In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the...In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the tank in the presence of bottom oil,half oil and full oil,as well as empty tank,were investigated under internal explosion by various TNT charge contents(1.8 kg,3.5 kg and 6.2 kg).The results showed that the tank roof was the only fragment produced,and the damage forms could be divided into three types.The increase of TNT charge content and oil volume enlarged the deformation of the tank,while the hole ratio presented a trend of increase first and then decrease.The H_r,maxand V_(max)values positively increased as increasing the TNT charge content and oil volume(from empty to half oil),but decreased in full oil.The Pmaxvalues had a progressive increase with the increment of TNT charge content,but not the case with the increase in oil volumes.The development of fireball was divided into three stages:tank roof‘towed'flame,jet flow flame tumbling and rising,and jet flow flame extinguishing.The Dmaxand Hf,maxvalues both increased as increasing TNT charge content and oil volumes.The oscillation phenomenon of fireball temperature was observed in the cooling process.The average temperature of fireball surface was positively correlated with TNT charge content,and negatively correlated with oil volumes.展开更多
A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a...A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation.展开更多
Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential ri...Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential risk to life.There is a direct correlation between report quality and equipment capability.The more able the equipment is-in terms of efficient data gathering,signal to noise ratio,positioning,and coverage-the more actionable the report is.This results in optimal maintenance and repair strategies providing the report is clear and well presented.Furthermore,when considering tank floor storage inspection it is essential that asset owners have total confidence in inspection findings and the ensuing reports.Tank floor inspection equipment must not only be efficient and highly capable,but data sets should be traceable and integrity maintained throughout.Corrosion mapping of large surface areas such as storage tank bottoms is an inherently arduous and time-consuming process.MFL(magnetic flux leakage)based tank bottom scanners present a well-established and highly rated method for inspection.There are many benefits of using modern MFL technology to generate actionable reports.Chief among these includes efficiency of coverage while gaining valuable information regarding defect location,severity,surface origin and the extent of coverage.More recent advancements in modern MFL tank bottom scanners afford the ability to scan and record data sets at areas of the tank bottom which were previously classed as dead zones or areas not scanned due to physical restraints.An example of this includes scanning the CZ(critical zone)which is the area close to the annular to shell junction weld.Inclusion of these additional dead zones increases overall inspection coverage,quality and traceability.Inspection of the CZ areas allows engineers to quickly determine the integrity of arguably the most important area of the tank bottom.Herein we discuss notable developments in CZ coverage,inspection efficiency and data integrity that combines to deliver an actionable report.The asset owner can interrogate this report to develop pertinent and accurate maintenance and repair strategies.展开更多
At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages...At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages of low hydrogen storage capacity and poor kinetics of hydrogen storage materials,our primary focus is to achieve smooth hydrogen ab-/desorption over a wide temperature range to meet the requirements of fuel cells and their integrated power generation systems.In this paper,the Ti_(0.9)Zr_(0.1)Mn_(1.45)V_(0.4)Fe_(0.15) hydrogen storage alloy was successfully prepared by arc melting.The maximum hydrogen storage capacity reaches 1.89 wt% at 318 K.The alloy has the capability to absorb 90% of hydrogen storage capacity within 50 s at 7 MPa and release 90% of hydrogen within 220 s.Comsol Multiphysics 6.0 software was used to simulate the hydrogen ab-/desorption processes of the tank.The flow rate of cooling water during hydrogen absorption varied in a gradient of(0.02 t x)m s^(-1)(x=0,0.02,0.04,0.06,0.08,0.1,0.12).Cooling water flow rate is positively correlated with the hydrogen absorption rate but negatively correlated with the cost.When the cooling rate is 0.06 m s^(-1),both simulation and experimentation have shown that the hydrogen storage tank is capable of steady hydrogen desorption for over 6 h at a flow rate of 2 L min^(-1).Based on the above conclusions,we have successfully developed a hydrogen-assisted two-wheeler with a range of 80 km and achieved regional demonstration operations in Changzhou and Shaoguan.This paper highlights the achievements of our team in the technological development of fuel cell power generation systems using solid hydrogen storage materials as hydrogen storage carriers and their application in twowheelers in recent years.展开更多
In order to investigate the damage and deformation mechanism of large scale steel fixed-roof oil-storage tanks under the combustible gas explosion, a series of explosion experiments of scaled models are conducted. Th...In order to investigate the damage and deformation mechanism of large scale steel fixed-roof oil-storage tanks under the combustible gas explosion, a series of explosion experiments of scaled models are conducted. The l: 25 scaled numerical models of oil-storage tanks with a capacity of 5 000 m3 are also set up by ANSYS/LS-DYNA software, and their damage processes under the blast impact are numerically simulated. Both the experimental results and the numerical simulations show that the blast loading curve displays a pressure jump instantaneously at the moment of contact with the experimental models, and the overpressure peaks at the stagnation area of the outer surface on the blast side. The yield range first appears at the stagnation area and then propagates to the neighboring parts, and the irregular plastic hinge circle obviously appears around the deformation area, which results in the concaved buckling of the tank inner surface. During the whole process, the inner liquid not only impacts on the structures, but also absorbs and consumes part of the blast energy.展开更多
Crude oil is a kind of water/oil emulsion, which the oil phase consists of organic molecules with different molecular weights such as alkanes, paraffin, asphaltene, and resins. Due to the change in physicochemical con...Crude oil is a kind of water/oil emulsion, which the oil phase consists of organic molecules with different molecular weights such as alkanes, paraffin, asphaltene, and resins. Due to the change in physicochemical conditions during the production, transportation, storage, and refining, heavier molecules can precipitate from crude oil. Thus, viscous sludge formed at the bottom of storage tanks can cause many problems including reduction of storage capacity of tank, oil contamination, corrosion, repair costs, environmental pollution, etc. The reduction of sludge viscosity can be achieved by reduction of its interfacial tension. In this study, different chemical and physical factors, influencing prepared emulsions(made of sludge, water and surfactant), such as surfactants, solvents, temperature, pressure, and mixing conditions were investigated. Results showed that non-ionic surfactants(like bitumen emulsifier), and solvents(such as mixed xylene, AW-400, and AW-402), injection of additives, applying pressure, and mixing operations had a positive effect on reduction of emulsion viscosity. All experiments were carried out with sludge obtained from crude oil storage tanks at Kharg Island,Iran.展开更多
Liquid storage tanks are essential structures that are often located in residential and industrial areas; thus an assessment of their seismic performance is an important engineering issue. In this paper, the seismic r...Liquid storage tanks are essential structures that are often located in residential and industrial areas; thus an assessment of their seismic performance is an important engineering issue. In this paper, the seismic response ofunanchored steel liquid storage tanks is investigated using the endurance time (ET) dynamic analysis procedure and compared to responses obtained for anchored tanks under actual ground motions and intensifying ET records. In most cases, the results from ground motions are properly obtained with negligible differences using ET records. It is observed that uplifting of the tank base, which is closely related to the tank aspect ratio, has the greatest significance in the responses of the tank and can be predicted with reasonable accuracy by using currently available ET records.展开更多
This paper presented a preliminary research on the central solar heating system with seasonal storage(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in t...This paper presented a preliminary research on the central solar heating system with seasonal storage(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was followed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which decreases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition,the relationship between the solar collector efficiency and storage water temperature is also obtained,it decreases quickly with increasing storing water temperature,and then increases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.展开更多
The fluid motion in partially filled tanks with internal baffles has wide engineering applications. The installation of baffles is expected to reduce the effect of sloshing as well as the consequent environmental dama...The fluid motion in partially filled tanks with internal baffles has wide engineering applications. The installation of baffles is expected to reduce the effect of sloshing as well as the consequent environmental damages. In the present study, a series of experimental tests are performed to investigate the sloshing phenomenon in a baffled rectangular storage tank. In addition, the sloshing phenomenon is also modeled by using Open Foam. Based on the experimental and numerical studies, optimization of the geometric parameters of the tank is performed based on some criteria such as tank area, entropy generation, and the horizontal force exerted on the tank area due to the sloshing phenomenon.The optimization is also carried out based on the entropy generation minimization analysis. It is noted that the optimum baffle height is in the range of h_b/h_w=0.5-0.75 in the present study(where h_b and h_w are the baffle height and water depth, respectively). Based on the results, the optimal design of the tank is achieved with R_A= 0.9-1.0(where R_A=L/W, L and W are the length and width of the tank, respectively). The results also show that the increase of h_b can lead to a decrease of the maximum pressure and horizontal force exerted on the tank. It is also noted that the horizontal force exerted on the tank firstly continues to increase as the sway motion amplitude increases.However, as the normalized motion amplitude parameter, a/L(The parameter a is the motion amplitude), exceeds0.067, the effect of motion amplitude on the force is not obvious. The same optimization is also performed in the multiple-variable-baffled tank and prismatic storage tank.展开更多
Sloshing of liquid can increase the dynamic pressure on the storage sidewalls and bottom in tanker ships and LNG careers. Different geometric shapes were suggested for storage tank to minimize the sloshing pressure on...Sloshing of liquid can increase the dynamic pressure on the storage sidewalls and bottom in tanker ships and LNG careers. Different geometric shapes were suggested for storage tank to minimize the sloshing pressure on tank perimeter. In this research, a numerical code was developed to model liquid sloshing in a rectangular partially filled tank. Assuming the fluid to be inviscid, Laplace equation and nonlinear free surface boundary conditions are solved using coupled FEM-BEM. The code performance for sloshing modeling is validated against available data. To minimize the sloshing pressure on tank perimeter, rectangular tanks with specific volumes and different aspect ratios were investigated and the best aspect ratios were suggested. The results showed that the rectangular tank with suggested aspect ratios, not only has a maximum surrounded tank volume to the constant available volume, but also reduces the sloshing pressure efficiently.展开更多
Large tanks are extensively used for storing water,petrochemicals and fuels.Since they are often cited in earthquake-prone areas,the safe and continuous operation of these important structures must be ensured even whe...Large tanks are extensively used for storing water,petrochemicals and fuels.Since they are often cited in earthquake-prone areas,the safe and continuous operation of these important structures must be ensured even when severe earthquakes occur,since their failure could have devastating financial and socio-environmental consequences.Base-isolation has been widely adopted for the efficient seismic protection of such critical facilities.However,base-isolated tanks can be located relatively close to active faults that generate strong excitations with special characteristics.Consequently,viscous dampers can be incorporated into the isolation system to reduce excessive displacement demands and to avoid overconservative isolator design.Nonetheless,only a few studies have focused on the investigation of seismic response of base-isolated liquid storage tanks in conjunction with supplemental viscous dampers.Therefore,the impact of the addition of supplemental linear viscous dampers on the seismic performance of tanks isolated by single friction pendulum devices is investigated herein.Four levels of supplemental damping are assessed and compared with respect to isolators′displacement capacity and accelerations that are transferred to the tanks.展开更多
This article describes the results of experimental studies into various methods of measuring sludge volume and its 3D spatial distribution using a base of data received from the inspection of more than 30 storage tank...This article describes the results of experimental studies into various methods of measuring sludge volume and its 3D spatial distribution using a base of data received from the inspection of more than 30 storage tanks of different types: external floating roof, internal floating roof and fixed roof. The advantages and disadvantages of making measurements with existing methods are discussed, including the problem of accuracy. Numerous examples of tank survey results are presented.展开更多
Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated sto...Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated storage tanks.However,the vertical pressure and friction coefficient of the scaled VCFPB in the shaking table tests cannot match the equivalent values of these parameters in the prototype.To avoid this drawback,a real-time hybrid simulation(RTHS)test was developed.Using RTHS testing,a 1/8 scaled tank isolated by VCFPB was tested.The experimental results showed that the displacement dynamic magnification factor of VCFPB,peak reduction factors of the acceleration,shear force,and overturning moment at bottom of the tank,were negative exponential functions of the ratio of peak ground acceleration(PGA)and friction coefficient.The peak reduction factors of displacement,acceleration,force and overturning moment,which were obtained from the experimental results,are compared with those calculated by the Housner model.It can be concluded that the Housner model is applicable in estimation of the acceleration,shear force,and overturning moment of liquid storage tank,but not for the sliding displacement of VCFPBs.展开更多
The features of acoustic bathymetry of sludge in crude oil tanks are considered. Different parameters of crude oil and sludge which are important for the selection of acoustic parameters such as sound speed, the acous...The features of acoustic bathymetry of sludge in crude oil tanks are considered. Different parameters of crude oil and sludge which are important for the selection of acoustic parameters such as sound speed, the acoustic impedances of “oil-sludge” boundaries and sound attenuation are analyzed and compared with experimental data. The main sources of errors of sludge volume estimation are discussed.展开更多
The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a...The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a fare precision in the predictions. By using the model of solid liquid two phase flow, the gas storage tank, pressure relief valves and slow closure reverse control valves were compared with practical engineering problems, and the functions of gas storage tank in attenuating water hammer pressure were further investigated. [展开更多
Petrochemical storage tanks are generally inspected when the tank is offline mostly to assess the extent of underside corrosion on the tank floor. Emptying, cleaning and opening a tank for inspection take many months ...Petrochemical storage tanks are generally inspected when the tank is offline mostly to assess the extent of underside corrosion on the tank floor. Emptying, cleaning and opening a tank for inspection take many months and are very expensive. Inspection costs can be reduced significantly by inserting robots through manholes on the tank roof to pertbrm non-destructive testing (NDT). The challenge is to develop robots that can operate safely in explosive and hazardous environments and measure the thickness of floor plates using ultrasound sensors. This paper reports on the development of a small and inexpensive prototype robot (NDTBOT) which is designed to be intrinsically safe for zone zero operation. The robot "hops" across the floor to make measurements, without any external moving parts. The paper describes the design, experimental testing of the NDTBOT and presents results of steel plate thickness measurements made under water.展开更多
In the paper, 3-D analysis method with unitive schemes is set up, which is used to resolve the uplift with multiple moving boundaries and multiple nonlinear coupling for anchored liquid storage tanks. hi it, an algori...In the paper, 3-D analysis method with unitive schemes is set up, which is used to resolve the uplift with multiple moving boundaries and multiple nonlinear coupling for anchored liquid storage tanks. hi it, an algorithm of quasi-harmonious finite elements for arbitrary quadrilateral of thin plates and shells is built up to analyze the multiple coupling problems of general thin plates and shells structures with three dimensions, the complementary equations for analyzing uplifting moving boundary problems are deduced. The axial symmetry and presumption of beam type mode are not used. In it, an algorithm is put forward for analyzing the Navier-Stokes problems of unsteady, three-dimensional, and viscous liquid with sloshing of moving boundary surfaces in large amplitude under ALE frame by scheme of time-split-steps to which linear potential theory is not applied. The algorithms can be used to analyze the solid-liquid multiple nonlinear coupling problems with 3-D moving boundary with friction in multiple places.展开更多
This paper presents a numerical case study of heat transfer mechanisms during the charging process of a stratified thermal storage tank applied in a specific adsorption heat pump cycle. The effective thermal conductiv...This paper presents a numerical case study of heat transfer mechanisms during the charging process of a stratified thermal storage tank applied in a specific adsorption heat pump cycle. The effective thermal conductivity of the heat transfer fluid during the charging process is analyzed through CFD simulations using Unsteady Reynolds-averaged Navier-Stokes equations (URANS). The aim of the study is to provide an equivalent thermal conductivity for a one-dimensional storage tank model to be used in a system simulation of the complete adsorption heat pump cycle. The influence of the turbulent mixing and also the advection effect due to fluid bulk motion are investigated. The results show that in the case considered here, the turbulence effect on the effective thermal conductivity is more considerable than the advection effect.展开更多
Liquid leak detection may represent a challenge for Oil&Gas operators,as indicated by operational feed-back and independent studies.Despite the availability of many different leak detection technologies,some syste...Liquid leak detection may represent a challenge for Oil&Gas operators,as indicated by operational feed-back and independent studies.Despite the availability of many different leak detection technologies,some systems may either fail to detect spills or generate frequent false alarms.In particular,possible soil contamination from pre-existing leaks and pollution carry-over by rain water is difficult to filter out by a leak sensing system.Typical case of false alarms relates to punctual sensors installed upstream the drain valve within the storage tank bunds,monitoring possible presence of leaks in rain water.Besides old soil contamination,other criteria should also be considered when selecting a spill detection technology,such as asset type to be monitored(storage tank,pipeline,…),system accuracy(minimum detectable quantity,ability to localize the leak),detection time,reliability over time,capital,installation and operating costs.The paper will include an evaluation of different external leak detection technologies with respect to the above-mentioned criteria,pointing out the capabilities and limitations of each system.Focus will be placed on reliability of leak monitoring systems in challenging environments.A new generation of digital,reusable sensing cables and probes,as well as the impact of sensitivity for different applications,will be discussed.Since leak sensor installation environment(positioning,adoption of special precautions,…)may significantly affect the system performance,different above ground and underground configurations will be presented,both for new builds and existing facilities.展开更多
The problem of water supply from the public distribution network still poses very serious problems in many cities in developing countries. Intermittent water supply pushes some households to build underground reinforc...The problem of water supply from the public distribution network still poses very serious problems in many cities in developing countries. Intermittent water supply pushes some households to build underground reinforced concrete tanks for water storage to cope with unwanted water breaks. This study that relies on the results of a survey of households in some areas of the city of Brazzaville (Republic of Congo) aims to verify the importance that users attach to the quality of the works constructed. Indeed, the reliability of the tanks resulting in their impermeability to the external environment has a direct impact on the quality of stored water and therefore the use that is made of water daily. Five areas were selected because of their soil moisture. By 256 tanks identified, 143 are made of reinforced concrete and 113 in masonry. The coating materials used to seal the walls are preferably the earthenware tiles (64% of tanks), then the Sika cement (31%). Food painting (5%) is only rarely used. However, 66% of households are not assured of the potability of the water stored. A significant number of households (46%) think that the stored water could be contaminated with noxious substances seeping from the outside through the walls of the tanks. The issue of sealing of underground water tanks, especially in areas where the water table is shallow, seems concerned users.展开更多
基金supported by National Natural Science Foundation of China Innovation Group (Grant No.12221002)Beijing Natural Science Foundation (Grant No.L212018)。
文摘In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the tank in the presence of bottom oil,half oil and full oil,as well as empty tank,were investigated under internal explosion by various TNT charge contents(1.8 kg,3.5 kg and 6.2 kg).The results showed that the tank roof was the only fragment produced,and the damage forms could be divided into three types.The increase of TNT charge content and oil volume enlarged the deformation of the tank,while the hole ratio presented a trend of increase first and then decrease.The H_r,maxand V_(max)values positively increased as increasing the TNT charge content and oil volume(from empty to half oil),but decreased in full oil.The Pmaxvalues had a progressive increase with the increment of TNT charge content,but not the case with the increase in oil volumes.The development of fireball was divided into three stages:tank roof‘towed'flame,jet flow flame tumbling and rising,and jet flow flame extinguishing.The Dmaxand Hf,maxvalues both increased as increasing TNT charge content and oil volumes.The oscillation phenomenon of fireball temperature was observed in the cooling process.The average temperature of fireball surface was positively correlated with TNT charge content,and negatively correlated with oil volumes.
基金supported by Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration(Grant Nos.2021B06,2021C05)Heilongjiang Natural Science Foundation Joint Guidance Project(Grant No.LH2021E122).
文摘A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation.
文摘Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential risk to life.There is a direct correlation between report quality and equipment capability.The more able the equipment is-in terms of efficient data gathering,signal to noise ratio,positioning,and coverage-the more actionable the report is.This results in optimal maintenance and repair strategies providing the report is clear and well presented.Furthermore,when considering tank floor storage inspection it is essential that asset owners have total confidence in inspection findings and the ensuing reports.Tank floor inspection equipment must not only be efficient and highly capable,but data sets should be traceable and integrity maintained throughout.Corrosion mapping of large surface areas such as storage tank bottoms is an inherently arduous and time-consuming process.MFL(magnetic flux leakage)based tank bottom scanners present a well-established and highly rated method for inspection.There are many benefits of using modern MFL technology to generate actionable reports.Chief among these includes efficiency of coverage while gaining valuable information regarding defect location,severity,surface origin and the extent of coverage.More recent advancements in modern MFL tank bottom scanners afford the ability to scan and record data sets at areas of the tank bottom which were previously classed as dead zones or areas not scanned due to physical restraints.An example of this includes scanning the CZ(critical zone)which is the area close to the annular to shell junction weld.Inclusion of these additional dead zones increases overall inspection coverage,quality and traceability.Inspection of the CZ areas allows engineers to quickly determine the integrity of arguably the most important area of the tank bottom.Herein we discuss notable developments in CZ coverage,inspection efficiency and data integrity that combines to deliver an actionable report.The asset owner can interrogate this report to develop pertinent and accurate maintenance and repair strategies.
基金financed by the National Key Research and Development Program of China[grants number 2022YFB3803800]the National Natural Science Foundation of China[grants number 52071141,52271212,52201250,51771056]Interdisciplinary Innovation Program of North China Electric Power University[grants number XM2112355].
文摘At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages of low hydrogen storage capacity and poor kinetics of hydrogen storage materials,our primary focus is to achieve smooth hydrogen ab-/desorption over a wide temperature range to meet the requirements of fuel cells and their integrated power generation systems.In this paper,the Ti_(0.9)Zr_(0.1)Mn_(1.45)V_(0.4)Fe_(0.15) hydrogen storage alloy was successfully prepared by arc melting.The maximum hydrogen storage capacity reaches 1.89 wt% at 318 K.The alloy has the capability to absorb 90% of hydrogen storage capacity within 50 s at 7 MPa and release 90% of hydrogen within 220 s.Comsol Multiphysics 6.0 software was used to simulate the hydrogen ab-/desorption processes of the tank.The flow rate of cooling water during hydrogen absorption varied in a gradient of(0.02 t x)m s^(-1)(x=0,0.02,0.04,0.06,0.08,0.1,0.12).Cooling water flow rate is positively correlated with the hydrogen absorption rate but negatively correlated with the cost.When the cooling rate is 0.06 m s^(-1),both simulation and experimentation have shown that the hydrogen storage tank is capable of steady hydrogen desorption for over 6 h at a flow rate of 2 L min^(-1).Based on the above conclusions,we have successfully developed a hydrogen-assisted two-wheeler with a range of 80 km and achieved regional demonstration operations in Changzhou and Shaoguan.This paper highlights the achievements of our team in the technological development of fuel cell power generation systems using solid hydrogen storage materials as hydrogen storage carriers and their application in twowheelers in recent years.
基金The National Natural Science Foundation of China(No. 51078115)
文摘In order to investigate the damage and deformation mechanism of large scale steel fixed-roof oil-storage tanks under the combustible gas explosion, a series of explosion experiments of scaled models are conducted. The l: 25 scaled numerical models of oil-storage tanks with a capacity of 5 000 m3 are also set up by ANSYS/LS-DYNA software, and their damage processes under the blast impact are numerically simulated. Both the experimental results and the numerical simulations show that the blast loading curve displays a pressure jump instantaneously at the moment of contact with the experimental models, and the overpressure peaks at the stagnation area of the outer surface on the blast side. The yield range first appears at the stagnation area and then propagates to the neighboring parts, and the irregular plastic hinge circle obviously appears around the deformation area, which results in the concaved buckling of the tank inner surface. During the whole process, the inner liquid not only impacts on the structures, but also absorbs and consumes part of the blast energy.
文摘Crude oil is a kind of water/oil emulsion, which the oil phase consists of organic molecules with different molecular weights such as alkanes, paraffin, asphaltene, and resins. Due to the change in physicochemical conditions during the production, transportation, storage, and refining, heavier molecules can precipitate from crude oil. Thus, viscous sludge formed at the bottom of storage tanks can cause many problems including reduction of storage capacity of tank, oil contamination, corrosion, repair costs, environmental pollution, etc. The reduction of sludge viscosity can be achieved by reduction of its interfacial tension. In this study, different chemical and physical factors, influencing prepared emulsions(made of sludge, water and surfactant), such as surfactants, solvents, temperature, pressure, and mixing conditions were investigated. Results showed that non-ionic surfactants(like bitumen emulsifier), and solvents(such as mixed xylene, AW-400, and AW-402), injection of additives, applying pressure, and mixing operations had a positive effect on reduction of emulsion viscosity. All experiments were carried out with sludge obtained from crude oil storage tanks at Kharg Island,Iran.
文摘Liquid storage tanks are essential structures that are often located in residential and industrial areas; thus an assessment of their seismic performance is an important engineering issue. In this paper, the seismic response ofunanchored steel liquid storage tanks is investigated using the endurance time (ET) dynamic analysis procedure and compared to responses obtained for anchored tanks under actual ground motions and intensifying ET records. In most cases, the results from ground motions are properly obtained with negligible differences using ET records. It is observed that uplifting of the tank base, which is closely related to the tank aspect ratio, has the greatest significance in the responses of the tank and can be predicted with reasonable accuracy by using currently available ET records.
基金Supported by Multi-Discipline Scientific Rearch Foundation of Harbin Institute of Technology(HIT MD2003.1)Postdoctoral Scientific Rearch Foundation of Heilongjiang Provine(LBH-Q06066)
文摘This paper presented a preliminary research on the central solar heating system with seasonal storage(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was followed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which decreases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition,the relationship between the solar collector efficiency and storage water temperature is also obtained,it decreases quickly with increasing storing water temperature,and then increases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.
基金inancially supported by the National Natural Science Foundation of China (Grant No. 51761135011)Joint supported by NSFC and Royal Society (Grant No. 52011530183)。
文摘The fluid motion in partially filled tanks with internal baffles has wide engineering applications. The installation of baffles is expected to reduce the effect of sloshing as well as the consequent environmental damages. In the present study, a series of experimental tests are performed to investigate the sloshing phenomenon in a baffled rectangular storage tank. In addition, the sloshing phenomenon is also modeled by using Open Foam. Based on the experimental and numerical studies, optimization of the geometric parameters of the tank is performed based on some criteria such as tank area, entropy generation, and the horizontal force exerted on the tank area due to the sloshing phenomenon.The optimization is also carried out based on the entropy generation minimization analysis. It is noted that the optimum baffle height is in the range of h_b/h_w=0.5-0.75 in the present study(where h_b and h_w are the baffle height and water depth, respectively). Based on the results, the optimal design of the tank is achieved with R_A= 0.9-1.0(where R_A=L/W, L and W are the length and width of the tank, respectively). The results also show that the increase of h_b can lead to a decrease of the maximum pressure and horizontal force exerted on the tank. It is also noted that the horizontal force exerted on the tank firstly continues to increase as the sway motion amplitude increases.However, as the normalized motion amplitude parameter, a/L(The parameter a is the motion amplitude), exceeds0.067, the effect of motion amplitude on the force is not obvious. The same optimization is also performed in the multiple-variable-baffled tank and prismatic storage tank.
文摘Sloshing of liquid can increase the dynamic pressure on the storage sidewalls and bottom in tanker ships and LNG careers. Different geometric shapes were suggested for storage tank to minimize the sloshing pressure on tank perimeter. In this research, a numerical code was developed to model liquid sloshing in a rectangular partially filled tank. Assuming the fluid to be inviscid, Laplace equation and nonlinear free surface boundary conditions are solved using coupled FEM-BEM. The code performance for sloshing modeling is validated against available data. To minimize the sloshing pressure on tank perimeter, rectangular tanks with specific volumes and different aspect ratios were investigated and the best aspect ratios were suggested. The results showed that the rectangular tank with suggested aspect ratios, not only has a maximum surrounded tank volume to the constant available volume, but also reduces the sloshing pressure efficiently.
文摘Large tanks are extensively used for storing water,petrochemicals and fuels.Since they are often cited in earthquake-prone areas,the safe and continuous operation of these important structures must be ensured even when severe earthquakes occur,since their failure could have devastating financial and socio-environmental consequences.Base-isolation has been widely adopted for the efficient seismic protection of such critical facilities.However,base-isolated tanks can be located relatively close to active faults that generate strong excitations with special characteristics.Consequently,viscous dampers can be incorporated into the isolation system to reduce excessive displacement demands and to avoid overconservative isolator design.Nonetheless,only a few studies have focused on the investigation of seismic response of base-isolated liquid storage tanks in conjunction with supplemental viscous dampers.Therefore,the impact of the addition of supplemental linear viscous dampers on the seismic performance of tanks isolated by single friction pendulum devices is investigated herein.Four levels of supplemental damping are assessed and compared with respect to isolators′displacement capacity and accelerations that are transferred to the tanks.
文摘This article describes the results of experimental studies into various methods of measuring sludge volume and its 3D spatial distribution using a base of data received from the inspection of more than 30 storage tanks of different types: external floating roof, internal floating roof and fixed roof. The advantages and disadvantages of making measurements with existing methods are discussed, including the problem of accuracy. Numerous examples of tank survey results are presented.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2018D03the National Natural Science Foundation of China under Grant Nos.51608016 and 51421005。
文摘Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated storage tanks.However,the vertical pressure and friction coefficient of the scaled VCFPB in the shaking table tests cannot match the equivalent values of these parameters in the prototype.To avoid this drawback,a real-time hybrid simulation(RTHS)test was developed.Using RTHS testing,a 1/8 scaled tank isolated by VCFPB was tested.The experimental results showed that the displacement dynamic magnification factor of VCFPB,peak reduction factors of the acceleration,shear force,and overturning moment at bottom of the tank,were negative exponential functions of the ratio of peak ground acceleration(PGA)and friction coefficient.The peak reduction factors of displacement,acceleration,force and overturning moment,which were obtained from the experimental results,are compared with those calculated by the Housner model.It can be concluded that the Housner model is applicable in estimation of the acceleration,shear force,and overturning moment of liquid storage tank,but not for the sliding displacement of VCFPBs.
文摘The features of acoustic bathymetry of sludge in crude oil tanks are considered. Different parameters of crude oil and sludge which are important for the selection of acoustic parameters such as sound speed, the acoustic impedances of “oil-sludge” boundaries and sound attenuation are analyzed and compared with experimental data. The main sources of errors of sludge volume estimation are discussed.
文摘The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a fare precision in the predictions. By using the model of solid liquid two phase flow, the gas storage tank, pressure relief valves and slow closure reverse control valves were compared with practical engineering problems, and the functions of gas storage tank in attenuating water hammer pressure were further investigated. [
文摘Petrochemical storage tanks are generally inspected when the tank is offline mostly to assess the extent of underside corrosion on the tank floor. Emptying, cleaning and opening a tank for inspection take many months and are very expensive. Inspection costs can be reduced significantly by inserting robots through manholes on the tank roof to pertbrm non-destructive testing (NDT). The challenge is to develop robots that can operate safely in explosive and hazardous environments and measure the thickness of floor plates using ultrasound sensors. This paper reports on the development of a small and inexpensive prototype robot (NDTBOT) which is designed to be intrinsically safe for zone zero operation. The robot "hops" across the floor to make measurements, without any external moving parts. The paper describes the design, experimental testing of the NDTBOT and presents results of steel plate thickness measurements made under water.
文摘In the paper, 3-D analysis method with unitive schemes is set up, which is used to resolve the uplift with multiple moving boundaries and multiple nonlinear coupling for anchored liquid storage tanks. hi it, an algorithm of quasi-harmonious finite elements for arbitrary quadrilateral of thin plates and shells is built up to analyze the multiple coupling problems of general thin plates and shells structures with three dimensions, the complementary equations for analyzing uplifting moving boundary problems are deduced. The axial symmetry and presumption of beam type mode are not used. In it, an algorithm is put forward for analyzing the Navier-Stokes problems of unsteady, three-dimensional, and viscous liquid with sloshing of moving boundary surfaces in large amplitude under ALE frame by scheme of time-split-steps to which linear potential theory is not applied. The algorithms can be used to analyze the solid-liquid multiple nonlinear coupling problems with 3-D moving boundary with friction in multiple places.
文摘This paper presents a numerical case study of heat transfer mechanisms during the charging process of a stratified thermal storage tank applied in a specific adsorption heat pump cycle. The effective thermal conductivity of the heat transfer fluid during the charging process is analyzed through CFD simulations using Unsteady Reynolds-averaged Navier-Stokes equations (URANS). The aim of the study is to provide an equivalent thermal conductivity for a one-dimensional storage tank model to be used in a system simulation of the complete adsorption heat pump cycle. The influence of the turbulent mixing and also the advection effect due to fluid bulk motion are investigated. The results show that in the case considered here, the turbulence effect on the effective thermal conductivity is more considerable than the advection effect.
文摘Liquid leak detection may represent a challenge for Oil&Gas operators,as indicated by operational feed-back and independent studies.Despite the availability of many different leak detection technologies,some systems may either fail to detect spills or generate frequent false alarms.In particular,possible soil contamination from pre-existing leaks and pollution carry-over by rain water is difficult to filter out by a leak sensing system.Typical case of false alarms relates to punctual sensors installed upstream the drain valve within the storage tank bunds,monitoring possible presence of leaks in rain water.Besides old soil contamination,other criteria should also be considered when selecting a spill detection technology,such as asset type to be monitored(storage tank,pipeline,…),system accuracy(minimum detectable quantity,ability to localize the leak),detection time,reliability over time,capital,installation and operating costs.The paper will include an evaluation of different external leak detection technologies with respect to the above-mentioned criteria,pointing out the capabilities and limitations of each system.Focus will be placed on reliability of leak monitoring systems in challenging environments.A new generation of digital,reusable sensing cables and probes,as well as the impact of sensitivity for different applications,will be discussed.Since leak sensor installation environment(positioning,adoption of special precautions,…)may significantly affect the system performance,different above ground and underground configurations will be presented,both for new builds and existing facilities.
文摘The problem of water supply from the public distribution network still poses very serious problems in many cities in developing countries. Intermittent water supply pushes some households to build underground reinforced concrete tanks for water storage to cope with unwanted water breaks. This study that relies on the results of a survey of households in some areas of the city of Brazzaville (Republic of Congo) aims to verify the importance that users attach to the quality of the works constructed. Indeed, the reliability of the tanks resulting in their impermeability to the external environment has a direct impact on the quality of stored water and therefore the use that is made of water daily. Five areas were selected because of their soil moisture. By 256 tanks identified, 143 are made of reinforced concrete and 113 in masonry. The coating materials used to seal the walls are preferably the earthenware tiles (64% of tanks), then the Sika cement (31%). Food painting (5%) is only rarely used. However, 66% of households are not assured of the potability of the water stored. A significant number of households (46%) think that the stored water could be contaminated with noxious substances seeping from the outside through the walls of the tanks. The issue of sealing of underground water tanks, especially in areas where the water table is shallow, seems concerned users.