度较低的问题,结合AHP/QFD/FBS模型辅助设计,得到更加贴合用户实际需求的智能学习桌。首先,通过访谈法和问卷调查法获得学习...针对智能学习桌开发设计过程中过度依赖生产企业和设计人员的主观判断、缺少用户参与导致用户对于现有产品满意度较低的问题,结合AHP/QFD/FBS模型辅助设计,得到更加贴合用户实际需求的智能学习桌。首先,通过访谈法和问卷调查法获得学习桌的初始用户需求,利用层次分析法(AHP,Analytic Hierarchy Process)计算得出用户需求权重和优先级;其次,利用QFD(质量功能展开,Quality Function Deployment)将用户需求进行分析得出产品技术特性,进而将其量化得到关键设计要素;将获取的关键设计要素转化为功能导入FBS(Function-Behavior-Structure)模型中完成“功能—行为—结构”映射,得出智能学习桌的关键设计结构。最终输出更加贴合用户实际需求的智能学习桌,并利用模糊综合评价法对设计方案的可行性进行验证。结合AHP-QFD-FBS模型的产品设计方法可以更加有效地将实际用户需求与产品方案相结合,为解决此类问题提供了新的思路。展开更多
Introduction: Collagen is the primary structural protein fibroblasts produce in the skin’s extracellular matrix. Infiltration of neutrophils into the epidermis and dermis by exposure to UV causes collagen damage and ...Introduction: Collagen is the primary structural protein fibroblasts produce in the skin’s extracellular matrix. Infiltration of neutrophils into the epidermis and dermis by exposure to UV causes collagen damage and contributes to photoaging. Methods: To study the combined effect of Lumenato and ceramide in preventing collagen-1 damage induced by phagocytes, we used co-cultures of normal human dermal fibroblasts (fibroblasts) and activated human neutrophils. The present study aimed to determine the protective effect of the combination of Lumenato and ceramide on fibroblast collagen-1 damage induced by neutrophils. Results: Lumenato (in the range of 6.5 - 208 μg/ml) or ceramide (in the range of 0.1 - 50 μM) inhibited the production of superoxides and MPO by TNFα-stimulated neutrophils, as well as the production of NO by LPS-stimulated macrophages in a dose-dependent manner. The combinations of Lumenato and ceramide, in low concentrations, caused synergistic prevention of fibroblasts’ collagen-1 damage induced by TNFα-activated neutrophils, detected by fluorescence immunostaining and WB analysis. MPO activity in the supernatants of the co-cultures was also synergistically inhibited. Adding Lumenato or ceramide singly or in combinations in these low concentrations to the fibroblast cultures did not affect the expression of collagen-1. The combinations of Lumenato or ceramide in these concentrations also caused a synergistic inhibition of NO production by activated macrophages. Conclusions: The results suggest that combining low concentrations of Lumenato and ceramide results in synergistic protection against fibroblasts’ collagen-1 damage induced by neutrophils, thus indicating their possible potential for enhanced skin health.展开更多
基金Supported by National Key Research and Development Program Project,No.2017YFC1700601Shaanxi Provincial Key Research and Development Program Project,No.2018SF-350Leading Talents in Scientific and Technological Innovation of the Shaanxi Province Special Support Plan,No.00518。
文摘Pancreatic ductal adenocarcinoma stands out as an exceptionally fatal cancer owing to the complexities associated with its treatment and diagnosis,leading to a notably low five-year survival rate.This study offers a detailed exploration of epidemiological trends in pancreatic cancer and key molecular drivers,such as mutations in CDKN2A,KRAS,SMAD4,and TP53,along with the influence of cancer-associated fibroblasts(CAFs)on disease progression.In particular,we focused on the pivotal roles of signaling pathways such as the transforming growth factor-βand Wnt/β-catenin pathways in the development of pancreatic cancer and investigated their application in emerging therapeutic strategies.This study provides new scientific perspectives on pancreatic cancer treatment,especially in the development of precision medicine and targeted therapeutic strategies,and demonstrates the importance of signaling pathway research in the development of effective therapeutic regimens.Future studies should explore the subtypes of CAFs and their specific roles in the tumor microenvironment to devise more effective therapeutic methods.
基金supported by the National Natural Science Foundation of China,Nos.82272171(to ZY),82271403(to XL),81941011(to XL),31971279(to ZY),31730030(to XL)the Natural Science Foundation of Beijing,No.7222004(to HD).
文摘The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
基金supported by the National Natural Science Foundation of China,Nos.81941011(to XL),31771053(to HD),31730030(to XL),31971279(to ZY),31900749(to PH),31650001(to XL),31320103903(to XL),31670988(to ZY)the Natural Science Foundation of Beijing,Nos.7222004(to HD)+1 种基金a grant from Ministry of Science and Technology of China,Nos.2017YFC1104002(to ZY),2017YFC1104001(to XL)a grant from Beihang University,No.JKF-YG-22-B001(to FH)。
文摘Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is the most common subtype of liver cancer.The primary treatment strategies for HCC currently include liver transplantation and surgical resection.However,these methods often yield unsatisfactory outcomes,leading to a poor prognosis for many patients.This underscores the urgent need to identify and evaluate novel therapeutic targets that can improve the prognosis and survival rate of HCC patients.AIM To construct a radiomics model that can accurately predict the EZH2 expression in HCC.METHODS Gene expression,clinical parameters,HCC-related radiomics,and fibroblastrelated genes were acquired from public databases.A gene model was developed,and its clinical efficacy was assessed statistically.Drug sensitivity analysis was conducted with identified hub genes.Radiomics features were extracted and machine learning algorithms were employed to generate a radiomics model related to the hub genes.A nomogram was used to illustrate the prognostic significance of the computed Radscore and the hub genes in the context of HCC patient outcomes.RESULTS EZH2 and NRAS were independent predictors for prognosis of HCC and were utilized to construct a predictive gene model.This model demonstrated robust performance in diagnosing HCC and predicted an unfavorable prognosis.A negative correlation was observed between EZH2 expression and drug sensitivity.Elevated EZH2 expression was linked to poorer prognosis,and its diagnostic value in HCC surpassed that of the risk model.A radiomics model,developed using a logistic algorithm,also showed superior efficiency in predicting EZH2 expression.The Radscore was higher in the group with high EZH2 expression.A nomogram was constructed to visually demonstrate the significant roles of the radiomics model and EZH2 expression in predicting the overall survival of HCC patients.CONCLUSION EZH2 plays significant roles in diagnosing HCC and therapeutic efficacy.A radiomics model,developed using a logistic algorithm,efficiently predicted EZH2 expression and exhibited strong correlation with HCC prognosis.
基金supported by the National Natural Science Foundation of China,No.81870975(to SZ)。
文摘Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.
文摘Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and type 2 diabetes(90%-95%of diabetic cases)are the main types of diabetes in the clinic.Accumulating evidence shows that the fibroblast growth factor(FGF)family plays important roles in many metabolic disorders,including type 1 and type 2 diabetes.FGF consists of 23 family members(FGF-1-23)in humans.Here,we review current findings of FGFs in the treatment of diabetes and management of diabetic complications.Some FGFs(e.g.,FGF-15,FGF-19,and FGF-21)have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes,and their therapeutic roles in diabetes are currently under investigation in clinical trials.Overall,the roles of FGFs in diabetes and diabetic complications are involved in numerous processes.First,FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production.Second,modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components,promote diabetic wound healing process and bone repair,and inhibit cancer cell proliferation and migration.Finally,FGFs can regulate the activation of glucoseexcited neurons and the expression of thermogenic genes.
文摘针对智能学习桌开发设计过程中过度依赖生产企业和设计人员的主观判断、缺少用户参与导致用户对于现有产品满意度较低的问题,结合AHP/QFD/FBS模型辅助设计,得到更加贴合用户实际需求的智能学习桌。首先,通过访谈法和问卷调查法获得学习桌的初始用户需求,利用层次分析法(AHP,Analytic Hierarchy Process)计算得出用户需求权重和优先级;其次,利用QFD(质量功能展开,Quality Function Deployment)将用户需求进行分析得出产品技术特性,进而将其量化得到关键设计要素;将获取的关键设计要素转化为功能导入FBS(Function-Behavior-Structure)模型中完成“功能—行为—结构”映射,得出智能学习桌的关键设计结构。最终输出更加贴合用户实际需求的智能学习桌,并利用模糊综合评价法对设计方案的可行性进行验证。结合AHP-QFD-FBS模型的产品设计方法可以更加有效地将实际用户需求与产品方案相结合,为解决此类问题提供了新的思路。
文摘Introduction: Collagen is the primary structural protein fibroblasts produce in the skin’s extracellular matrix. Infiltration of neutrophils into the epidermis and dermis by exposure to UV causes collagen damage and contributes to photoaging. Methods: To study the combined effect of Lumenato and ceramide in preventing collagen-1 damage induced by phagocytes, we used co-cultures of normal human dermal fibroblasts (fibroblasts) and activated human neutrophils. The present study aimed to determine the protective effect of the combination of Lumenato and ceramide on fibroblast collagen-1 damage induced by neutrophils. Results: Lumenato (in the range of 6.5 - 208 μg/ml) or ceramide (in the range of 0.1 - 50 μM) inhibited the production of superoxides and MPO by TNFα-stimulated neutrophils, as well as the production of NO by LPS-stimulated macrophages in a dose-dependent manner. The combinations of Lumenato and ceramide, in low concentrations, caused synergistic prevention of fibroblasts’ collagen-1 damage induced by TNFα-activated neutrophils, detected by fluorescence immunostaining and WB analysis. MPO activity in the supernatants of the co-cultures was also synergistically inhibited. Adding Lumenato or ceramide singly or in combinations in these low concentrations to the fibroblast cultures did not affect the expression of collagen-1. The combinations of Lumenato or ceramide in these concentrations also caused a synergistic inhibition of NO production by activated macrophages. Conclusions: The results suggest that combining low concentrations of Lumenato and ceramide results in synergistic protection against fibroblasts’ collagen-1 damage induced by neutrophils, thus indicating their possible potential for enhanced skin health.