Cilia and flagella are organelles of motility that enable cells to swim or move liquid over its surface. An exhaustive literature survey for the presence of the organelle in organisms across phyla showed that most ani...Cilia and flagella are organelles of motility that enable cells to swim or move liquid over its surface. An exhaustive literature survey for the presence of the organelle in organisms across phyla showed that most animal cells harbor cilia in contrast to very few fungal cells. While this was not unexpected, it was the position and arrangement of this organelle in each cell that intrigued our attention. Natural selection might have favored motility over chemotaxis;and it would have done so to evolve a stable structure that could have undergone an optimization process requiring a precise geometry in the shape of cells and the structure that would help cells to move. The positioning of such a structure would play a pre-dominant role in optimal motility. It is now known that the flagellar position of a cell is a genetically distinct trait, occasionally used in phylogeny of bacteria, distributed in distinguishing patterns over cellular surface, but basically are of two types, either polar (one flagellum arising from one pole per cell) or peritrichous (lateral flagella distributed over the entire cell surface). Irrespective of the cellular habitat, flagella origin, ultrastructure and proteome, the present investigation surveyed 26 sub-types of flagellar arrangements from as many species as possible. A peculiar pattern ensued-Prokaryotes harbored predominantly polar and peritrichous types;eukaryotes showed a mere change of the peritrichous one. These numbers when used to create a Similarity tree depicted a similarity distance of 14 between the Eubacteria and Archaebacteria forming the first neighborhood;Protozoans, Algae, Fungi, Plantae and Animalia formed a second neighborhood. We offer a working hypothesis for this pattern and the gradual shift in the flagellar arrangement from polar, peritrichous, sub-apical, and apical to lateral throughout evolution.展开更多
Flagella,the basic locomotive organ in algae,as well as bacteria and some cells of animals or high plants,would be damaged in the well stirred mass culture due to the strong forces caused by the fast mixing impellers....Flagella,the basic locomotive organ in algae,as well as bacteria and some cells of animals or high plants,would be damaged in the well stirred mass culture due to the strong forces caused by the fast mixing impellers. The dynamic regeneration of the flagella in deflagellated Dunaliella salina was studied microscopically by using a bench top flat bottom photobioreactor. The results showed that 90 minutes was necessary for the repair of flagella,after which half of the cells became motile as their flagella generated within 120 minutes and nearly all of the cells could swim freely within 180 minutes.展开更多
MUC1, a tumor-associated antigen overexpressed in many carcinomas, represents a candidate of choice for cancer immunotherapy. Flagella-based MUC1 vaccines were tested in therapeutic setting in two aggressive breast ca...MUC1, a tumor-associated antigen overexpressed in many carcinomas, represents a candidate of choice for cancer immunotherapy. Flagella-based MUC1 vaccines were tested in therapeutic setting in two aggressive breast cancer models, comprising the implantation of the 4T1-MUC1 cell line in either Balb/c, or Human MUC1 transgenic mice in which spontaneous metastases occurs. Recombinant flagella carrying only 7 amino acid of MUC1 elicited therapeutic activity, affecting both the growth of established growing tumors and the number of metastases. Higher therapeutic activity was achieved with an additional recombinant flagella designed with the SYFPEITHI algorithm. The vaccines triggered a Th1 response against MUC1 with no evident autoimmune response towards healthy MUC1-expressing tissues. Recombinant flagella carrying a 25-residue fragment of MUC1, induced the most effective response, as evidenced by a significant reduction of both the size and growth rate of the tumor as well as by the lower number of metastases, and expanding life span of vaccinated mice.展开更多
Rhodobacter sphaeroides 2.4.1 belongs to the?-3 subdivision of the Proteobacteria. It possesses a multipartite genome structure consisting of two circular chromosomes, andit displays a wide range of metabolic diversit...Rhodobacter sphaeroides 2.4.1 belongs to the?-3 subdivision of the Proteobacteria. It possesses a multipartite genome structure consisting of two circular chromosomes, andit displays a wide range of metabolic diversity.Approximately 40 flagellar proteins are required for structure, assembly, and regulation of the flagellum formation in most bacterial species. R. sphaeroidescontains two flagellar gene clusters (fla1 and fla2),which encode 38 and 21 proteins, respectively. Thirty-six of these genes exist in duplicate gene-pairs.A combination of genome analysis, phylogenetic analysis and mRNA expression analysis were employed to examine the conservation of structure, function and evolution of fla1 and fla2 in R. sphaeroides. The results demonstrated that fla2, which was shared among members of ?-Proteobacteria, is native toR. sphaeroides, while fla1 was horizontally transferred from a member of ?-Proteobacteria.In addition, genes located in fla1 are expressed over several growth conditions, but those in fla2 are barely expressed.展开更多
Nanomachines are controllable machines at the nano meter or molecular scale that are composed of nano-scale components.They have their own mechanochemistry,dynamics,workspace,and usability and are composed of nature...Nanomachines are controllable machines at the nano meter or molecular scale that are composed of nano-scale components.They have their own mechanochemistry,dynamics,workspace,and usability and are composed of nature's building blocks:namely proteins,DNA,and other compounds.Some bacteria(i.e.Escherichia coli)swim by rotating helical flagella.The structure and motion character of the flagellum are introduced.Through the study,a micro-robot was designed and its mechanical structure was explained in this paper.In the future,the bionic micro-robot is expected tobe built,which can travel inside the human body and carry out a host of complex operations such as minimally invasive surgery,highly localized drug delivery,and screening for diseases that are in their very early stages.It is important to medicine and could be applied in other areas,including space exploration,electronics and military.展开更多
Multiple morphological abnormalities of the sperm flagella(MMAF)is a severe form of asthenozoospermia categorized by immotile spermatozoa with abnormal flagella in ejaculate.Whole-exome sequencing(WES)is used to detec...Multiple morphological abnormalities of the sperm flagella(MMAF)is a severe form of asthenozoospermia categorized by immotile spermatozoa with abnormal flagella in ejaculate.Whole-exome sequencing(WES)is used to detect pathogenic variants in patients with MMAF.In this study,a novel homozygous frameshift variant(c.6158_6159insT)in dynein axonemal heavy chain 8(DNAH8)from two infertile brothers with MMAF in a consanguineous Pakistani family was identified by WES.Reverse transcription-polymerase chain reaction(RT-PCR)confirmed DNAH8 mRNA decay in these patients with the DNAH8 mutation.Hematoxylin–eosin staining and transmission electron microscopy revealed highly divergent morphology and ultrastructure of sperm flagella in these patients.Furthermore,an immunofluorescence assay showed the absence of DNAH8 and a reduction in its associated protein DNAH17 in the patients'spermatozoa.Collectively,our study expands the phenotypic spectrum of patients with DNAH8-related MMAF worldwide.展开更多
The syndrome of multiple morphological abnormalities of the sperm flagella(MMAF)is a specific kind of asthenoteratozoospermia with a mosaic of flagellar morphological abnormalities(absent,short,bent,coiled,and irregul...The syndrome of multiple morphological abnormalities of the sperm flagella(MMAF)is a specific kind of asthenoteratozoospermia with a mosaic of flagellar morphological abnormalities(absent,short,bent,coiled,and irregular flagella).MMAF was proposed in 2014 and has attracted increasing attention;however,it has not been clearly understood.In this review,we elucidate the definition of MMAF from a systematical view,the difference between MMAF and other conditions with asthenoteratozoospermia or asthenozoospermia(such as primary mitochondrial sheath defects and primary ciliary dyskinesia),the knowledge regarding its etiological mechanism and related genetic findings,and the clinical significance of MMAF for intracytoplasmic sperm injection and genetic coun sell ng.This review provides the basic kno wledge for MMAF and puts forward some suggestions for further investigations.展开更多
Impaired flagellar development and impaired motility of sperm is a cause of infertility in males. Several genes, including those of the AKAP, CCDC, CFAP, and DNAH families, among others, are involved in the‘‘multipl...Impaired flagellar development and impaired motility of sperm is a cause of infertility in males. Several genes, including those of the AKAP, CCDC, CFAP, and DNAH families, among others, are involved in the‘‘multiple morphological abnormalities of the flagella"(MMAF) phenotype;these are the most common causes of male infertility. The Cilia-and flagella-associated protein(CFAP) family includes six members reported to cause MMAF phenotypes: CFAP43, CFAP44, CFAP69, CFAP65, CFAP70, and CFAP251. Here, we found that cilia-and flagella-associated protein 61(Cfap61) is highly expressed specifically in murine testes and show that the Cfap61-knockout male mice demonstrate MMAF phenotype, including sperm with short, coiled, and irregular flagella. Deletion of Cfap61 resulted in severe morphological and behavior abnormalities in sperm, reduced total sperm counts, impaired sperm motility, and led to male infertility.Notably, absence of Cfap61 impaired sperm flagella ultrastructural abnormalities on account of numerous distortions in multiple flagellum components. Immunostaining experiments in wild-type mice and healthy adult humans indicated that Cfap61 is initially localized at the neck of sperm, where it potentially functions in flagellum formation, and is later localized to the midpiece of the sperm. Thus, our study provides compelling evidence that dysregulation of Cfap61 affects sperm flagellum development and induces male infertility in mice. Further investigations of the CFAP61 gene in humans alongside clinical evidence showing MMAF phenotype in humans should contribute to our understanding of developmental processes underlying sperm flagellum formation and the pathogenic mechanisms that cause male infertility.展开更多
Numerous genes have been associated with multiple morphological abnormalities of the sperm flagella(MMAF),which cause severe asthenozoospermia and lead to male infertility,while the causes of approximately 50%of MMAF ...Numerous genes have been associated with multiple morphological abnormalities of the sperm flagella(MMAF),which cause severe asthenozoospermia and lead to male infertility,while the causes of approximately 50%of MMAF cases remain unclear.To reveal the genetic causes of MMAF in an infertile patient,whole-exome sequencing was performed to screen for pathogenic genes,and electron microscope was used to reveal the sperm flagellar ultrastructure.A novel heterozygous missense mutation in the outer dense fiber protein 2(ODF2)gene was detected,which was inherited from the patient’s mother and predicted to be potentially damaging.Transmission electron microscopy revealed that the outer dense fibers were defective in the patient’s sperm tail,which was similar to that of the reported heterozygous Odf2 mutation mouse.Immunostaining of ODF2 showed severe ODF2 expression defects in the patient’s sperm.Therefore,it was concluded that the heterozygous mutation in ODF2 caused MMAF in this case.To evaluate the possibility of assisted reproductive technology(ART)treatment for this patient,intracytoplasmic sperm injection(ICSI)was performed,with the help of a hypo-osmotic swelling test and laser-assisted immotile sperm selection(LAISS)for available sperm screening,and artificial oocyte activation with ionomycin was applied to improve the fertilization rate.Four ICSI cycles were performed,and live birth was achieved in the LAISS-applied cycle,suggesting that LAISS would be valuable in ART treatment for MMAF.展开更多
A flagellar gene cluster fragment includingflbD of Azospirillum brasilense was cloned and sequenced. TheflbD mutant strain was found to be nonmotile——losingboth polar and lateral flagella (Fla-Laf-). Motility and fl...A flagellar gene cluster fragment includingflbD of Azospirillum brasilense was cloned and sequenced. TheflbD mutant strain was found to be nonmotile——losingboth polar and lateral flagella (Fla-Laf-). Motility and fla-gella were regained by complementation with plasmid-borne multicopy flbD, but altered with larger swarming circle and fewer lateral flagella on the semisolid plate. This result indicated that FlbD plays an important role in the regulation of both polar and lateral flagellar biosynthesis in A. brasilense.展开更多
文摘Cilia and flagella are organelles of motility that enable cells to swim or move liquid over its surface. An exhaustive literature survey for the presence of the organelle in organisms across phyla showed that most animal cells harbor cilia in contrast to very few fungal cells. While this was not unexpected, it was the position and arrangement of this organelle in each cell that intrigued our attention. Natural selection might have favored motility over chemotaxis;and it would have done so to evolve a stable structure that could have undergone an optimization process requiring a precise geometry in the shape of cells and the structure that would help cells to move. The positioning of such a structure would play a pre-dominant role in optimal motility. It is now known that the flagellar position of a cell is a genetically distinct trait, occasionally used in phylogeny of bacteria, distributed in distinguishing patterns over cellular surface, but basically are of two types, either polar (one flagellum arising from one pole per cell) or peritrichous (lateral flagella distributed over the entire cell surface). Irrespective of the cellular habitat, flagella origin, ultrastructure and proteome, the present investigation surveyed 26 sub-types of flagellar arrangements from as many species as possible. A peculiar pattern ensued-Prokaryotes harbored predominantly polar and peritrichous types;eukaryotes showed a mere change of the peritrichous one. These numbers when used to create a Similarity tree depicted a similarity distance of 14 between the Eubacteria and Archaebacteria forming the first neighborhood;Protozoans, Algae, Fungi, Plantae and Animalia formed a second neighborhood. We offer a working hypothesis for this pattern and the gradual shift in the flagellar arrangement from polar, peritrichous, sub-apical, and apical to lateral throughout evolution.
文摘Flagella,the basic locomotive organ in algae,as well as bacteria and some cells of animals or high plants,would be damaged in the well stirred mass culture due to the strong forces caused by the fast mixing impellers. The dynamic regeneration of the flagella in deflagellated Dunaliella salina was studied microscopically by using a bench top flat bottom photobioreactor. The results showed that 90 minutes was necessary for the repair of flagella,after which half of the cells became motile as their flagella generated within 120 minutes and nearly all of the cells could swim freely within 180 minutes.
文摘MUC1, a tumor-associated antigen overexpressed in many carcinomas, represents a candidate of choice for cancer immunotherapy. Flagella-based MUC1 vaccines were tested in therapeutic setting in two aggressive breast cancer models, comprising the implantation of the 4T1-MUC1 cell line in either Balb/c, or Human MUC1 transgenic mice in which spontaneous metastases occurs. Recombinant flagella carrying only 7 amino acid of MUC1 elicited therapeutic activity, affecting both the growth of established growing tumors and the number of metastases. Higher therapeutic activity was achieved with an additional recombinant flagella designed with the SYFPEITHI algorithm. The vaccines triggered a Th1 response against MUC1 with no evident autoimmune response towards healthy MUC1-expressing tissues. Recombinant flagella carrying a 25-residue fragment of MUC1, induced the most effective response, as evidenced by a significant reduction of both the size and growth rate of the tumor as well as by the lower number of metastases, and expanding life span of vaccinated mice.
文摘Rhodobacter sphaeroides 2.4.1 belongs to the?-3 subdivision of the Proteobacteria. It possesses a multipartite genome structure consisting of two circular chromosomes, andit displays a wide range of metabolic diversity.Approximately 40 flagellar proteins are required for structure, assembly, and regulation of the flagellum formation in most bacterial species. R. sphaeroidescontains two flagellar gene clusters (fla1 and fla2),which encode 38 and 21 proteins, respectively. Thirty-six of these genes exist in duplicate gene-pairs.A combination of genome analysis, phylogenetic analysis and mRNA expression analysis were employed to examine the conservation of structure, function and evolution of fla1 and fla2 in R. sphaeroides. The results demonstrated that fla2, which was shared among members of ?-Proteobacteria, is native toR. sphaeroides, while fla1 was horizontally transferred from a member of ?-Proteobacteria.In addition, genes located in fla1 are expressed over several growth conditions, but those in fla2 are barely expressed.
文摘Nanomachines are controllable machines at the nano meter or molecular scale that are composed of nano-scale components.They have their own mechanochemistry,dynamics,workspace,and usability and are composed of nature's building blocks:namely proteins,DNA,and other compounds.Some bacteria(i.e.Escherichia coli)swim by rotating helical flagella.The structure and motion character of the flagellum are introduced.Through the study,a micro-robot was designed and its mechanical structure was explained in this paper.In the future,the bionic micro-robot is expected tobe built,which can travel inside the human body and carry out a host of complex operations such as minimally invasive surgery,highly localized drug delivery,and screening for diseases that are in their very early stages.It is important to medicine and could be applied in other areas,including space exploration,electronics and military.
基金This work was supported by the National Natural Science Foundation of China(No.31871514,No.81971333,and No.82071709)the National Key Research and Development Program of China(2019YFA0802600 and 2021YFC2700202)。
文摘Multiple morphological abnormalities of the sperm flagella(MMAF)is a severe form of asthenozoospermia categorized by immotile spermatozoa with abnormal flagella in ejaculate.Whole-exome sequencing(WES)is used to detect pathogenic variants in patients with MMAF.In this study,a novel homozygous frameshift variant(c.6158_6159insT)in dynein axonemal heavy chain 8(DNAH8)from two infertile brothers with MMAF in a consanguineous Pakistani family was identified by WES.Reverse transcription-polymerase chain reaction(RT-PCR)confirmed DNAH8 mRNA decay in these patients with the DNAH8 mutation.Hematoxylin–eosin staining and transmission electron microscopy revealed highly divergent morphology and ultrastructure of sperm flagella in these patients.Furthermore,an immunofluorescence assay showed the absence of DNAH8 and a reduction in its associated protein DNAH17 in the patients'spermatozoa.Collectively,our study expands the phenotypic spectrum of patients with DNAH8-related MMAF worldwide.
基金This study was supported by grants from the National Natural Science Foundation of China(81771645 and 81471432 to YQT),and Graduate Research and Innovation Projects of Central South University(Grant 2017zzts071 to CFT).
文摘The syndrome of multiple morphological abnormalities of the sperm flagella(MMAF)is a specific kind of asthenoteratozoospermia with a mosaic of flagellar morphological abnormalities(absent,short,bent,coiled,and irregular flagella).MMAF was proposed in 2014 and has attracted increasing attention;however,it has not been clearly understood.In this review,we elucidate the definition of MMAF from a systematical view,the difference between MMAF and other conditions with asthenoteratozoospermia or asthenozoospermia(such as primary mitochondrial sheath defects and primary ciliary dyskinesia),the knowledge regarding its etiological mechanism and related genetic findings,and the clinical significance of MMAF for intracytoplasmic sperm injection and genetic coun sell ng.This review provides the basic kno wledge for MMAF and puts forward some suggestions for further investigations.
基金We thank Zhang Jie for her assistance in confocal analysis(Advanced Medical Research Institute,Shandong University).This work was supported by the National Key Research and Development Programs of China(2018YFC1003400)the Young Scholars Program of Shandong University(2016WLJH50)the Natural Science Foundation of Shandong Province(ZR2017MH049).
文摘Impaired flagellar development and impaired motility of sperm is a cause of infertility in males. Several genes, including those of the AKAP, CCDC, CFAP, and DNAH families, among others, are involved in the‘‘multiple morphological abnormalities of the flagella"(MMAF) phenotype;these are the most common causes of male infertility. The Cilia-and flagella-associated protein(CFAP) family includes six members reported to cause MMAF phenotypes: CFAP43, CFAP44, CFAP69, CFAP65, CFAP70, and CFAP251. Here, we found that cilia-and flagella-associated protein 61(Cfap61) is highly expressed specifically in murine testes and show that the Cfap61-knockout male mice demonstrate MMAF phenotype, including sperm with short, coiled, and irregular flagella. Deletion of Cfap61 resulted in severe morphological and behavior abnormalities in sperm, reduced total sperm counts, impaired sperm motility, and led to male infertility.Notably, absence of Cfap61 impaired sperm flagella ultrastructural abnormalities on account of numerous distortions in multiple flagellum components. Immunostaining experiments in wild-type mice and healthy adult humans indicated that Cfap61 is initially localized at the neck of sperm, where it potentially functions in flagellum formation, and is later localized to the midpiece of the sperm. Thus, our study provides compelling evidence that dysregulation of Cfap61 affects sperm flagellum development and induces male infertility in mice. Further investigations of the CFAP61 gene in humans alongside clinical evidence showing MMAF phenotype in humans should contribute to our understanding of developmental processes underlying sperm flagellum formation and the pathogenic mechanisms that cause male infertility.
基金supported by grant from the National Key Research and Development Program of China(No.2017YFC1002003).
文摘Numerous genes have been associated with multiple morphological abnormalities of the sperm flagella(MMAF),which cause severe asthenozoospermia and lead to male infertility,while the causes of approximately 50%of MMAF cases remain unclear.To reveal the genetic causes of MMAF in an infertile patient,whole-exome sequencing was performed to screen for pathogenic genes,and electron microscope was used to reveal the sperm flagellar ultrastructure.A novel heterozygous missense mutation in the outer dense fiber protein 2(ODF2)gene was detected,which was inherited from the patient’s mother and predicted to be potentially damaging.Transmission electron microscopy revealed that the outer dense fibers were defective in the patient’s sperm tail,which was similar to that of the reported heterozygous Odf2 mutation mouse.Immunostaining of ODF2 showed severe ODF2 expression defects in the patient’s sperm.Therefore,it was concluded that the heterozygous mutation in ODF2 caused MMAF in this case.To evaluate the possibility of assisted reproductive technology(ART)treatment for this patient,intracytoplasmic sperm injection(ICSI)was performed,with the help of a hypo-osmotic swelling test and laser-assisted immotile sperm selection(LAISS)for available sperm screening,and artificial oocyte activation with ionomycin was applied to improve the fertilization rate.Four ICSI cycles were performed,and live birth was achieved in the LAISS-applied cycle,suggesting that LAISS would be valuable in ART treatment for MMAF.
基金This work was supported by the National "863" High-tech Project (Grant No. 863-101-03-04-02).
文摘A flagellar gene cluster fragment includingflbD of Azospirillum brasilense was cloned and sequenced. TheflbD mutant strain was found to be nonmotile——losingboth polar and lateral flagella (Fla-Laf-). Motility and fla-gella were regained by complementation with plasmid-borne multicopy flbD, but altered with larger swarming circle and fewer lateral flagella on the semisolid plate. This result indicated that FlbD plays an important role in the regulation of both polar and lateral flagellar biosynthesis in A. brasilense.