High intensity conditioning(HIC)was used as a model to study the fundamental of fine sulphide particle flotation.The effect of impeller design,mechanical energy input,and agitation speed on aggregate size of fine spha...High intensity conditioning(HIC)was used as a model to study the fundamental of fine sulphide particle flotation.The effect of impeller design,mechanical energy input,and agitation speed on aggregate size of fine sphalerite was tested.The aggregate size of fine sphalerite was measured with the Malvern Hydro 2000 Mastersizer.The results show that the size of aggregates of sphalerite particles ground for 3 min can be enlarged significantly with the activator and collector addition in HIC using the high energy impeller.The improved particle aggregation by using the high energy impeller is not directly related to a higher energy input into the system.With the same energy input into HIC,the aggregate size obtained with the high energy impeller is much coarser than that obtained with the low energy impeller.With the new impeller in HIC,the sphalerite aggregate size decreases with increasing agitation speed from 700 to 2 500 r/min.However,the recovery does not decrease until the agitation speed reaches 2 500 r/min.展开更多
Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of ...Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength, flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives.展开更多
针对SAR图像船舶检测任务在船舶组合和船舶融合场景下低检测精度的问题,提出了一种轻量化船舶检测算法——RGDET-Ship,有效提高了SAR图像在复杂场景下的船舶检测精度。该算法的创新点包括:①构建基于改进ResNet的基础主干网络,增强深浅...针对SAR图像船舶检测任务在船舶组合和船舶融合场景下低检测精度的问题,提出了一种轻量化船舶检测算法——RGDET-Ship,有效提高了SAR图像在复杂场景下的船舶检测精度。该算法的创新点包括:①构建基于改进ResNet的基础主干网络,增强深浅网络早特征融合,保留更丰富的有效特征图,并利用RegNet进行模型搜索得到一簇最优结构子网络RegNet and Early-Add(RGEA),实现模型的轻量化;②在FPN Neck基础上,结合EA-fusion策略设计出FPN and Early Add Fusion(FEAF)Neck网络,进一步加强深浅特征晚融合,提高中大船舶目标特征的提取;③通过细粒度分析改进RPN网络得到Two-RPN(TRPN)网络,提高模型的检测粒度和预测框准确性;④引入多任务损失函数——Cross Entropy Loss and Smooth L1 Loss(CE_S),包括分类任务和回归任务,进一步提升检测性能。通过在标准基准数据集SSDD上进行大量实验,验证了RGDET-Ship模型的有效性和健壮性。实验结果表明,相较于Faster RCNN和Cascade RCNN,RGDET-Ship在mAP_0.5:0.95上分别提升了5.6%和3.3%,在AR上分别提升了9.8%和7.6%。展开更多
基金Project(50674103)supported by the National Natural Science Foundation of ChinaProject(2005CB6237601)supported by the NationalBasic Research Program of China
文摘High intensity conditioning(HIC)was used as a model to study the fundamental of fine sulphide particle flotation.The effect of impeller design,mechanical energy input,and agitation speed on aggregate size of fine sphalerite was tested.The aggregate size of fine sphalerite was measured with the Malvern Hydro 2000 Mastersizer.The results show that the size of aggregates of sphalerite particles ground for 3 min can be enlarged significantly with the activator and collector addition in HIC using the high energy impeller.The improved particle aggregation by using the high energy impeller is not directly related to a higher energy input into the system.With the same energy input into HIC,the aggregate size obtained with the high energy impeller is much coarser than that obtained with the low energy impeller.With the new impeller in HIC,the sphalerite aggregate size decreases with increasing agitation speed from 700 to 2 500 r/min.However,the recovery does not decrease until the agitation speed reaches 2 500 r/min.
文摘Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength, flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives.
文摘针对SAR图像船舶检测任务在船舶组合和船舶融合场景下低检测精度的问题,提出了一种轻量化船舶检测算法——RGDET-Ship,有效提高了SAR图像在复杂场景下的船舶检测精度。该算法的创新点包括:①构建基于改进ResNet的基础主干网络,增强深浅网络早特征融合,保留更丰富的有效特征图,并利用RegNet进行模型搜索得到一簇最优结构子网络RegNet and Early-Add(RGEA),实现模型的轻量化;②在FPN Neck基础上,结合EA-fusion策略设计出FPN and Early Add Fusion(FEAF)Neck网络,进一步加强深浅特征晚融合,提高中大船舶目标特征的提取;③通过细粒度分析改进RPN网络得到Two-RPN(TRPN)网络,提高模型的检测粒度和预测框准确性;④引入多任务损失函数——Cross Entropy Loss and Smooth L1 Loss(CE_S),包括分类任务和回归任务,进一步提升检测性能。通过在标准基准数据集SSDD上进行大量实验,验证了RGDET-Ship模型的有效性和健壮性。实验结果表明,相较于Faster RCNN和Cascade RCNN,RGDET-Ship在mAP_0.5:0.95上分别提升了5.6%和3.3%,在AR上分别提升了9.8%和7.6%。