期刊文献+
共找到1,794篇文章
< 1 2 90 >
每页显示 20 50 100
Piezoelectric fibers based on silk fibroin with excellent output performance
1
作者 甄文强 陈杰 +1 位作者 范苏娜 张耀鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期128-135,共8页
The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectr... The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectric performance are fabricated by dry-spinning and post-treatment.The concentration of SF and calcium ion in spinning dope and the post-treatment affect the conformation transition and crystallinity of SF.As a result,the SF fibers exhibit high piezoelectric coefficient d_(33)(3.24 pm/V)and output voltage(~27 V).Furthermore,these piezoelectric fibers promote the growth of PC-12 cells,demonstrating the promising potential for nerve repair and other energy harvester. 展开更多
关键词 silk fibroin piezoelectric fiber DRY-SPINNING conformation transition
下载PDF
Research on the Development of Fibroin and Nano-Fiber from Silk Cocoons for Regenerated Tissue Engineering Applications by Electro-Spinning
2
作者 Md Kamrul Hasan Xinbo Ding 《Advances in Nanoparticles》 CAS 2024年第1期1-9,共9页
In this paper, the main goal is to prepare silk fibroin nano-fiber, which is used for regenerated tissue applications. Silk scaffold nano-fibers made by electro-spinning technology can be used in regenerated tissue ap... In this paper, the main goal is to prepare silk fibroin nano-fiber, which is used for regenerated tissue applications. Silk scaffold nano-fibers made by electro-spinning technology can be used in regenerated tissue applications. The purpose of the research is to prepare a silk-fibroin nano-fiber solution for potential applications in tissue engineering. Using a degumming process, pure silk fibroin protein is extracted from silk cocoons. The protein solution for fibroin is purified, and the protein content is determined. The precise chemical composition, exact temperature, time, voltage, distance, ratio, and humidity all have a huge impact on degumming, solubility, and electro-spinning nano-fibers. The SEM investigates the morphology of silk fibroin nano-fibres at different magnifications. It also reveals the surface condition, fiber orientation, and fiber thickness of the silk fibroin nano-fiber. The results show that regenerated silk fibroin and nano-fiber can be used in silk fibroin scaffolds for various tissue engineering applications. 展开更多
关键词 Silk fibroin SCAFFOLD electro-spinning nano-fiber Tissue Engineering
下载PDF
Preparation of Regenerated Silk Fibroin Hybrid Fibers with Hydrogen Peroxide Sensing Properties by Wet Spinning
3
作者 Song Lu Jianjun Guo +3 位作者 Richard Ansah Herman Xinyi Wu Lin Ma Guohua Wu 《Journal of Renewable Materials》 EI CAS 2024年第6期1043-1055,共13页
Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of gr... Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of great concern in many countries where silk is used.Hydrogen peroxide as a naturally occurring compound is an important indicator of detection in both biology and the environment.This study aims to develop a composite fiber with hydrogen peroxide-sensing properties using discarded silk materials.To achieve this goal,firstly,polydopamine(PDA)was used to encapsulate the ZnFe_(2)O_(4) NPs to achieve the improvement of dispersion,and then regenerated silk fibroin(RSF)and PDA@ZnFe_(2)O_(4)/RSF hybrid fibers are prepared by wet spinning.Research has shown that PDA@ZnFe_(2)O_(4)/RSF demonstrates exceptional sensitivity,selectivity,and stability in detecting hydrogen peroxide,while maintaining high mechanical strength.Furthermore,the complete hybridization of PDA@ZnFe_(2)O_(4) with silk fibroin not only results in the combination of the durability of silk fibroin and PDA@ZnFe_(2)O_(4)’s rigidity,ensuring a reliable service life,but also makes PDA@ZnFe_(2)O_(4)/RSF exhibit excellent catalytic activity and biocompatibility.Therefore,the composite fiber exhibits exceptional mechanical properties and reliable hydrogen peroxide sensing capabilities,making it a promising material for biological and medical applications. 展开更多
关键词 Regenerated silk fibroin modified zinc ferrite nanoparticles composite fiber hydrogen peroxide sensor wet spinning
下载PDF
A Review on Silk Fibroin as a Biomaterial in Tissue Engineering
4
作者 Tkhu Chang Le Qian Zhang +3 位作者 Qingdi Qu Wentong Ding Sergej Anatolyevich Lazarev Shuang Pan 《Journal of Biosciences and Medicines》 2024年第3期275-290,共16页
Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replace... Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replaced organ after their implantation into the body. The tissue engineering material must meet a range of requirements, including biocompatibility, mechanical strength, and elasticity. Furthermore, the materials have to be attractive for cell growth: stimulate cell adhesion, migration, proliferation and differentiation. One of the natural biomaterials is silk and its component (silk fibroin). An increasing number of scientists in the world are studying silk and silk fibroin. The purpose of this review article is to provide information about the properties of natural silk (silk fibroin), as well as its manufacture and clinical application of each configuration of silk fibroin in medicine. Materials and research methods. Actual publications of foreign authors on resources PubMed, Medline, E-library have been analyzed. The selection criteria were materials containing information about the structure and components of silk, methods of its production in nature. This article placed strong emphasis on silk fibroin, the ways of artificial modification of it for use in various sphere of medicine. 展开更多
关键词 Tissue Engineering Biomaterial SCAFFOLD SILK fibroin
下载PDF
Preparation and release of curcumin/silk fibroin/sodium alginate film
5
作者 Yerong Yuan Jun’an Zheng +3 位作者 Zunchao Liu Wei Li Jiaqing Cao Xiangrong Zhang 《Journal of Polyphenols》 2024年第1期1-10,共10页
The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength a... The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength and elongation at break.The release of curcumin in the optimal film was studied in order to explore its application as wound dressing.The results showed that the optimum composition of curcumin/silk fibroin/sodium alginate composite film was as follows:Silk fibroin(70 mg/mL)2.7 g,sodium alginate(24 mg/mL)0.84 g,span 40(5.0 mg/mL)0.4 g,glycerol(3.75%,V/V)3 mL,curcumin(0.2 mg/mL)0.016 g.The optimum film showed the tensile strength and the elongation at break was(0.628±0.032)MPa and(0.794±0.046)%,respectively. 展开更多
关键词 CURCUMIN silk fibroin sodium alginate composite film
下载PDF
Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury 被引量:16
6
作者 Ji-Peng Jiang Xiao-Yin Liu +9 位作者 Fei Zhao Xiang Zhu Xiao-Yin Li Xue-Gang Niu Zi-Tong Yao Chen Dai Hui-You Xu Ke Ma Xu-Yi Chen Sai Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第5期959-968,共10页
Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods... Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods for neural regeneration.This study was designed to fabricate a type of three-dimensional collagen/silk fibroin scaffold (3D-CF) with cavities that simulate the anatomy of normal spinal cord.This scaffold allows cell growth in vitro and in vivo.To observe the effects of combined transplantation of neural stem cells (NSCs) and 3D-CF on the repair of spinal cord injury.Forty Sprague-Dawley rats were divided into four groups: sham (only laminectomy was performed),spinal cord injury (transection injury of T10 spinal cord without any transplantation),3D-CF (3D scaffold was transplanted into the local injured cavity),and 3D-CF + NSCs (3D scaffold co-cultured with NSCs was transplanted into the local injured cavity.Neuroelectrophysiology,imaging,hematoxylin-eosin staining,argentaffin staining,immunofluorescence staining,and western blot assay were performed.Apart from the sham group,neurological scores were significantly higher in the 3D-CF + NSCs group compared with other groups.Moreover,latency of the 3D-CF + NSCs group was significantly reduced,while the amplitude was significantly increased in motor evoked potential tests.The results of magnetic resonance imaging and diffusion tensor imaging showed that both spinal cord continuity and the filling of injury cavity were the best in the 3D-CF + NSCs group.Moreover,regenerative axons were abundant and glial scarring was reduced in the 3D-CF + NSCs group compared with other groups.These results confirm that implantation of 3D-CF combined with NSCs can promote the repair of injured spinal cord.This study was approved by the Institutional Animal Care and Use Committee of People’s Armed Police Force Medical Center in 2017 (approval No.2017-0007.2). 展开更多
关键词 3D BIOPRINTING COLLAGEN diffusion tensor IMAGING functional recovery magnetic resonance IMAGING nerve REGENERATION NEURAL REGENERATION NEURAL stem cell SCAFFOLD silk fibroin spinal cord injury
下载PDF
Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury 被引量:7
7
作者 Ting-gang Wang Jie Xu +5 位作者 Ai-hua Zhu Hua Lu Zong-ning Miao Peng Zhao Guo-zhen Hui Wei-jiang Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1670-1677,共8页
Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial... Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithe- lial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the trans- plant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial ceils combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells. 展开更多
关键词 nerve regeneration spinal cord injury amniotic epithelial cells silk fibroin SCAFFOLD TRANSPLANTATION glial scar MICROENVIRONMENT immunological reaction REJECTION neural regeneration
下载PDF
Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair 被引量:7
8
作者 Ya-Hong Zhao Chang-Mei Niu +3 位作者 Jia-Qi Shi Ying-Yu Wang Yu-Min Yang Hong-Bo Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第8期1455-1464,共10页
Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However,... Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However, it remains challenging to prepare biomaterials with micro-nanostructures that accurately mimic the nanostructural features of natural tissues. A novel nanotechnological tool, electrospinning, permits the processing and modification of proper nanoscale biomaterials to enhance neural cell adhesion, migration, proliferation, differentiation, and subsequent nerve regeneration. The composite scaffold was prepared by combining 3D bioprinting with subsequent electrochemical deposition of polypyrrole and electrospinning of silk fibroin to form a composite polypyrrole/silk fibroin scaffold. Fourier transform infrared spectroscopy was used to analyze scaffold composition. The surface morphology of the scaffold was observed by light microscopy and scanning electron microscopy. A digital multimeter was used to measure the resistivity of prepared scaffolds. Light microscopy was applied to observe the surface morphology of scaffolds immersed in water or Dulbecco's Modified Eagle's Medium at 37℃ for 30 days to assess stability. Results showed characteristic peaks of polypyrrole and silk fibroin in the synthesized conductive polypyrrole/silk fibroin scaffold, as well as the structure of the electrospun nanofiber layer on the surface. The electrical conductivity was 1 × 10^-5–1 × 10^-3 S/cm, while stability was 66.67%. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was employed to measure scaffold cytotoxicity in vitro. Fluorescence microscopy was used to observe Ed U-labeled Schwann cells to quantify cell proliferation. Immunohistochemistry was utilized to detect S100β immunoreactivity, while scanning electron microscopy was applied to observe the morphology of adherent Schwann cells. Results demonstrated that the polypyrrole/silk fibroin scaffold was not cytotoxic and did not affect Schwann cell proliferation. Moreover, filopodia formed on the scaffold and Schwann cells were regularly arranged. Our findings verified that the composite polypyrrole/silk fibroin scaffold has good biocompatibility and may be a suitable material for neural tissue engineering. 展开更多
关键词 nerve regeneration composite nanofiber SCAFFOLD three dimensional bioprinting ELECTROSPINNING silk fibroin POLYPYRROLE L929 cells conductivity Schwann cells BIOCOMPATIBILITY nerve repair neural regeneration
下载PDF
Preparation and Characterization of PEGDE Crosslinked Silk Fibroin Film 被引量:3
9
作者 魏雅丽 SUN Dan +2 位作者 YI Honggen ZHAO Huanrong 王建南 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第5期1083-1089,共7页
To obtain water-insoluble silk fibroin (SF) materials, polyethylene glycol diglycidyl ether (PEG-DE) was selected as a crosslinking agent to prepare SF films (blends). The reaction conditions were optimized for ... To obtain water-insoluble silk fibroin (SF) materials, polyethylene glycol diglycidyl ether (PEG-DE) was selected as a crosslinking agent to prepare SF films (blends). The reaction conditions were optimized for the crosslinking of the SF molecules. The hot water stability of the blends was measured using BCA protein assay and gravimetric analysis. The molecular conformation and crystalline structure of the blends were analyzed by FTIR and XRD, respectively. When the mass ratio of SF:PEG-DE was 1.0:0.8, the hot water loss rate of the SF blends was minimized. PEG-DE could induce SF molecules to form fl-sheets during the gel reaction process, resulting in improved crystallinity and hot water dissolved resistance of the blend films. In order to demonstrate the eytotoxicity of the chemical reagents used to crosslink SF, L929 cells were seeded on the blend film (SF:PEG-DE = 1:1) and cultured for 3 days. Cells of L929 readily adhered and spread in the fusiform on the blend film resulting in high cell viability. The extracted liquid from the SF porous film did not inhibit cell proliferation, as estimated by the MTT assay. 展开更多
关键词 SILKWORM silk fibroin PEG-DE FTIR XRD cell compatibility
下载PDF
SURFACE MODIFICATION OF BLEND FILMS COMPOSED OF SILK FIBROIN AND POLY(ETHYLENE GLYCOL) MACROMER AND THEIR IN VITRO ANTITHROMBOGENICITY 被引量:4
10
作者 王松 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2004年第4期399-403,共5页
In order to improve the blood compatibility of silk fibroin (SF), poly(ethylene glycol) macromer (PEGM) in different amounts was added to the SF film to incorporate C=C group into the surface of blend films which were... In order to improve the blood compatibility of silk fibroin (SF), poly(ethylene glycol) macromer (PEGM) in different amounts was added to the SF film to incorporate C=C group into the surface of blend films which were then modified by SO2 gas plasma treatment. ATR-FITR and XPS were used to analyze the chemical change which had occurred on the film's surface. When the content of sulfur on the surface of blend films surpasses 1.59%, the antithrombogenicity of plasma treated films increases remarkably due to surface sulfonation. This result implies that SF with blend of PEGM after SO2 plasma treatment have potential use for making blood-contacting biomaterials. 展开更多
关键词 Silk fibroin Poly(ethylene glycol) macromer PLASMA ANTITHROMBOGENICITY
下载PDF
Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation 被引量:3
11
作者 Aijun Hu Baoqi Zuo +2 位作者 Feng Zhang Qing Lan Huanxiang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第15期1171-1178,共8页
In this study, Schwann cells, at a density of 1 x 105 cells/well, were cultured on regenerated silk fibroin nanofibers (305 + 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fib... In this study, Schwann cells, at a density of 1 x 105 cells/well, were cultured on regenerated silk fibroin nanofibers (305 + 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fibroin nanofibers appeared more ordered, their processes extended further, and they formed more extensive and complex interconnections. In addition, the silk fibroin nanofibers had no impact on the proliferation of Schwann cells or on the secretion of ciliary neurotrophic factor, brain-derived neurotrophic factor or nerve growth factor. These findings indicate that regenerated electrospun silk fibroin nanofibers can promote Schwann cell adhesion, growth and proliferation, and have excellent biocompatibility. 展开更多
关键词 peripheral nerve regeneration nerve tissue engineering Schwann cells silk fibroin ELECTROSPINNING neural regeneration
下载PDF
Fabricating a reactive surface on the fibroin film by a room-temperature plasma jet array for biomolecule immobilization 被引量:3
12
作者 陈光良 郑旭 +5 位作者 吕国华 张朝霞 Sylvain Massey Wilson Smith Michael Tatoulian 杨思泽 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期313-320,共8页
A simple dielectric barrier discharge(DBD) jet array was designed with a liquid electrode and helium gas.The characteristics of the jet array discharge and the preliminary polymerization with acrylic acid(AA) mono... A simple dielectric barrier discharge(DBD) jet array was designed with a liquid electrode and helium gas.The characteristics of the jet array discharge and the preliminary polymerization with acrylic acid(AA) monomer were presented.The plasma reactor can produce a cold jet array with a gas temperature lower than 315 K,using an applied discharge power between 6 W and 30 W(V dis × I dis).A silk fibroin film(SFF) was modified using the jet array and AA monomer,and the treated SFF samples were characterized by atomic force microscopy(AFM),scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),and contact angle(CA).The deposition rate of the poly acrylic acid(PAA) was able to reach 300 nm/min,and the surface roughness and energy increased with the AA flow rate.The FTIR results indicate that the modified SFF had more carboxyl groups(-COOH) than the original SFF.This latter characteristic allowed the modified SFF to immobilize more quantities of antimicrobial peptide(AP,LL-37) which inhibited the Escherichia coli(E.Coli) effectively. 展开更多
关键词 plasma jet array polymerizing modification fibroin film antimicrobial property
下载PDF
The degradation behavior of silk fibroin derived from different ionic liquid solvents 被引量:6
13
作者 Renchuan You Ying Zhang +2 位作者 Yu Liu Guiyang Liu Mingzhong Li 《Natural Science》 2013年第6期10-19,共10页
Establishing an appropriate degradation rate is critical for tissue engineering scaffolds. In this study, the degradation rate of silk fibroin three-dimensional scaffolds was regulated by changing the molecular weight... Establishing an appropriate degradation rate is critical for tissue engineering scaffolds. In this study, the degradation rate of silk fibroin three-dimensional scaffolds was regulated by changing the molecular weight (MW) of the silk fibroin. The solubility of silk fibroin depends primarily on the ionic ability of the slovent to dissolve silk fibroin, therefore, we regulated the MW of the silk fibroin using LiBr, Ca(NO3)2 and CaCl2 to dissolve the silk fibers. SDS-PAGE analysis showed that the MW of the CaCl2-derived silk fibroin was lower than the MW produced using LiBr and Ca(NO3)2. In vitro and in vivo degradation results showed that the scaffolds prepared by low-MW silk fibroin were more rapidly degraded. Furthermore, FTIR and amino acid analysis suggested that the amorphous regions were preferentially degraded by Collagenase IA, while the SDS-PAGE and amino acid analysis indicated that the scaffolds were degraded into polypeptides (mainly at 10-30 kDa) and amino acids. Because the CaCl2-derived scaffolds contained abundant low MW polypeptides, inter-intramolecular entanglement and traversing of molecular chains in the crystallites reduced, which resulted in rapid degradation. The in vivo degradation results suggested that the degradation rate of the CaCl2-derived scaffolds was better matched to dermis regeneration, indicating that the degradation rate of silk fibroin can be effectively regulated by changing the MW to achieve a suitable dermal tissue regeneration rate. 展开更多
关键词 SILK fibroin MOLECULAR WEIGHT Scaffolds Degradation SKIN TISSUE Engineering
下载PDF
Mesoporous Bioglass/Silk Fibroin Scaffolds as a Drug Delivery System: Fabrication, Drug Loading and Release in vitro and Repair Calvarial Defects in vivo 被引量:2
14
作者 张晓欣 ZHANG Jiayin 施斌 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第2期401-406,共6页
The potential of combining bioactive glass(MBG) and silk fibroin(SF) together as a new drug delivery system was evaluated. The three-dimensional porous scaffolds were selected as the form of SF, and sol-gel method... The potential of combining bioactive glass(MBG) and silk fibroin(SF) together as a new drug delivery system was evaluated. The three-dimensional porous scaffolds were selected as the form of SF, and sol-gel method was adopted to fabricate MBG in this study. The characteristic of the synthesized material was measured by transmission electron microscopy and scanning electron microscopy. In vitro evaluation of drug delivery was carried out in terms of drug loading and drug release. And aspirin was chosen as the drug for scaffolds to carry out in vitro tests and repair BALB/C mice calvarial defects. Bone formation was examined by microcomputed tomography. The experimental results show that MBG/silk scaffolds have better physiochemical properties compared with silk scaffolds. In comparison to pure silk scaffolds, MBG/silk scaffolds enhance the drug loading efficiency, release rate in vitro and promote bone regeneration in vivo. Thus we conclude that MBG/silk scaffold is a more efficient drug delivery system than pure silk scaffolds. 展开更多
关键词 silk fibroin mesoporous bioactive glass drug delivery calvarial defect ASPIRIN
下载PDF
Comparative study of chitosan/fibroin–hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects: micro-computed tomography analysis 被引量:15
15
作者 Jae Min Song Sang Hun Shin +4 位作者 Yong Deok Kim Jae Yeol Lee Young Jae Baek Sang Yong Yoon Hong Sung Kim 《International Journal of Oral Science》 SCIE CAS CSCD 2014年第2期87-93,共7页
This study aimed to utilize micro-computed tomography (micro-CT) analysis to compare new bone formation in rat calvarial defects using chitosan/fibroin-hydroxyapatite (CFB-HAP) or collagen (Bio-Gide) membranes. ... This study aimed to utilize micro-computed tomography (micro-CT) analysis to compare new bone formation in rat calvarial defects using chitosan/fibroin-hydroxyapatite (CFB-HAP) or collagen (Bio-Gide) membranes. Fifty-four (54) rats were studied. A circular bony defect (8 mm diameter) was formed in the centre of the calvaria using a trephine bur. The CFB-HAP membrane was prepared by thermally induced phase separation. In the experimental group (n= 18), the CFB-HAP membrane was used to cover the bony defect, and in the control group (n= 18), a resorbable collagen membrane (Bio-Gide) was used. In the negative control group (n= 18), no membrane was used. In each group, six animals were euthanized at 2, 4 and 8 weeks after surgery. The specimens were then analysed using micro-CT. There were significant differences in bone volume (BV) and bone mineral density (BMD) (P〈O.05) between the negative control group and the membrane groups. However, there were no significant differences between the CFB-HAP group and the collagen group. We concluded that the CFB-HAP membrane has significant potential as a guided bone regeneration (GBR) membrane. 展开更多
关键词 chitosan/fibroin-hydroxyapatite collagen membrane guided bone regeneration micro-computed tomography rat calva rial defect
下载PDF
Designing and Cloning of the Gene Sequence Encoding Silk Fibroin Amorphous Domain 被引量:3
16
作者 黄海燕 田智芳 +2 位作者 裔洪根 杨云星 王建南 《Journal of Donghua University(English Edition)》 EI CAS 2012年第6期489-492,共4页
To provide materials used in investigating the relationship between amino acid compositions of silk-like protein, structure, and functions, especially the biological functions, the motif genes encoding the silk fibroi... To provide materials used in investigating the relationship between amino acid compositions of silk-like protein, structure, and functions, especially the biological functions, the motif genes encoding the silk fibroin amorphous domain, SGFGPVANGGSGEASSESDFGSSGFGPVANASSGEASSESDFAG(F) were designed and extended using a "head-to-tail" construction strategy. The designed genes were cloned into PSLFA1180FA and multimerized to form structures containing a two-timer, a four-timer, an eight-timer, and a twelve-timer. All the resulting plasmids were digested using the restriction enzyme BamHI and the double-enzymes BglII/HindIII. Restriction enzyme analysis and DNA sequencing revealed the motif was successfully cloned into PSLFA1180FA and multimerized to form a twelve-timer without gene deletion or mutation. 展开更多
关键词 Escherichia coli silk fibroin amorphous domain gene cloning DNA electrophoresis
下载PDF
Exploration of the enhanced performances for silk fibroin/sodium alginate composite coatings on biodegradable Mg-Zn-Ca alloy 被引量:3
17
作者 Hui Fang Chenxi Wang +3 位作者 Shicheng Zhou Ge Li Yanhong Tian Tadatomo Suga 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1594-1610,共17页
To expand the future clinic applications of biodegradable magnesium alloy,polymer coatings with excellent biocompatibility are the keys to solve the local alkalinity and rapid hydrogen release.Natural-organic silk fib... To expand the future clinic applications of biodegradable magnesium alloy,polymer coatings with excellent biocompatibility are the keys to solve the local alkalinity and rapid hydrogen release.Natural-organic silk fibroin provides an approach to fabricate a protective coating on biomedical Mg-Zn-Ca alloy,however,the adhesion force and mechanical properties of the coating on substrates are ought to be further improved without any chemical conversion/intermediate layer.Hereby,based on VUV/O;surface activation,a hybrid of silk fibroin and sodium alginate is proposed to enhance the adhesion force and mechanical properties of the composite coatings on hydrophilic Mg-Zn-Ca alloy surfaces.Various mass ratios of sodium alginate addition were investigated to achieve the optimum coating strategy.The nanoscratch test and nanoindentation test confirmed that the adhesion force was tripled and mechanical properties index was significantly improved when the mass ratio of silk fibroin/sodium alginate was 70/30 compared to pure silk fibroin or sodium alginate coatings.Meanwhile,the corrosion rate of the coated Mg-Zn-Ca alloy was significantly delayed with the addition of sodium alginate,resulting in a reaction layer during corrosion process.Furthermore,the mechanisms for both adhesion and corrosion processes were discussed in detail.Our findings offer more possibilities for the controllable surface performance of degradable metals. 展开更多
关键词 Mg-Zn-Ca alloy Silk fibroin Sodium alginate Adhesion force Mechanical property Corrosion resistance
下载PDF
Preparation of Nano Silver/Silk Fibroin Composite Films 被引量:2
18
作者 XIE Rui-juan ZHANG Meng +1 位作者 LIU Yu LU Shen-zhou 《Journal of Donghua University(English Edition)》 EI CAS 2014年第5期646-648,共3页
In this study, the outstanding biocompatibility of silk fibroin (SF) and the highly efficient anti-bacterial effect of nano silver (NS) were utilized to prepare SF/NS composite film with anti- bacterial property. ... In this study, the outstanding biocompatibility of silk fibroin (SF) and the highly efficient anti-bacterial effect of nano silver (NS) were utilized to prepare SF/NS composite film with anti- bacterial property. The structure and property of the film were characterized. The results showed that the structure of SF in the film was mainly silk I. SF in the film was almost insoluble in water. The tensile strength of film with NS was significantly lower than that of films without NS. When the addition of NS was within the range of 0%-0.6%, the elongation at break had no significant difference. The antibacterial rate of the film on staphylococcus aurens and escherichia coil increased with the amount of NS. The minimum amount of NS in the fdm was O. 1% and the maximum amount was 0.5%. 展开更多
关键词 SILK fibroin (SF) NANO SILVER (NS) film antibacterialproperty. mechanical property.
下载PDF
Structure Changes of Silk Fibroin(SF) by Blending with Poly(ε-caprolactone)(PCL):Characterization of SF and PCL Blended Electrospinning Films 被引量:2
19
作者 赵荟菁 李鹏举 +2 位作者 尤人传 刘桂阳 李明忠 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期368-374,共7页
The mechanical properties and water solubility of electrospinning SF films limit their use as biomaterials. In order to develop a tissue engineering biomaterial with both satisfying biological properties and sufficien... The mechanical properties and water solubility of electrospinning SF films limit their use as biomaterials. In order to develop a tissue engineering biomaterial with both satisfying biological properties and sufficient biomechanical properties,blended films composed of silk fibroin( SF) and poly( ε-caprolactone)( PCL) were fabricated by electrospinning in this study. Scanning electron microscope( SEM), X-ray diffraction( XRD),thermal analysis,Fourier transform-infrared( FT-IR),Raman spectra,mechanical testing,and water solubility were used to characterize the morphological, structural and mechanical properties of the blended electrospinning films. Results showed that the diameter of the blended fiber was distributed between 600 and1000 nm,and the fiber diameter increased as the PCL content increased. There is no obvious phase separation due to the similarity and intermiscibility,as well as the interactions( mainly hydrogen bonds), between the two polymers. Meanwhile, the secondary structures of SF changed from random coils and Silk I to Silk II because of the interactions between SF and PCL. For this reason,the tensile strength and elongation at break of the electrospinning films improved significantly,and the water solubility decreased. In conclusion,the blended electrospinning films fabricated in this study showed satisfying mechanical properties and water insolubilities,and they may be promising biomaterials for applications in tissue engineering for blood vessels,nerve conduits,tendons,ligaments and other tissues. 展开更多
关键词 silk fibroin(SF) poly(ε-caprolactone)(PCL) BLENDING ELECTROSPINNING secondary structure
下载PDF
Electrospun and woven silk fibroin/poly(lactic-coglycolic acid) nerve guidance conduits for repairing peripheral nerve injury 被引量:7
20
作者 Ya-ling Wang Xiao-mei Gu +2 位作者 Yan Kong Qi-lin Feng Yu-min Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1635-1642,共8页
We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-... We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-NGCs were assessed in order to evaluate their biocompatibility. The physical properties, including thickness, tensile stiffness, infrared spectroscopy, porosity, and water absorption were determined in vitro. To assess the biological properties, Schwann cells were cultured in ESP-NGC extracts and were assessed by morphological observation, the MTT assay, and immunohistochemistry. In addition, ESP-NGCs were subcutaneously implanted in the backs of rabbits to evaluate their biocompatibility in vivo. The results showed that ESP-NGCs have high porosity, strong hydrophilicity, and strong tensile stiffness. Schwann cells cultured in the ESP-NGC extract fluids showed no significant differences compared to control cells in their morphology or viability. Histological evaluation of the ESP-NGCs implanted in vivo indicated a mild inflammatory reaction and high biocompatibility. Together, these data suggest that these novel ESP-NGCs are biocompatible, and may thus provide a reliable scaffold for peripheral nerve repair in clinical application. 展开更多
关键词 nerve regeneration peripheral nerve injury poly(lactic-co-glycolic acid) electrospinning silk fibroin biocompatibility nerve guidance conduit weaving
下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部