期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Gel-Based Triboelectric Nanogenerators for Flexible Sensing:Principles,Properties,and Applications
1
作者 Peng Lu Xiaofang Liao +7 位作者 Xiaoyao Guo Chenchen Cai Yanhua Liu Mingchao Chi Guoli Du Zhiting Wei Xiangjiang Meng Shuangxi Nie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期257-303,共47页
The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based ... The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based on gel materials(with excellent conductivity,mechanical tunability,environmental adaptability,and biocompatibility)are considered an advanced approach for developing a new generation of flexible sensors.This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors,covering their principles,properties,and applications.Based on the development requirements for flexible sensors,the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced.Design strategies for the performance optimization of hydrogel-,organogel-,and aerogel-based TENGs are systematically summarized.In addition,the applications of gel-based TENGs in human motion sensing,tactile sensing,health monitoring,environmental monitoring,human-machine interaction,and other related fields are summarized.Finally,the challenges of gel-based TENGs for flexible sensing are discussed,and feasible strategies are proposed to guide future research. 展开更多
关键词 Triboelectric nanogenerators Gel materials Triboelectric materials flexible sensing
下载PDF
Crack Quantification of Bolted Joints by Using a Parallelogram Eddy Current Array Sensing Film 被引量:1
2
作者 SUN Hu ZHANG Yiming +2 位作者 YI Junyan WANG Yishou QING Xinlin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第1期98-107,共10页
Crack monitoring at the bolt hole edge is one of the important focuses of aircraft structural health monitoring.In this study,a novel eddy current sensing film based on a parallelogram coil array is developed to quant... Crack monitoring at the bolt hole edge is one of the important focuses of aircraft structural health monitoring.In this study,a novel eddy current sensing film based on a parallelogram coil array is developed to quantitatively monitor the crack characteristics near the bolt hole with fewer layers and coils,compared with the existing methods.The parallelogram coil array configuration is designed and optimized to improve the quantitative monitoring ability of the crack.A 3×3 parallelogram coil array is used to quantify the crack parameters of aluminum bolted joints.Finite element simulation and experiments show that the proposed parallelogram coil array could not only accurately and quantitatively identify the crack angle at the edge of the bolt hole,but also track the crack length along the radial direction of the bolt hole and the depth along the axial direction. 展开更多
关键词 bolted joints flexible eddy current sensing film parallelogram coil array structural health monitoring
下载PDF
Three-dimensional CeO_(2)@carbon-quantum-dots scaffold modified with Au nanoparticles on flexible substrates for high performance gas sensing at room temperature 被引量:1
3
作者 Chao Wang Long Zhang +5 位作者 Bing He Quan Zhou Shao-Hui Zhang Xiu-Li Kong Zhen Chen Ge-Bo Pan 《Rare Metals》 SCIE EI CAS CSCD 2023年第6期1946-1958,共13页
High-performance gas sensing materials operated at room temperature(RT) are attractive for a variety of real-time gas monitoring applications,especially with the excellent durability and flexibility of wearable sensor... High-performance gas sensing materials operated at room temperature(RT) are attractive for a variety of real-time gas monitoring applications,especially with the excellent durability and flexibility of wearable sensor.The constructing heterostructure is one of the significant approaches in design strategies of sensing materials.This heterostructure effectively increases the active site for improving sensing performance and decreasing energy consumption.Herein,the heterostructure of Au nanoparticles modified CeO_(2)@carbon-quantum-dots(Au/CeO_(2)@CQDs) with a three-dimensional(3D) scaffold structure are successfully synthesized by an effective strategy,which can apply for preparing flexible gas sensor.The gas sensing properties of Au/CeO_(2)@CQDs based on flexible substrate are obtained under long-term repeated NO_(2) exposure at RT.Meanwhile,the long-term mechanical stability of this gas sensing device is also detected after different bending cycles.The Au/CeO_(2)@CQDs based on flexible substrate sensor exhibits excellent performance,including higher sensitivity(47.2),faster response(18 s)and recovery time(22 s) as well as longer-term stability than performance of pure materials.The obtained sensor also reveals outstanding mechanical flexibility,which is only a tiny response fluctuation(8.1%) after 500 bending/relaxing cycles.Therefore,our study demonstrates the enormous potential of this sensing materials for hazardous gas monitoring in future portable and wearable sensing platform. 展开更多
关键词 Au/CeO_(2)@CQDs heterostructure Threedimensional(3D)scaffold structure High performance gas sensor flexible sensing platform PHOTODEPOSITION
原文传递
Hydrophobic ionic liquid-in-polymer composites for ultrafast,linear response and highly sensitive humidity sensing 被引量:1
4
作者 Xuanliang Zhao Kanglin Zhou +7 位作者 Yujia Zhong Peng Liu Zechen Li Jialiang Pan Yu Long Meirong Huang Abdelrahman Brakat Hongwei Zhu 《Nano Research》 SCIE EI CAS CSCD 2021年第4期1202-1209,共8页
Traditional ionic liquids are sensitive to humidity but with long response time and nonlinear response.Pure liquid-state ionic liquids are usually hard for dehydration which have ultralong response time for humidity s... Traditional ionic liquids are sensitive to humidity but with long response time and nonlinear response.Pure liquid-state ionic liquids are usually hard for dehydration which have ultralong response time for humidity sensing.The immobilization of ionic liquids provide a possible way for high performance humidity sensing.Hydrophobic materials and structures also promised faster response in humidity sensing,because of easier desorption of water.In this work,we prepared flexible humidity sensitive composites based on hydrophobic ionic liquid and polymer.The combination of hydrophobic ionic liquid with hydrophobic polymer realized linear response,high sensitivity with low hysteresis to humidity.By adjusting the ratio of ionic liquid,not only the impedance but also the hydrophobicity of composite could be modulated,which had a significant influence on the humidity sensing performance.The morphology and microstructure of the material also affected its interaction with water molecules.Due to the diverse processing methods of polymer,highly transparent film fabricated by spinning-coating and nanofibrous membrane fabricated by electrospinning could be prepared and exhibited different response time,which could be used for different application scenarios.Especially,the fibrous membrane made with electrospinning method showed an ultrafast response and could distinguish up to 120 Hz humidity change,due to its fibrous structure with high specific surface area.The humidity sensors with ultrafast,linear response and high sensitivity showed potential applications in human respiratory monitoring and flexible non-contact switch.To better show the multifunction of ionic liquid-polymer composite,as a proof of concept,we fabricated an integrated humidity sensitive color change device by utilizing lower ionic liquid content composite for sensing in the humidity sensing module and higher ionic liquid content composite as the electrolyte in the electrochromic module. 展开更多
关键词 ionic liquid flexible humidity sensing ultrafast response HYDROPHOBIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部