In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich a...In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated withSλand consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations.We also establish certain interesting examples to illustrate the usability of our results.展开更多
In this paper,we consider the fixed point theorem for Proinov mappings with a contractive iterate at a point.In other words,we combine and unify the basic approaches of Proinov and Sehgal in the framework of the compl...In this paper,we consider the fixed point theorem for Proinov mappings with a contractive iterate at a point.In other words,we combine and unify the basic approaches of Proinov and Sehgal in the framework of the complete metric spaces.We consider examples to illustrate the validity of the obtained result.展开更多
The focusofourwork is on themost recent results infixedpoint theoryrelated tocontractivemappings.Wedescribe variants of(s,q,φ,F)-contractions that expand,supplement and unify an important work widely discussed in the...The focusofourwork is on themost recent results infixedpoint theoryrelated tocontractivemappings.Wedescribe variants of(s,q,φ,F)-contractions that expand,supplement and unify an important work widely discussed in the literature,based on existing classes of interpolative and F-contractions.In particular,a large class of contractions in terms of s,q,φand F for both linear and nonlinear contractions are defined in the framework of b-metric-like spaces.The main result in our paper is that(s,q,φ,F)-g-weak contractions have a fixed point in b-metric-like spaces if function F or the specified contraction is continuous.As an application of our results,we have shown the existence and uniqueness of solutions of some classes of nonlinear integral equations.展开更多
In this paper, we use resolvent operator technology to construct a viscosity approximate algorithm to approximate a common solution of split variational inclusion problem and split fixed point problem for an averaged ...In this paper, we use resolvent operator technology to construct a viscosity approximate algorithm to approximate a common solution of split variational inclusion problem and split fixed point problem for an averaged mapping in real Hilbert spaces. Further, we prove that the sequences generated by the proposed iterative method converge strongly to a common solution of split variational inclusion problem and split fixed point problem for averaged mappings which is also the unique solution of the variational inequality problem. The results presented here improve and extend the corresponding results in this area.展开更多
This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the correspo...This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the corresponding case under the Sperner’s Labeling and apply the Sperner’s Lemma to solve the question.展开更多
This paper brings forward the concept of Caristi type hybrid fixed point in M-PM-space, by giving two hybrid fixed point theorems and two common hybrid fixed point theorems of sequences of set-valued mappings, the the...This paper brings forward the concept of Caristi type hybrid fixed point in M-PM-space, by giving two hybrid fixed point theorems and two common hybrid fixed point theorems of sequences of set-valued mappings, the theorems improve and generalize the Caristi's fixed point and correspond to recent important results.展开更多
Let X be a metric space with an ordering structure,A: X→X is a operator and x≤Ax for any x∈X. In this paper we prove a new fixed point theorem, which generalizes famous caristi fixed point theorem.
In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings a...In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings are also obtained.展开更多
Using the fixed point method, this article proves the Hyers-Ulam-Rassias stability of a generalized Apollonius type quadratic functional equation in Banach spaces. The conditions of these results are demonstrated by t...Using the fixed point method, this article proves the Hyers-Ulam-Rassias stability of a generalized Apollonius type quadratic functional equation in Banach spaces. The conditions of these results are demonstrated by the quadratic functional equation of Apollonius type.展开更多
In this paper we obtain fixed point and common fixed point theorems for self- mappings defined on a metric-type space, an ordered metric-type space or a normal cone metric space. Moreover, some examples and an applica...In this paper we obtain fixed point and common fixed point theorems for self- mappings defined on a metric-type space, an ordered metric-type space or a normal cone metric space. Moreover, some examples and an application to integral equations are given to illustrate the usability of the obtained results.展开更多
A viscosity method for a hierarchical fixed point solving variational inequality problems is presented. The method is used to solve variational inequalities, where the involved mappings are non-expansive. Solutions ar...A viscosity method for a hierarchical fixed point solving variational inequality problems is presented. The method is used to solve variational inequalities, where the involved mappings are non-expansive. Solutions are sought in the set of the fixed points of another non-expansive mapping. As applications, we use the results to study problems of the monotone variational inequality, the convex programming, the hierarchical minimization, and the quadratic minimization over fixed point sets.展开更多
In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the...In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the concept of a bivariate Meir-Keleer condensing operator and prove some coupled fixed point theorems. As an application, we prove the existence of solutions for a large class of functional integral equations of Volterra type in two variables.展开更多
Two new fixed point theorems on two complete metric spaces are proved by using the concept of w -distance. One of the results is: let (X,d) and (Y,ρ) be two complete metric spaces,let p 1 be a w -distance o...Two new fixed point theorems on two complete metric spaces are proved by using the concept of w -distance. One of the results is: let (X,d) and (Y,ρ) be two complete metric spaces,let p 1 be a w -distance on X and p 2 be a w -distance on Y . If T is a continuous mapping of X into Y and S is a mapping of Y into X ,satisfying the inequalities: p 1(STx,STx′)≤c max {p 1(x,x′),p 1(x,STx),p 1(x′,STx′),p 1(x,STx′)/2,p 2(Tx,Tx′)} and p 2(TSy,TSy′)≤c max {p 2(y,y′),p 2(y,TSy),p 2(y′,TSy′),p 2(y,TSy′)/2,p 1(Sy,Sy′)} for all x,x′ in X and y,y′ in Y ,where 0≤ c<1. We have proved that ST has a unique fixed point z in X and TS has a unique fixed point w in Y . The two theorems have improved the fixed point theorems of Fisher and Namdeo,et al.展开更多
The concept of w distance on a metric space is introduced and three common fixed points theorems for commuting maps on a complete metric space are proved. These results extended fixed point theorems of Jungck a...The concept of w distance on a metric space is introduced and three common fixed points theorems for commuting maps on a complete metric space are proved. These results extended fixed point theorems of Jungck and Ciric.展开更多
In this paper, the class of uniform limit mappings of set-valued, strick set-contractive mappings is discussed. Furthermore, the fixed point index theory for the uniform limit mappings is established. Using the fixed ...In this paper, the class of uniform limit mappings of set-valued, strick set-contractive mappings is discussed. Furthermore, the fixed point index theory for the uniform limit mappings is established. Using the fixed point index theory, some positive fixed point theorems are proved. Our theorems generalize some results in [1,4,5,7].展开更多
In this paper,we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces.We consider the obtained assertions without the assump...In this paper,we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces.We consider the obtained assertions without the assumption of normality of cones.The presented results generalize some coupled common fixed point theorems in the existing literature.展开更多
In this paper, we study minimal and maximal fixed point theorems and iterative technique for nonlinear operators in product spaces. As a corollary of our result, some coupled fixed point theorems are obtained, which g...In this paper, we study minimal and maximal fixed point theorems and iterative technique for nonlinear operators in product spaces. As a corollary of our result, some coupled fixed point theorems are obtained, which generalize the coupled fixed point theorems obtained by Guo Da-jun and Lankshmikantham[21 and the results obtained by Lan in [4], and [6].展开更多
In this paper, we establish the existence and uniqueness of fixed points of operator , when n is an arbitrary positive integer and X is a partially ordered complete metric space. We have shown examples to verify our w...In this paper, we establish the existence and uniqueness of fixed points of operator , when n is an arbitrary positive integer and X is a partially ordered complete metric space. We have shown examples to verify our work. Our results generalize the recent fixed point theorems cited in [1]-[4] etc. and include several recent developments.展开更多
In this work, we introduce a few versions of Caristi’s fixed point theorems in G-cone metric spaces which extend Caristi’s fixed point theorems in metric spaces. Analogues of such fixed point theorems are proved in ...In this work, we introduce a few versions of Caristi’s fixed point theorems in G-cone metric spaces which extend Caristi’s fixed point theorems in metric spaces. Analogues of such fixed point theorems are proved in this space. Our work extends a good number of results in this area of research.展开更多
In this paper, we prove that a family of self-maps {Ti,j}i,j∈N in 2-metric space has a unique common fixed point if (i) {Ti,j}i,j∈N satisfies the same type contractive condition for each j ∈ N; (ii) Tm,μ .Tn,v...In this paper, we prove that a family of self-maps {Ti,j}i,j∈N in 2-metric space has a unique common fixed point if (i) {Ti,j}i,j∈N satisfies the same type contractive condition for each j ∈ N; (ii) Tm,μ .Tn,v = Tn,v.Tm.μ for all m,n,μ,v ∈ N with μ≠v. Our main result generalizes and improves many known unique common fixed point theorems in 2-metric spaces.展开更多
文摘In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated withSλand consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations.We also establish certain interesting examples to illustrate the usability of our results.
文摘In this paper,we consider the fixed point theorem for Proinov mappings with a contractive iterate at a point.In other words,we combine and unify the basic approaches of Proinov and Sehgal in the framework of the complete metric spaces.We consider examples to illustrate the validity of the obtained result.
文摘The focusofourwork is on themost recent results infixedpoint theoryrelated tocontractivemappings.Wedescribe variants of(s,q,φ,F)-contractions that expand,supplement and unify an important work widely discussed in the literature,based on existing classes of interpolative and F-contractions.In particular,a large class of contractions in terms of s,q,φand F for both linear and nonlinear contractions are defined in the framework of b-metric-like spaces.The main result in our paper is that(s,q,φ,F)-g-weak contractions have a fixed point in b-metric-like spaces if function F or the specified contraction is continuous.As an application of our results,we have shown the existence and uniqueness of solutions of some classes of nonlinear integral equations.
文摘In this paper, we use resolvent operator technology to construct a viscosity approximate algorithm to approximate a common solution of split variational inclusion problem and split fixed point problem for an averaged mapping in real Hilbert spaces. Further, we prove that the sequences generated by the proposed iterative method converge strongly to a common solution of split variational inclusion problem and split fixed point problem for averaged mappings which is also the unique solution of the variational inequality problem. The results presented here improve and extend the corresponding results in this area.
基金by Dr Kemp from National Mathematics and Science College.
文摘This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the corresponding case under the Sperner’s Labeling and apply the Sperner’s Lemma to solve the question.
文摘This paper brings forward the concept of Caristi type hybrid fixed point in M-PM-space, by giving two hybrid fixed point theorems and two common hybrid fixed point theorems of sequences of set-valued mappings, the theorems improve and generalize the Caristi's fixed point and correspond to recent important results.
文摘Let X be a metric space with an ordering structure,A: X→X is a operator and x≤Ax for any x∈X. In this paper we prove a new fixed point theorem, which generalizes famous caristi fixed point theorem.
基金Foundation item: Supported by the Science Foundation from the Ministry of Education of Jiangsu Province(04KJD110168, 06KJBll0107)
文摘In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings are also obtained.
文摘Using the fixed point method, this article proves the Hyers-Ulam-Rassias stability of a generalized Apollonius type quadratic functional equation in Banach spaces. The conditions of these results are demonstrated by the quadratic functional equation of Apollonius type.
基金supported by Universit`a degliStudi di Palermo(Local University Project ex 60%)
文摘In this paper we obtain fixed point and common fixed point theorems for self- mappings defined on a metric-type space, an ordered metric-type space or a normal cone metric space. Moreover, some examples and an application to integral equations are given to illustrate the usability of the obtained results.
基金supported by the Natural Science Foundation of Yibin University (No.2009Z3)
文摘A viscosity method for a hierarchical fixed point solving variational inequality problems is presented. The method is used to solve variational inequalities, where the involved mappings are non-expansive. Solutions are sought in the set of the fixed points of another non-expansive mapping. As applications, we use the results to study problems of the monotone variational inequality, the convex programming, the hierarchical minimization, and the quadratic minimization over fixed point sets.
文摘In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the concept of a bivariate Meir-Keleer condensing operator and prove some coupled fixed point theorems. As an application, we prove the existence of solutions for a large class of functional integral equations of Volterra type in two variables.
文摘Two new fixed point theorems on two complete metric spaces are proved by using the concept of w -distance. One of the results is: let (X,d) and (Y,ρ) be two complete metric spaces,let p 1 be a w -distance on X and p 2 be a w -distance on Y . If T is a continuous mapping of X into Y and S is a mapping of Y into X ,satisfying the inequalities: p 1(STx,STx′)≤c max {p 1(x,x′),p 1(x,STx),p 1(x′,STx′),p 1(x,STx′)/2,p 2(Tx,Tx′)} and p 2(TSy,TSy′)≤c max {p 2(y,y′),p 2(y,TSy),p 2(y′,TSy′),p 2(y,TSy′)/2,p 1(Sy,Sy′)} for all x,x′ in X and y,y′ in Y ,where 0≤ c<1. We have proved that ST has a unique fixed point z in X and TS has a unique fixed point w in Y . The two theorems have improved the fixed point theorems of Fisher and Namdeo,et al.
文摘The concept of w distance on a metric space is introduced and three common fixed points theorems for commuting maps on a complete metric space are proved. These results extended fixed point theorems of Jungck and Ciric.
文摘In this paper, the class of uniform limit mappings of set-valued, strick set-contractive mappings is discussed. Furthermore, the fixed point index theory for the uniform limit mappings is established. Using the fixed point index theory, some positive fixed point theorems are proved. Our theorems generalize some results in [1,4,5,7].
基金supported by the Foundation of Education Ministry,Hubei Province,China(Q20122203)
文摘In this paper,we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces.We consider the obtained assertions without the assumption of normality of cones.The presented results generalize some coupled common fixed point theorems in the existing literature.
文摘In this paper, we study minimal and maximal fixed point theorems and iterative technique for nonlinear operators in product spaces. As a corollary of our result, some coupled fixed point theorems are obtained, which generalize the coupled fixed point theorems obtained by Guo Da-jun and Lankshmikantham[21 and the results obtained by Lan in [4], and [6].
文摘In this paper, we establish the existence and uniqueness of fixed points of operator , when n is an arbitrary positive integer and X is a partially ordered complete metric space. We have shown examples to verify our work. Our results generalize the recent fixed point theorems cited in [1]-[4] etc. and include several recent developments.
文摘In this work, we introduce a few versions of Caristi’s fixed point theorems in G-cone metric spaces which extend Caristi’s fixed point theorems in metric spaces. Analogues of such fixed point theorems are proved in this space. Our work extends a good number of results in this area of research.
文摘In this paper, we prove that a family of self-maps {Ti,j}i,j∈N in 2-metric space has a unique common fixed point if (i) {Ti,j}i,j∈N satisfies the same type contractive condition for each j ∈ N; (ii) Tm,μ .Tn,v = Tn,v.Tm.μ for all m,n,μ,v ∈ N with μ≠v. Our main result generalizes and improves many known unique common fixed point theorems in 2-metric spaces.