Objective To evaluate the clinical effects of Ilizarov external fixator for maluninon of obsolete calcaneal fracture of Stephen Type Ⅲ.Methods From July 2006 to February 2009,25 patients suffering from maluninon of o...Objective To evaluate the clinical effects of Ilizarov external fixator for maluninon of obsolete calcaneal fracture of Stephen Type Ⅲ.Methods From July 2006 to February 2009,25 patients suffering from maluninon of obsolete calcaneal展开更多
Background:The Taylor Spatial Frame(TSF)has gained popularity among orthopedic surgeons for treating open fractures.However,a key challenge is the timely and safe removal of the frame.This study assessed the efficacy ...Background:The Taylor Spatial Frame(TSF)has gained popularity among orthopedic surgeons for treating open fractures.However,a key challenge is the timely and safe removal of the frame.This study assessed the efficacy and safety of axial load-share ratio(ALSR)testing to evaluate callus healing strength after TSF treatment of open tibial fractures.Methods:A retrospective case-control study was conducted,analyzing 180 adult patients with open tibial fractures treated at Tianjin Hospital’s Orthopedic Limb Correction Unit between August 2019 and August 2022.All patients underwent TSF external fixation surgery,and were divided into two groups based on ALSR testing.Group I(92 patients)underwent ALSR testing,with frame removal if the test value fell below 5%.Traditional methods were used for fixator removal guidance in Group II(88 patients).Clinical outcomes,including fixation duration,complications after fixator removal,and Johner-Wruhs functional scores,were compared between the two groups.Results:The groups showed no statistically significant differences(P>0.05)in sex,age,injury side,body mass index,surgery timing,or fracture type.Group I had a significantly shorter fixation duration(25.85±5.57 weeks)compared to Group II(31.82±6.98 weeks)(P<0.05).Following fixator removal,Group I demonstrated superior Johner-Wruhs scores compared to Group II,indicating better outcomes(P<0.05).Complication rates did not differ significantly between the groups at the last follow-up(P>0.05).Conclusion:Regular postoperative ALSR testing could safely and effectively guide TSF removal following open tibial fracture treatment.This method significantly reduced fixation duration compared to traditional guidance methods while maintaining efficacy and safety.展开更多
Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native ...Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions.展开更多
Purpose: llizarov ring fixator and limb reconstruction system (LRS) fixators have been used in the management of complex tibial fractures with severe soft tissue injuries, compound tibial fractures, and infected ti...Purpose: llizarov ring fixator and limb reconstruction system (LRS) fixators have been used in the management of complex tibial fractures with severe soft tissue injuries, compound tibial fractures, and infected tibial nonunion for which conventional internal fixation cannot be contemplated. Fracture union and distraction osteogenesis can be done simultaneously with these external fixators, allowing early weight bearing. Several previous studies have shown almost equal results of rail and ring fixators for the compound tibial shaft fractures. Thus we performed a prospective study to evaluate the union rate, functional outcome and amount of limb lengthening after the treatment of compound tibial shaft fractures with or without infected nonunion by ring or LRS fixators. Methods: This prospective study was done at Sarojini Naidu Medical College and Hospital, Agra, India and included 32 patients of compound tibial shaft fractures with or without infected nonunion. There were 26 males and 6 females and the average age was 40 years. Patients were randomly divided into two groups (n - 16 for each): one underwent llizarov fixation and the other received LRS fixation. Cases were followed up for 3-24 months, 6 months on average from September 2012 to October 2014. Functional and radiological outcomes were assessed using the Association for the Study and Application of Methods of llizarov (ASAMI) criteria for both rail and ring fixators. Results: Union was achieved in all cases. Radiological outcome was found excellent in 68.75%, good in 18.75% and fair in 12.50% of cases treated by rail fixators whereas it was excellent in 56.25%, good in 18.75%, fair in 12.50% and poor in 12.50% of cases treated by ring fixators. Functional result was satis- factory in 75.00% of cases treated by rail fixator and 68.75% of cases treated by ring fixators whereas the corresponding rate of unsatisfactory was 25.00% vs. 31.25%. Conclusion: In our short-term assessment, LRS fixators show a better result than llizarov fixators in terms of fracture union and functional outcome with soft tissue care and limb length.展开更多
Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery gr...Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation.展开更多
Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transport...Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transportation and storage as a hydrogen carrier.The dominant method used for large-scale ammonia production is the Haber-Bosch process,which requires high temperatures and pressures and is energy-intensive.However,non-thermal plasma offers an eco-friendly alternative for ammonia synthesis,gaining significant attention.It enables ammonia production at lower temperatures and pressures using plasma technology.This review provides insights into the catalyst and reactor developments,which are pivotal for promoting ammonia efficiency and addressing existing challenges.At first,the reaction kinetics and mechanisms are introduced to gain a comprehensive understanding of the reaction pathways involved in plasma-assisted ammonia synthesis.Thereafter,the enhancement of ammonia synthesis efficiency is discussed by developing and optimizing plasma reactors and effective catalysts.The effect of other feeding sources,such as water and methane,instead of hydrogen is also presented.Finally,the challenges and possible solutions are outlined to facilitate energy-saving and enhance ammonia efficiency in the future.展开更多
Sustainable nitrogen fixation driven by renewable energy sources under mild conditions has been widely sought to replace the industrial Haber-Bosch process.The fixation of nitrogen in the form of NO_(x)^(-)and NH_4^(+...Sustainable nitrogen fixation driven by renewable energy sources under mild conditions has been widely sought to replace the industrial Haber-Bosch process.The fixation of nitrogen in the form of NO_(x)^(-)and NH_4^(+)into aqueous solutions using electricity-driven gas-liquid discharge plasma is considered a promising prescription.In this paper,a scalable bubble discharge excited by nanosecond pulse power is employed for nitrogen fixation in the liquid phase.The nitrogen fixation performance and the mechanisms are analyzed by varying the power supply parameters,working gas flow rate and composition.The results show that an increase in voltage and frequency can result in an enhanced NO_(3)^(-)yield.Increases in the gas flow rate can result in inadequate activation of the working gas,which together with more inefficient mass transfer efficiencies can reduce the yield.The addition of O_(2) effectively elevates NO_(3)^(-)production while simultaneously inhibiting NH_4^(+) production.The addition of H_(2)O vapor increases the production of OH and H,thereby promoting the generation of reactive nitrogen and enhancing the yield of nitrogen fixation.However,the excessive addition of O_(2) and H_(2)O vapor results in negative effect on the yield of nitrogen fixation,due to the significant weakening of the discharge intensity.The optimal nitrogen fixation yield was up to 16.5 μmol/min,while the optimal energy consumption was approximately 21.3 MJ/mol in this study.Finally,the mechanism related to nitrogen fixation is discussed through the optical emission spectral(OES) information in conjunction with the simulation of energy loss paths in the plasma by BOLSIG+.The work advances knowledge of the effect of parameter variations on nitrogen fixation by gas-liquid discharge for higher yield and energy production.展开更多
Despite its enormous benefits,mining is respon-sible for intense changes to vegetation and soil properties.Thus,after extraction,it is necessary to rehabilitate the mined areas,creating better conditions for the estab...Despite its enormous benefits,mining is respon-sible for intense changes to vegetation and soil properties.Thus,after extraction,it is necessary to rehabilitate the mined areas,creating better conditions for the establishment of plant species which is challenging.This study evaluated mineral and organic fertilization on the growth,and carbon and nitrogen(N)metabolism of two Crotalaria species[Cro-talaria spectabilis(exotic species)and Crotalaria maypu-rensis(native species from Carajás Mineral Province(CMP)]established on a waste pile from an iron mine in CMP.A control(without fertilizer application)and six fertilization mixtures were tested(i=NPK;ii=NPK+micronutrients;iii=NPK+micronutrients+organic compost;iv=PK;v=PK+micronutrients;vi=PK+micronutrients+organic compost).Fertilization contributed to increased growth of both species,and treatments with NPK and micronutrients had the best results(up to 257%cf.controls),while organic fertilization did not show differences.Exotic Crotalaria had a greater number of nodules,higher nodule dry mass,chlorophyll a and b contents and showed free ammonium as the predominant N form,reflecting greater increments in biomass compared to native species.Although having lower growth,the use of this native species in the rehabilitation of mining areas should be considered,mainly because it has good development and meets current government legislation as an opportunity to restore local biodiversity.展开更多
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-...Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.展开更多
The increasing atmospheric carbon dioxide (CO_(2)) concentration has exposed a series of crises in the earth's ecological environment.How to effectively fix and convert carbon dioxide into products with added valu...The increasing atmospheric carbon dioxide (CO_(2)) concentration has exposed a series of crises in the earth's ecological environment.How to effectively fix and convert carbon dioxide into products with added value has attracted the attention of many researchers.Cell-free enzyme catalytic system coupled with electrical and light have been a promising attempt in the field of biological carbon fixation in recent years.In this review,the research progresses of photoenzyme catalysis,electroenzyme catalysis and photo-electroenzyme catalysis for converting carbon dioxide into chemical products in cell-free systems are systematically summarized.We focus on reviewing and comparing various coupling methods and principles of photoenzyme catalysis and electroenzyme catalysis in cell-free systems,especially the materials used in the construction of the coupling system,and analyze and point out the characteristics and possible problems of different coupling methods.Finally,we discuss the major challenges and prospects of coupling physical signals and cell-free enzymatic catalytic systems in the field of CO_(2) fixation,suggesting possible strategies to improve the carbon sequestration capacity of such systems.展开更多
Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this ...Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this work,we present the development of a compact and automatic PNF system for on-site agricultural applications.The system utilized a gliding-arc discharge as the plasma source and employed a dual-loop design to generate NO_(x)from air and water under atmospheric conditions.Experimental results showed that the system with a dualloop design performs well in terms of energy costs and production rates.Optimal operational parameters for the system were determined through experimentation,resulting in an energy cost of 13.9 MJ mol^(-1)and an energy efficiency of 16 g kWh^(-1)for NO_(3)^(-)production,respectively.Moreover,the concentration of exhausted NO_(x)was below the emission standards.Soilless lettuce cultivation experiments demonstrated that NO_(x)^(-)produced by the PNF system could serve as liquid nitrate nitrogen fertilizer.Overall,our work demonstrates the potential of the developed PNF system for on-site application in the production of green-leaf vegetables.展开更多
Anterior cruciate ligament(ACL)injuries of the knee are one of the most common and serious athletic injuries.The widely used cortical suspension fixation buttons for ligament reconstruction are permanent implants,part...Anterior cruciate ligament(ACL)injuries of the knee are one of the most common and serious athletic injuries.The widely used cortical suspension fixation buttons for ligament reconstruction are permanent implants,particularly those made from conventional steel or titanium alloys.In this study,a biodegradable Zn-0.45Mn-0.2Mg(ZMM42)alloy with the yield strength of 300.4 MPa and tensile strength of 329.8 MPa was prepared through hot extrusion.The use of zinc alloys in the preparation of cortical suspension fixation buttons was proposed for the first time.After 35 d of immersion in simulated body fluids,the ZMM42 alloy fixation buttons were degraded at a rate of 44μm/a,and the fixation strength was retained(379.55 N)in the traction loops.Simultaneously,the ZMM42 alloy fixation buttons exhibited an increase in MC3T3-E1 cell viability and high antibacterial activity against Escherichia coli and Staphylococcus aureus.These results reveal the potential of biodegradable zinc alloys for use as ligament reconstruction materials and for developing diverse zinc alloy cortical suspension fixation devices.展开更多
The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand b...The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.展开更多
Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few...Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few years.Although some achievements have been revealed in aqueous NRR,significant challenges have also been identified.The activity and selectivity are fundamentally limited by nitrogen activation and competitive hydrogen evolution.This review focuses on the hurdles of nitrogen activation and delves into complementary strategies,including materials design and system optimization(reactor,electrolyte,and mediator).Then,it introduces advanced interdisciplinary technologies that have recently emerged for nitrogen activation using high-energy physics such as plasma and triboelectrification.With a better understanding of the corresponding reaction mechanisms in the coming years,these technologies have the potential to be extended in further applications.This review provides further insight into the reaction mechanisms of selectivity and stability of different reaction systems.We then recommend a rigorous and detailed protocol for investigating NRR performance and also highlight several potential research directions in this exciting field,coupling with advanced interdisciplinary applications,in situ/operando characterizations,and theoretical calculations.展开更多
With the aging population,intertrochanteric femur fracture in the elderly has become one of the most serious public health issues and a hot topic of research in trauma orthopedics.Due to the limitations of internal fi...With the aging population,intertrochanteric femur fracture in the elderly has become one of the most serious public health issues and a hot topic of research in trauma orthopedics.Due to the limitations of internal fixation techniques and the insufficient mechanical design of nails,the occurrence of complications delays patient recovery after surgical treatment.Design of a proximal femur bionic nail(PFBN)based on Zhang’s N triangle theory provides triangular supporting fixation,which dramatically decreases the occurrence of complications and has been widely used for clinical treatment of unstable intertrochanteric femur fracture worldwide.In this work,we developed an equivalent biomechanical model to analyze improvement in bone remodeling of unstable intertrochanteric femur fracture through PFBN use.The results show that compared with proximal femoral nail antirotation(PFNA)and InterTan,PFBN can dramatically decrease the maximum strain in the proximal femur.Based on Frost’s mechanostat theory,the local mechanical environment in the proximal femur can be regulated into the medium overload region by using a PFBN,which may render the proximal femur in a state of physiological overload,favoring post-operative recovery of intertrochanteric femur fracture in the elderly.This work shows that PFBN may constitute a panacea for unstable intertrochanteric femur fracture and provides insights into improving methods of internal fixation.展开更多
AIM:To evaluate the visual and refractive outcomes in cases after sutured scleral fixation of existing subluxated or dislocated acrylic one-piece intraocular lenses(IOLs).METHODS:This study retrospectively enrolled a ...AIM:To evaluate the visual and refractive outcomes in cases after sutured scleral fixation of existing subluxated or dislocated acrylic one-piece intraocular lenses(IOLs).METHODS:This study retrospectively enrolled a consecutive series of patients who underwent a surgery of sutured existing subluxated or dislocated IOLs from October 2018 to June 2020.All patients underwent comprehensive preoperative and postoperative ophthalmologic examination,and data were collected including age,sex,surgical indications,best-corrected visual acuity,refractive error,intraocular pressure.Presence of intraoperative and postoperative surgical complications was documented.RESULTS:A total of 20 consecutive cases were enrolled for analysis with mean final follow-up period 9.8±5.3mo.Visual acuity improved from a mean of 0.35(0.46±0.32 logMAR)preoperatively to 0.61(0.21±0.18 logMAR)at the 3-month follow-up(P=0.002).The mean amount of preoperative keratometric astigmatism and total postoperative refractive astigmatism was-1.24±0.80 diopters(D)and-1.42±0.97 D,respectively.There was no statistically significant difference between preoperative and postoperative astigmatism(P=0.156).The mean IOL-induced astigmatism was-0.23±0.53 D.The mean spherical equivalent at the 3-month follow-up was-0.1±0.94 D.No major complications were noted during the follow-up period.CONCLUSION:Surgical techniques using sutured scleral fixation of existing subluxated or dislocated acrylic one-piece IOLs result in favorable visual and refractive outcomes without major complications.展开更多
Urea is widely used as fertilizer and is a key substance supporting global food production. However, the traditional industrial synthesis of urea faces the challenges with high energy consumption and serious environme...Urea is widely used as fertilizer and is a key substance supporting global food production. However, the traditional industrial synthesis of urea faces the challenges with high energy consumption and serious environmental problems. With the increasing global demand for environmental protection and sustainable development, it is much necessary to develop novel and clean methods for the synthesis of urea.Electrocatalysis provides an efficient and renewable synthesis route that can directly produce urea at room temperature and atmospheric pressure by the coupling of CO_(2) and nitrogenous molecules. In this review, we summarized the most recent advances in electrochemical synthesis of urea via CAN coupling systematically, focusing on the coupling of CO_(2) and different nitrogen sources. And the associated coupling mechanism, catalysts optimization, and electrolyzer design are well discussed. Moreover, the challenges and future directions for electrocatalytic CAN coupling are prospected. This review will provide timely and valuable guidance for others and attract more interests to promote the development of electrochemical synthesis of urea or other valuable chemicals containing CAN bond.展开更多
AIM:To report a technique used with intermittent slidinglock-knot(ISLK)fixation for limbal conjunctival autografts in pterygium surgery and compared with those of routine intermittent(RI)fixation.METHODS:Consecutive p...AIM:To report a technique used with intermittent slidinglock-knot(ISLK)fixation for limbal conjunctival autografts in pterygium surgery and compared with those of routine intermittent(RI)fixation.METHODS:Consecutive patients with primary pterygium who had undergone pterygium excision combined with limbal conjunctival autograft transplantation between March 2021 and March 2022 at our institute were retrospectively analyzed.Primary outcome measures were mean duration of surgery and suture removal,degree of conjunctival hyperemia on postoperative day 1,pain score at suture removal,postoperative symptoms at 6mo,including conjunctival hyperemia,foreign body sensation,and graft stability.RESULTS:Ninety-eight patients underwent monocular surgery and were divided into ISLK(51 eyes)and RI(47 eyes)groups according to the type of conjunctiva autograft fixation method planned.There was no significant difference in mean duration of surgery between the two groups(18.59±2.39min vs 18.15±2.20min,P=0.417);however,compared to the RI group,shorter suture removal times were observed in the ISLK group[0.58min(0.42-0.87)vs 3.00min(2.21-4.15),P<0.001].The degree of conjunctival hyperemia on postoperative day 1 was milder in the ISLK group(P<0.001).Pain scores at suture removal were lower in the ISLK group than in RI group[1(0-3)vs 2(1-4),P<0.001].Postoperative symptoms at 6mo were comparable between the groups(P=0.487),with no recurrence.CONCLUSION:ISLK is an innovative method for limbal conjunctival autograft fixation after pterygium excision.Compared to RI fixation,ISLK facilitates suture removal and reduces discomfort,with comparable surgery duration and less conjunctival hyperemia.展开更多
Objective Laparoscopic surgery has become a routine general surgery with many advantages,such as alleviating abdominal pain.However,postoperative pain caused by abdominal drainage tubes has attracted little attention ...Objective Laparoscopic surgery has become a routine general surgery with many advantages,such as alleviating abdominal pain.However,postoperative pain caused by abdominal drainage tubes has attracted little attention from medical staff.The aim of this study was to explore the influence of a new abdominal drainage tube fixation method for 3-port laparoscopic cholecystectomy(LC)on patients’postoperative quality of life.Methods Patients who underwent 3-port LC with abdominal drainage tubes in the Department of Hepatobiliary Surgery of Linyi People’s Hospital from March 1,2023 to October 31,2023 due to gallstones with chronic cholecystitis were selected for this study.The patients were randomly divided into an experimental group and a control group.In the experimental group,the new abdominal drainage tube fixation method was used,while in the control group,the traditional method was used.Afterward,the quality of life of patient in terms of pain,activity,recovery time,and mental health status was evaluated.The exudate around the patient’s drainage tube was collected for bacterial culture and analysis.Results A total of 139 patients were randomly divided into an experimental group(70 patients)and a control group(69 patients).The patients’baseline characteristics were not significantly different.The patients in the experimental group had better outcomes in quality of life,with higher pain scores(24.03±2.37 vs.15.48±2.29,p<0.001)and activity scores(20.57±1.78 vs.14.13±1.43,p<0.001),and a shorter postoperative recovery time(2.36±0.68 d vs.2.96±1.34 d,p<0.001).The same results were shown in linear regression analysis scores of the 2 groups.The positive rate of bacterial culture in the exudate around the patient’s drainage tube in the experimental group was significantly lower than that in the control group(12.9%vs.43.5%,p<0.001);and furthermore,the positive rate of conditional pathogenic bacteria was even lower(7.1%vs.33.3%,p<0.001)in the experimental group than in the control group.Conclusion This new abdominal drainage tube fixation method can effectively promote patient rehabilitation and improve the quality of life for patient following 3-port LC with abdominal drainage tubes.展开更多
In this editorial,I present my comments on the article by Solarino et al.Conversion hip arthroplasty,which is an optional salvage procedure performed following unsuccessful fixation of intertrochanteric femur fracture...In this editorial,I present my comments on the article by Solarino et al.Conversion hip arthroplasty,which is an optional salvage procedure performed following unsuccessful fixation of intertrochanteric femur fractures in elderly pati-ents,entails more complex processes and higher rates of operative complications than primary arthroplasty.Hence,it is important to consider the appropriateness of the primary treatment choice,as well as the adequacy of nailing fixation for intertrochanteric fractures.This article briefly analyzes the possible factors contributing to the nailing failure of intertrochanteric fractures and attempts to find corresponding countermeasures to prevent fixation failures.It also analyzes the choice of treatment between nailing fixation and primary arthroplasty for intertrochanteric fractures.展开更多
文摘Objective To evaluate the clinical effects of Ilizarov external fixator for maluninon of obsolete calcaneal fracture of Stephen Type Ⅲ.Methods From July 2006 to February 2009,25 patients suffering from maluninon of obsolete calcaneal
基金funding support from Natural Science Foundation Key Project of Tianjin(20JCZDJC00600)Tianjin Health Research Project(TJWJ2023QN050)+2 种基金Applied Basic Research Foundation of Tianjin(22JCQNJC00230,22JCQNJC00360)Beijing-Tianjin-Hebei Basic Research Cooperation Project(J230007/23JCZXJC00050)Tianjin Municipal Health Commission Key Discipline Specialization(TJWJ2024XK015).
文摘Background:The Taylor Spatial Frame(TSF)has gained popularity among orthopedic surgeons for treating open fractures.However,a key challenge is the timely and safe removal of the frame.This study assessed the efficacy and safety of axial load-share ratio(ALSR)testing to evaluate callus healing strength after TSF treatment of open tibial fractures.Methods:A retrospective case-control study was conducted,analyzing 180 adult patients with open tibial fractures treated at Tianjin Hospital’s Orthopedic Limb Correction Unit between August 2019 and August 2022.All patients underwent TSF external fixation surgery,and were divided into two groups based on ALSR testing.Group I(92 patients)underwent ALSR testing,with frame removal if the test value fell below 5%.Traditional methods were used for fixator removal guidance in Group II(88 patients).Clinical outcomes,including fixation duration,complications after fixator removal,and Johner-Wruhs functional scores,were compared between the two groups.Results:The groups showed no statistically significant differences(P>0.05)in sex,age,injury side,body mass index,surgery timing,or fracture type.Group I had a significantly shorter fixation duration(25.85±5.57 weeks)compared to Group II(31.82±6.98 weeks)(P<0.05).Following fixator removal,Group I demonstrated superior Johner-Wruhs scores compared to Group II,indicating better outcomes(P<0.05).Complication rates did not differ significantly between the groups at the last follow-up(P>0.05).Conclusion:Regular postoperative ALSR testing could safely and effectively guide TSF removal following open tibial fracture treatment.This method significantly reduced fixation duration compared to traditional guidance methods while maintaining efficacy and safety.
基金funded by the National Natural Science Foundation of China (32171746,31870522,42077450,32371786)the leading talents of basic research in Henan Province+3 种基金Funding for Characteristic and Backbone Forestry Discipline Group of Henan Provincethe Scientific Research Foundation of Henan Agricultural University (30500854)Research Funds for overseas returnee in Henan Province,Chinasupported by National Key Research and Development Program of China (2019YFE0117000)。
文摘Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions.
文摘Purpose: llizarov ring fixator and limb reconstruction system (LRS) fixators have been used in the management of complex tibial fractures with severe soft tissue injuries, compound tibial fractures, and infected tibial nonunion for which conventional internal fixation cannot be contemplated. Fracture union and distraction osteogenesis can be done simultaneously with these external fixators, allowing early weight bearing. Several previous studies have shown almost equal results of rail and ring fixators for the compound tibial shaft fractures. Thus we performed a prospective study to evaluate the union rate, functional outcome and amount of limb lengthening after the treatment of compound tibial shaft fractures with or without infected nonunion by ring or LRS fixators. Methods: This prospective study was done at Sarojini Naidu Medical College and Hospital, Agra, India and included 32 patients of compound tibial shaft fractures with or without infected nonunion. There were 26 males and 6 females and the average age was 40 years. Patients were randomly divided into two groups (n - 16 for each): one underwent llizarov fixation and the other received LRS fixation. Cases were followed up for 3-24 months, 6 months on average from September 2012 to October 2014. Functional and radiological outcomes were assessed using the Association for the Study and Application of Methods of llizarov (ASAMI) criteria for both rail and ring fixators. Results: Union was achieved in all cases. Radiological outcome was found excellent in 68.75%, good in 18.75% and fair in 12.50% of cases treated by rail fixators whereas it was excellent in 56.25%, good in 18.75%, fair in 12.50% and poor in 12.50% of cases treated by ring fixators. Functional result was satis- factory in 75.00% of cases treated by rail fixator and 68.75% of cases treated by ring fixators whereas the corresponding rate of unsatisfactory was 25.00% vs. 31.25%. Conclusion: In our short-term assessment, LRS fixators show a better result than llizarov fixators in terms of fracture union and functional outcome with soft tissue care and limb length.
基金supported by the China Agriculture Research System of MOF and MARA(Soybean,CARS04-PS20)the National Natural Science Foundation of China(3187101212 and 31671625).
文摘Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation.
基金the financial support provided by the Canada Research Chair program and the Natural Science and Engineering Research Council of Canada (NSERC)
文摘Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transportation and storage as a hydrogen carrier.The dominant method used for large-scale ammonia production is the Haber-Bosch process,which requires high temperatures and pressures and is energy-intensive.However,non-thermal plasma offers an eco-friendly alternative for ammonia synthesis,gaining significant attention.It enables ammonia production at lower temperatures and pressures using plasma technology.This review provides insights into the catalyst and reactor developments,which are pivotal for promoting ammonia efficiency and addressing existing challenges.At first,the reaction kinetics and mechanisms are introduced to gain a comprehensive understanding of the reaction pathways involved in plasma-assisted ammonia synthesis.Thereafter,the enhancement of ammonia synthesis efficiency is discussed by developing and optimizing plasma reactors and effective catalysts.The effect of other feeding sources,such as water and methane,instead of hydrogen is also presented.Finally,the challenges and possible solutions are outlined to facilitate energy-saving and enhance ammonia efficiency in the future.
基金National Natural Science Foundation of China (Grant Nos. 52277151 and 51907088)。
文摘Sustainable nitrogen fixation driven by renewable energy sources under mild conditions has been widely sought to replace the industrial Haber-Bosch process.The fixation of nitrogen in the form of NO_(x)^(-)and NH_4^(+)into aqueous solutions using electricity-driven gas-liquid discharge plasma is considered a promising prescription.In this paper,a scalable bubble discharge excited by nanosecond pulse power is employed for nitrogen fixation in the liquid phase.The nitrogen fixation performance and the mechanisms are analyzed by varying the power supply parameters,working gas flow rate and composition.The results show that an increase in voltage and frequency can result in an enhanced NO_(3)^(-)yield.Increases in the gas flow rate can result in inadequate activation of the working gas,which together with more inefficient mass transfer efficiencies can reduce the yield.The addition of O_(2) effectively elevates NO_(3)^(-)production while simultaneously inhibiting NH_4^(+) production.The addition of H_(2)O vapor increases the production of OH and H,thereby promoting the generation of reactive nitrogen and enhancing the yield of nitrogen fixation.However,the excessive addition of O_(2) and H_(2)O vapor results in negative effect on the yield of nitrogen fixation,due to the significant weakening of the discharge intensity.The optimal nitrogen fixation yield was up to 16.5 μmol/min,while the optimal energy consumption was approximately 21.3 MJ/mol in this study.Finally,the mechanism related to nitrogen fixation is discussed through the optical emission spectral(OES) information in conjunction with the simulation of energy loss paths in the plasma by BOLSIG+.The work advances knowledge of the effect of parameter variations on nitrogen fixation by gas-liquid discharge for higher yield and energy production.
基金This research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)the Instituto Tecnológico Vale(ITV),Fundação de Desenvolvimento da Pesquisa(FUNDEP)Fundação de Amparo e Desenvolvimento da Pesquisa(FADESP).
文摘Despite its enormous benefits,mining is respon-sible for intense changes to vegetation and soil properties.Thus,after extraction,it is necessary to rehabilitate the mined areas,creating better conditions for the establishment of plant species which is challenging.This study evaluated mineral and organic fertilization on the growth,and carbon and nitrogen(N)metabolism of two Crotalaria species[Cro-talaria spectabilis(exotic species)and Crotalaria maypu-rensis(native species from Carajás Mineral Province(CMP)]established on a waste pile from an iron mine in CMP.A control(without fertilizer application)and six fertilization mixtures were tested(i=NPK;ii=NPK+micronutrients;iii=NPK+micronutrients+organic compost;iv=PK;v=PK+micronutrients;vi=PK+micronutrients+organic compost).Fertilization contributed to increased growth of both species,and treatments with NPK and micronutrients had the best results(up to 257%cf.controls),while organic fertilization did not show differences.Exotic Crotalaria had a greater number of nodules,higher nodule dry mass,chlorophyll a and b contents and showed free ammonium as the predominant N form,reflecting greater increments in biomass compared to native species.Although having lower growth,the use of this native species in the rehabilitation of mining areas should be considered,mainly because it has good development and meets current government legislation as an opportunity to restore local biodiversity.
基金supported by the National Natural Science Foundation of China(22025801)and(22208190)National Postdoctoral Program for Innovative Talents(BX2021146)Shuimu Tsinghua Scholar Program(2021SM055).
文摘Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.
基金supported by the National Key R&D Program of China (2018YFA0901700)National Natural Science Foundation of China (22278241)+1 种基金a grant from the Institute Guo Qiang, Tsinghua University (2021GQG1016)Department of Chemical Engineering-iBHE Joint Cooperation Fund。
文摘The increasing atmospheric carbon dioxide (CO_(2)) concentration has exposed a series of crises in the earth's ecological environment.How to effectively fix and convert carbon dioxide into products with added value has attracted the attention of many researchers.Cell-free enzyme catalytic system coupled with electrical and light have been a promising attempt in the field of biological carbon fixation in recent years.In this review,the research progresses of photoenzyme catalysis,electroenzyme catalysis and photo-electroenzyme catalysis for converting carbon dioxide into chemical products in cell-free systems are systematically summarized.We focus on reviewing and comparing various coupling methods and principles of photoenzyme catalysis and electroenzyme catalysis in cell-free systems,especially the materials used in the construction of the coupling system,and analyze and point out the characteristics and possible problems of different coupling methods.Finally,we discuss the major challenges and prospects of coupling physical signals and cell-free enzymatic catalytic systems in the field of CO_(2) fixation,suggesting possible strategies to improve the carbon sequestration capacity of such systems.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.5400202133157A-0-0-00)partially supported by the State Grid Gansu Electric Power Company,China。
文摘Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this work,we present the development of a compact and automatic PNF system for on-site agricultural applications.The system utilized a gliding-arc discharge as the plasma source and employed a dual-loop design to generate NO_(x)from air and water under atmospheric conditions.Experimental results showed that the system with a dualloop design performs well in terms of energy costs and production rates.Optimal operational parameters for the system were determined through experimentation,resulting in an energy cost of 13.9 MJ mol^(-1)and an energy efficiency of 16 g kWh^(-1)for NO_(3)^(-)production,respectively.Moreover,the concentration of exhausted NO_(x)was below the emission standards.Soilless lettuce cultivation experiments demonstrated that NO_(x)^(-)produced by the PNF system could serve as liquid nitrate nitrogen fertilizer.Overall,our work demonstrates the potential of the developed PNF system for on-site application in the production of green-leaf vegetables.
基金financially supported by the Xiongan New Area Science and Technology Innovation Project,China(No.2022XACX0600)the Beijing Nova Program Cross Cooperation Program,China(No.20220484178)。
文摘Anterior cruciate ligament(ACL)injuries of the knee are one of the most common and serious athletic injuries.The widely used cortical suspension fixation buttons for ligament reconstruction are permanent implants,particularly those made from conventional steel or titanium alloys.In this study,a biodegradable Zn-0.45Mn-0.2Mg(ZMM42)alloy with the yield strength of 300.4 MPa and tensile strength of 329.8 MPa was prepared through hot extrusion.The use of zinc alloys in the preparation of cortical suspension fixation buttons was proposed for the first time.After 35 d of immersion in simulated body fluids,the ZMM42 alloy fixation buttons were degraded at a rate of 44μm/a,and the fixation strength was retained(379.55 N)in the traction loops.Simultaneously,the ZMM42 alloy fixation buttons exhibited an increase in MC3T3-E1 cell viability and high antibacterial activity against Escherichia coli and Staphylococcus aureus.These results reveal the potential of biodegradable zinc alloys for use as ligament reconstruction materials and for developing diverse zinc alloy cortical suspension fixation devices.
基金the National Natural Science Foundation of China(42230720,32160410,42167069)the Gansu Key Research and Development Program(22YF7FA078,GZTZ20240415)Gansu Province Forestry and Grassland Science and Technology Innovation Project(LCCX202303).
文摘The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.
基金Natural Sciences and Engineering Research Council of Canada (NSERC)Fonds de Recherche du Québec-Nature et Technologies (FRQNT)+3 种基金Centre Québécois sur les Materiaux Fonctionnels (CQMF)Institut National de la Recherche Scientifique (INRS)École de Technologie Supérieure (ÉTS)King Abdullah University of Science and Technology (KAUST)。
文摘Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few years.Although some achievements have been revealed in aqueous NRR,significant challenges have also been identified.The activity and selectivity are fundamentally limited by nitrogen activation and competitive hydrogen evolution.This review focuses on the hurdles of nitrogen activation and delves into complementary strategies,including materials design and system optimization(reactor,electrolyte,and mediator).Then,it introduces advanced interdisciplinary technologies that have recently emerged for nitrogen activation using high-energy physics such as plasma and triboelectrification.With a better understanding of the corresponding reaction mechanisms in the coming years,these technologies have the potential to be extended in further applications.This review provides further insight into the reaction mechanisms of selectivity and stability of different reaction systems.We then recommend a rigorous and detailed protocol for investigating NRR performance and also highlight several potential research directions in this exciting field,coupling with advanced interdisciplinary applications,in situ/operando characterizations,and theoretical calculations.
基金supported by the National Natural Science Foundation of China(32130052,82072447,and 82272578)the Fundamental Research Funds for the Central Universities,Nankai University(730-C02922112 and 730-DK2300010314).
文摘With the aging population,intertrochanteric femur fracture in the elderly has become one of the most serious public health issues and a hot topic of research in trauma orthopedics.Due to the limitations of internal fixation techniques and the insufficient mechanical design of nails,the occurrence of complications delays patient recovery after surgical treatment.Design of a proximal femur bionic nail(PFBN)based on Zhang’s N triangle theory provides triangular supporting fixation,which dramatically decreases the occurrence of complications and has been widely used for clinical treatment of unstable intertrochanteric femur fracture worldwide.In this work,we developed an equivalent biomechanical model to analyze improvement in bone remodeling of unstable intertrochanteric femur fracture through PFBN use.The results show that compared with proximal femoral nail antirotation(PFNA)and InterTan,PFBN can dramatically decrease the maximum strain in the proximal femur.Based on Frost’s mechanostat theory,the local mechanical environment in the proximal femur can be regulated into the medium overload region by using a PFBN,which may render the proximal femur in a state of physiological overload,favoring post-operative recovery of intertrochanteric femur fracture in the elderly.This work shows that PFBN may constitute a panacea for unstable intertrochanteric femur fracture and provides insights into improving methods of internal fixation.
文摘AIM:To evaluate the visual and refractive outcomes in cases after sutured scleral fixation of existing subluxated or dislocated acrylic one-piece intraocular lenses(IOLs).METHODS:This study retrospectively enrolled a consecutive series of patients who underwent a surgery of sutured existing subluxated or dislocated IOLs from October 2018 to June 2020.All patients underwent comprehensive preoperative and postoperative ophthalmologic examination,and data were collected including age,sex,surgical indications,best-corrected visual acuity,refractive error,intraocular pressure.Presence of intraoperative and postoperative surgical complications was documented.RESULTS:A total of 20 consecutive cases were enrolled for analysis with mean final follow-up period 9.8±5.3mo.Visual acuity improved from a mean of 0.35(0.46±0.32 logMAR)preoperatively to 0.61(0.21±0.18 logMAR)at the 3-month follow-up(P=0.002).The mean amount of preoperative keratometric astigmatism and total postoperative refractive astigmatism was-1.24±0.80 diopters(D)and-1.42±0.97 D,respectively.There was no statistically significant difference between preoperative and postoperative astigmatism(P=0.156).The mean IOL-induced astigmatism was-0.23±0.53 D.The mean spherical equivalent at the 3-month follow-up was-0.1±0.94 D.No major complications were noted during the follow-up period.CONCLUSION:Surgical techniques using sutured scleral fixation of existing subluxated or dislocated acrylic one-piece IOLs result in favorable visual and refractive outcomes without major complications.
基金National Natural Science Foundation of China (No. 22202065, 22075092 and U21A20500)。
文摘Urea is widely used as fertilizer and is a key substance supporting global food production. However, the traditional industrial synthesis of urea faces the challenges with high energy consumption and serious environmental problems. With the increasing global demand for environmental protection and sustainable development, it is much necessary to develop novel and clean methods for the synthesis of urea.Electrocatalysis provides an efficient and renewable synthesis route that can directly produce urea at room temperature and atmospheric pressure by the coupling of CO_(2) and nitrogenous molecules. In this review, we summarized the most recent advances in electrochemical synthesis of urea via CAN coupling systematically, focusing on the coupling of CO_(2) and different nitrogen sources. And the associated coupling mechanism, catalysts optimization, and electrolyzer design are well discussed. Moreover, the challenges and future directions for electrocatalytic CAN coupling are prospected. This review will provide timely and valuable guidance for others and attract more interests to promote the development of electrochemical synthesis of urea or other valuable chemicals containing CAN bond.
基金the Nature and Science of Science Technology Department of Fujian Province(No.2020J01233).
文摘AIM:To report a technique used with intermittent slidinglock-knot(ISLK)fixation for limbal conjunctival autografts in pterygium surgery and compared with those of routine intermittent(RI)fixation.METHODS:Consecutive patients with primary pterygium who had undergone pterygium excision combined with limbal conjunctival autograft transplantation between March 2021 and March 2022 at our institute were retrospectively analyzed.Primary outcome measures were mean duration of surgery and suture removal,degree of conjunctival hyperemia on postoperative day 1,pain score at suture removal,postoperative symptoms at 6mo,including conjunctival hyperemia,foreign body sensation,and graft stability.RESULTS:Ninety-eight patients underwent monocular surgery and were divided into ISLK(51 eyes)and RI(47 eyes)groups according to the type of conjunctiva autograft fixation method planned.There was no significant difference in mean duration of surgery between the two groups(18.59±2.39min vs 18.15±2.20min,P=0.417);however,compared to the RI group,shorter suture removal times were observed in the ISLK group[0.58min(0.42-0.87)vs 3.00min(2.21-4.15),P<0.001].The degree of conjunctival hyperemia on postoperative day 1 was milder in the ISLK group(P<0.001).Pain scores at suture removal were lower in the ISLK group than in RI group[1(0-3)vs 2(1-4),P<0.001].Postoperative symptoms at 6mo were comparable between the groups(P=0.487),with no recurrence.CONCLUSION:ISLK is an innovative method for limbal conjunctival autograft fixation after pterygium excision.Compared to RI fixation,ISLK facilitates suture removal and reduces discomfort,with comparable surgery duration and less conjunctival hyperemia.
基金supported by grants from the Shandong Provincial Natural Science Foundation(No.ZR2021MH033)the Linyi People’s Hospital,and the Key R&D Plan of Linyi City(No.2023xy0029).
文摘Objective Laparoscopic surgery has become a routine general surgery with many advantages,such as alleviating abdominal pain.However,postoperative pain caused by abdominal drainage tubes has attracted little attention from medical staff.The aim of this study was to explore the influence of a new abdominal drainage tube fixation method for 3-port laparoscopic cholecystectomy(LC)on patients’postoperative quality of life.Methods Patients who underwent 3-port LC with abdominal drainage tubes in the Department of Hepatobiliary Surgery of Linyi People’s Hospital from March 1,2023 to October 31,2023 due to gallstones with chronic cholecystitis were selected for this study.The patients were randomly divided into an experimental group and a control group.In the experimental group,the new abdominal drainage tube fixation method was used,while in the control group,the traditional method was used.Afterward,the quality of life of patient in terms of pain,activity,recovery time,and mental health status was evaluated.The exudate around the patient’s drainage tube was collected for bacterial culture and analysis.Results A total of 139 patients were randomly divided into an experimental group(70 patients)and a control group(69 patients).The patients’baseline characteristics were not significantly different.The patients in the experimental group had better outcomes in quality of life,with higher pain scores(24.03±2.37 vs.15.48±2.29,p<0.001)and activity scores(20.57±1.78 vs.14.13±1.43,p<0.001),and a shorter postoperative recovery time(2.36±0.68 d vs.2.96±1.34 d,p<0.001).The same results were shown in linear regression analysis scores of the 2 groups.The positive rate of bacterial culture in the exudate around the patient’s drainage tube in the experimental group was significantly lower than that in the control group(12.9%vs.43.5%,p<0.001);and furthermore,the positive rate of conditional pathogenic bacteria was even lower(7.1%vs.33.3%,p<0.001)in the experimental group than in the control group.Conclusion This new abdominal drainage tube fixation method can effectively promote patient rehabilitation and improve the quality of life for patient following 3-port LC with abdominal drainage tubes.
文摘In this editorial,I present my comments on the article by Solarino et al.Conversion hip arthroplasty,which is an optional salvage procedure performed following unsuccessful fixation of intertrochanteric femur fractures in elderly pati-ents,entails more complex processes and higher rates of operative complications than primary arthroplasty.Hence,it is important to consider the appropriateness of the primary treatment choice,as well as the adequacy of nailing fixation for intertrochanteric fractures.This article briefly analyzes the possible factors contributing to the nailing failure of intertrochanteric fractures and attempts to find corresponding countermeasures to prevent fixation failures.It also analyzes the choice of treatment between nailing fixation and primary arthroplasty for intertrochanteric fractures.