期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
DESIGNING REDUCED-ORDER CONTROLLERS OF MIXEDSENSITIVITY PROBLEM FOR FLIGHT CONTROL SYSTEMS
1
作者 曾建平 程鹏 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2000年第2期91-94,共4页
Based on linear matrix inequalities (LMI), the design method of reduced order controllers of mixed sensitivity problem is studied for flight control systems. It is shown that there exists a controller with order not ... Based on linear matrix inequalities (LMI), the design method of reduced order controllers of mixed sensitivity problem is studied for flight control systems. It is shown that there exists a controller with order not greater than the difference between the generalized plant order and the number of independent control variables, if the mixed sensitivity problem is solvable for strict regular flight control plants. The proof is constructive, and an approach to design such a controller can be obtained in terms of a pair of feasible solution to the well known 3 LMI. Finally, an example of mixed sensitivity problem for a flight control system is given to demonstrate practice of the approach. 展开更多
关键词 flight control systems H control LMI reduced order controller
下载PDF
H_∞ output tracking control for flight control systems with time-varying delay 被引量:4
2
作者 Zhang Yingxin Wang Qing +1 位作者 Dong Chaoyang Jiang Yifan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第5期1251-1258,共8页
For flight control systems with time-varying delay, an H∞ output tracking controller is proposed. The controller is designed for the discrete-time state-space model of general aircraft to reduce the effects of uncert... For flight control systems with time-varying delay, an H∞ output tracking controller is proposed. The controller is designed for the discrete-time state-space model of general aircraft to reduce the effects of uncertainties of the mathematical model, external disturbances, and bounded time-varying delay. It is assumed that the feedback-control loop is closed by the communication network, and the network-based control architecture induces time-delays in the feedback information. Suppose that the time delay has both an upper bound and a lower bound. By using the Lyapu- nov-Krasovskii function and the linear matrix inequality (LMI), the delay-dependent stability criterion is derived for the time-delay system. Based on the criterion, a state-feedback H∞ output tracking controller for systems with norm-bounded uncertainties and time-varying delay is presented. The control scheme is applied to the high incidence research model (HIRM), which shows the effectiveness of the proposed approach. 展开更多
关键词 Discrete time control systems flight control systems H∞ output tracking Time-varying delay UNCERTAINTY
原文传递
APPLICATIONOFNEURALNETWORKTOFLIGHTCONTROLSYSTEMDESIGN
3
作者 Li Qing Liu Jimei Han Zhixiu Liu Xiao Department of Automatic Control, NUAA29 Yudao Street, Nanjing 210016, P.R. China 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1996年第1期71-75,共5页
Artificial neural network (ANN) has a great capability of self learning. The application of neural network to flight controller design can get good result. This paper studies the method of choosing controller paramet... Artificial neural network (ANN) has a great capability of self learning. The application of neural network to flight controller design can get good result. This paper studies the method of choosing controller parameters using neural network with Back Propagation (B P) algorithm. Design and simulation results show that this method can be used in flight control system design. 展开更多
关键词 neural network back propagation flight control systems FEEDBACK flight envelope
下载PDF
ANALYSIS AND SIMULATION OF CONTROL MIXER CONCEPT FOR A CONTROL RECONFIGURABLE AIRCRAFT
4
作者 李清 郭锁凤 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第2期180-184,共5页
In today's aircraft,the hardware redundancy is driven by the critical surfaces resulting in single point-failures.Reconfiguration technology remoVes the single surface criticality by employing control surfaces wit... In today's aircraft,the hardware redundancy is driven by the critical surfaces resulting in single point-failures.Reconfiguration technology remoVes the single surface criticality by employing control surfaces with aerodynamic redundancy.This paper studies a control reconfiguration scheme based on Control Mixer Concept.A technique for the design of a control mixer for an aircraft with damaged surfaces/actuators using the pseudo-inverse is developed and applied.This paper discusses its applications and limitations based on linear analysis and computer simulation. 展开更多
关键词 flight control systems inverse matrices failuretolerant systems self-repairing systems control mixer aerodynamic redundancy
下载PDF
Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults 被引量:9
5
作者 Fengying Zheng Ziyang Zhen Huajun Gong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期322-337,共16页
The paper presents the longitudinal control for the carrier-based unmanned aerial vehicle (UAV) system with unmeasured states, actuator faults, control input constraints, and external disturbances. By combining output... The paper presents the longitudinal control for the carrier-based unmanned aerial vehicle (UAV) system with unmeasured states, actuator faults, control input constraints, and external disturbances. By combining output state observer, adaptive fuzzy control, and constraint backstepping technology, a robust fault tolerant control approach is proposed. An output state observer with fuzzy logic systems is developed to estimate unmeasured states, and command filters rather than differentiations of virtual control law are used to solve the computational complexity problem in traditional backstepping. Additionally, a robust term is introduced to offset the fuzzy adaptive estimation error and external disturbance, and an appropriate fault controller structure with matching conditions obtained from fault compensation is proposed. Based on the Lyapunov theory, the designed control program is illustrated to guarantee that all the closed-loop signals of the given system are bounded, and the output errors converge to a small neighborhood of zero. A carrier-based UAV nonlinear longitudinal model is employed to testify the feasibility and validity of the control scheme. The simulation results show that all the controllers can perform at a satisfactory level of reference tracking despite the existence of unknown aerodynamic parameters and actuator faults. © 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Actuators Aircraft control BACKSTEPPING control system analysis control theory controllers Error compensation Fault tolerance flight control systems Fuzzy control Fuzzy filters Fuzzy logic State estimation Three term control systems Unmanned aerial vehicles (UAV)
下载PDF
A fault tolerant single sided matrix converter for flight control actuation systems
6
作者 Xiao-yan HUANG Mao-jing JIY +4 位作者 Jian-cheng ZHANG Qin-fen LU You-tong FANG Andrew GOODMAN Chris GERADA 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2012年第11期866-874,共9页
We describe a single sided matrix converter (SSMC) designed for safety critical applications like flight control actuation systems. Dynamic simulations of multi-phase SSMC using Matlab Simulink are carried out to eval... We describe a single sided matrix converter (SSMC) designed for safety critical applications like flight control actuation systems. Dynamic simulations of multi-phase SSMC using Matlab Simulink are carried out to evaluate the fault tolerance capabilities. Investigation into different numbers of phases and power converter topologies under single phase open circuit, single switch open circuit, and single switch short circuit has been executed. The simulation results confirm 5-phase SSMC design as a compromise between fault tolerance and converter size/volume. A 5-phase SSMC prototype was built. Experimental results verify the effectiveness of our design. 展开更多
关键词 Single sided matrix converter Fault tolerance flight control actuation systems
原文传递
ROBUST FAULT DIAGNOSIS FOR HELICOPTER FCS BASED ON LINEAR PARAMETERVARYING ADAPTIVE OBSERVER
7
作者 陈伟 姜斌 +1 位作者 张柯 杨浩 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期288-294,共7页
Based on the linear parameter-varying (LPV) adaptive observer, the robust fault diagnosis for a class of LPV systems with external disturbances is studied. Since the flight control system (FCS) is nonlinear and ti... Based on the linear parameter-varying (LPV) adaptive observer, the robust fault diagnosis for a class of LPV systems with external disturbances is studied. Since the flight control system (FCS) is nonlinear and time-varying, the LPV technique is used for FCS. And then the adaptive fault estimation algorithm based on the LPV adaptive observer is proposed to estimate the fault. To minimize the effect of disturbances on the fault estimation, the H~ robust performance index is introduced to design the LPV adaptive fault diagnosis observer and the fault estimation algorithm. The result shows that the method has good estimation performance and is robust to external disturbances. The design method is presented in terms of linear matrix inequalities (LMIs). Finally, a helicopter LPV FCS model with the actuator fault is used to illustrate the effectiveness of the proposed method. 展开更多
关键词 fault diagnosis ROBUSTNESS flight control systems POLYTOPIC adaptive observer
下载PDF
Nonlinear adaptive flight control system:Performance enhancement and validation 被引量:2
8
作者 Yue FENG Zonghua SUN +4 位作者 Liaoni WU Yongshun WANG Bin XI Weng Khuen HO Yancheng YOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第4期354-365,共12页
The problem of decreasing stability margins in L1 adaptive control systems is discussed and an out-of-loop L1 adaptive control scheme based on Lyapunov’s stability theorem is proposed.This scheme enhances the effecti... The problem of decreasing stability margins in L1 adaptive control systems is discussed and an out-of-loop L1 adaptive control scheme based on Lyapunov’s stability theorem is proposed.This scheme enhances the effectiveness of the adaptation,which ensures that the system has suffi-cient stability margins to achieve the desired performance under parametric uncertainty,additional delays,and actuator faults.The stability of the developed control system is demonstrated through a series of simulations.Compared with an existing control scheme,the constant adjustment of the sta-bility margins by the proposed adaptive scheme allows their range to be extended by a factor of 4–5,bringing the stability margin close to that of variable gain PD control with adaptively scheduled gains.The engineered practicability of adaptive technology is verified.A series of flight tests verify the practicability of the designed adaptive technology.The results of these tests demonstrate the enhanced performance of the proposed control scheme with nonlinear parameter estimations under insufficient stability margins and validate its robustness in the event of actuator failures. 展开更多
关键词 Adaptive control systems control engineering flight control systems Nonlinear control systems Robustness stability
原文传递
Control-oriented modeling of a high-aspect-ratio flying wing with coupled flight dynamics 被引量:1
9
作者 Cong NIU Xiutian YAN Boyi CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第4期409-422,共14页
The flight-structural dynamics of a high-aspect-ratio wing challenge the flight control design.This paper develops a reduced model of coupled dynamics with stability consideration.The structural dynamics are formulate... The flight-structural dynamics of a high-aspect-ratio wing challenge the flight control design.This paper develops a reduced model of coupled dynamics with stability consideration.The structural dynamics are formulated with dihedrals,and the central loads drive the deformation.The control-oriented model with essential coupled dynamics is formulated.Modal sensitivity anal-ysis and input–output pairing are performed to identify the control structure.Besides,an example of flight control design is provided to discuss the necessity of considering structural dynamics in controller design.Analytical coupled flight dynamics provide a system-theoretic approach for sta-bility and facilitate model-based control techniques.Simulation results reveal the characteristics of flight-structural coupled dynamics and demonstrate that the influence of flexible modes should be considered in control design,especially in lateral dynamics. 展开更多
关键词 Flexible couplings Flexible wings flight control systems flight dynamics Sensitivity analysis
原文传递
Flying qualities based time-varying stability augmentation system design for tiltrotor conversion control
10
作者 Chen WANG Wenqian TAN +1 位作者 Liguo SUN Junkai JIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第11期366-385,共20页
Tiltrotors have three flight modes that pose control problems and quality defects during the conversion process.To address this,a novel flying qualities-based time-varying stability augmentation system is designed to ... Tiltrotors have three flight modes that pose control problems and quality defects during the conversion process.To address this,a novel flying qualities-based time-varying stability augmentation system is designed to achieve multi-mode,nonlinear,and time-varying stability.The system integrates a nonlinear time-varying control law with the flying qualities requirements for all three flight modes.It consists of an inner and outer loop control framework,where the control law in the inner loop is designed based on the Lyapunov theorem of stability.The reference models in the outer loop are derived from the flying qualities criteria to meet level one flying qualities requirements.To evaluate the conversion process,a time-varying flying qualities evaluation method is developed,which includes the conversion path,pilot model,and time-varying flying qualities index.The proposed time-varying stability augmentation control system is then tested through simulation during the conversion process.A pilot-aircraft closed-loop system is established for conducting experiments.Comparison between simulation results and pilot-in-loop experiment results demonstrates the effectiveness of the proposed control system.Furthermore,it proves that the evaluation method is suitable for analyzing time-varying systems.This research can be valuable in designing and evaluating stability augmentation controls for strongly time-varying systems. 展开更多
关键词 TILTROTOR Time varying control system flight control systems Flying qualities flight simulators
原文传递
Finite-time sliding mode attitude control for a reentry vehicle with blended aerodynamic surfaces and a reaction control system 被引量:21
11
作者 Geng Jie Sheng Yongzhi Liu Xiangdong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第4期964-976,共13页
This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system(RCS). Firstly, a novel finite-time attitude controller is p... This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system(RCS). Firstly, a novel finite-time attitude controller is pointed out with the introduction of a nonsingular finite-time sliding mode manifold. The attitude tracking errors are mathematically proved to converge to zero within finite time which can be estimated. In order to improve the performance, a second-order finite-time sliding mode controller is further developed to effectively alleviate chattering without any deterioration of robustness and accuracy. Moreover, an optimization control allocation algorithm, using linear programming and a pulse-width pulse-frequency(PWPF) modulator, is designed to allocate torque commands for all the aerodynamic surface deflections and on–off switching-states of RCS thrusters.Simulations are provided for the reentry vehicle considering uncertain parameters and external disturbances for practical purposes, and the results demonstrate the effectiveness and robustness of the attitude control system. 展开更多
关键词 Chattering alleviation control allocation Finite-time convergence flight control systems Second-order sliding mode Singularity elimination Sliding mode control
原文传递
Closed-loop dynamic control allocation for aircraft with multiple actuators 被引量:5
12
作者 Gai Wendong Wang Honglun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期676-686,共11页
A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increme... A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment. And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop, then the error between the desired and actual moment increment is the input of the dynamic control allocation. Subsequently, the stability of the closed-loop dynamic control allocation system is analyzed in detail. Especially, the closedloop system stability is also analyzed in the presence of two types of actuator failures: loss of effectiveness and lock-in-place actuator failures, where a fault detection subsystem to identify the actuator failures is absent. Finally, the proposed method is applied to a canard rotor/wing (CRW) aircraft model in fixed-wing mode, which has multiple actuators for flight control. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail. 展开更多
关键词 Canard rotor/wing aircraft Closed-loop control allocation Dynamic inversion flight control systems Redundant actuators
原文传递
An overview on development of miniature unmanned rotorcraft systems 被引量:4
13
作者 Guowei CAI Ben M.CHEN Tong H.LEE 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2010年第1期1-14,共14页
In this article,we attempt to document a technical overview on modern miniature unmanned rotorcraft systems.We first give a brief review on the historical development of the rotorcraft unmanned aerial vehicles(UAVs),a... In this article,we attempt to document a technical overview on modern miniature unmanned rotorcraft systems.We first give a brief review on the historical development of the rotorcraft unmanned aerial vehicles(UAVs),and then move on to present a fairly detailed and general overview on the hardware configuration,software integration,aerodynamic modeling and automatic flight control system involved in constructing the unmanned system.The applications of the emerging technology in the military and civilian domains are also highlighted. 展开更多
关键词 unmanned aerial vehicle(UAV) ROTORCRAFT aerodynamic modeling avionic systems flight control systems
原文传递
Fuzzy adaptive tracking control within the full envelope for an unmanned aerial vehicle 被引量:3
14
作者 Liu Zhi Wang Yong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1273-1287,共15页
Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) ... Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) is proposed. The controller consists of a fuzzy baseline controller and an adaptive increment, and the main highlight is that the fuzzy baseline controller and adaptation laws are both based on the fuzzy multiple Lyapunov function approach, which helps to reduce the conservatism for the large envelope and guarantees satisfactory tracking performances with strong robustness simultaneously within the whole envelope. The constraint condition of the fuzzy baseline controller is provided in the form of linear matrix inequality(LMI), and it specifies the satisfactory tracking performances in the absence of uncertainties. The adaptive increment ensures the uniformly ultimately bounded(UUB) predication errors to recover satisfactory responses in the presence of uncertainties. Simulation results show that the proposed controller helps to achieve high-accuracy tracking of airspeed and altitude desirable commands with strong robustness to uncertainties throughout the entire flight envelope. 展开更多
关键词 flight control systems Full flight envelope Fuzzy adaptive tracking control Fuzzy multiple Lyapunov function Fuzzy T–S model Single hidden layer neural network
原文传递
New multi-UAV formation keeping method based on improved artificial potential field 被引量:1
15
作者 Hanlin SHENG Jie ZHANG +4 位作者 Zongyuan YAN Bingxiong YIN Shengyi LIU Tingting Bai Daobo WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第11期249-270,共22页
Formation keeping is important for multiple Unmanned Aerial Vehicles(multi-UAV)to fully play their roles in cooperative combats and improve their mission success rate.However,in practical applications,it is difficult ... Formation keeping is important for multiple Unmanned Aerial Vehicles(multi-UAV)to fully play their roles in cooperative combats and improve their mission success rate.However,in practical applications,it is difficult to achieve formation keeping precisely and obstacle avoidance autonomously at the same time.This paper proposes a joint control method based on robust H∞ controller and improved Artificial Potential Field(APF)method.Firstly,we build a formation flight model based on the “Leader-Follower”structure and design a robust H∞ controller with three channels X,Y and Z to eliminate dynamic uncertainties,so as to realize high-precision formation keeping.Secondly,to fulfill obstacle avoidance efficiently in complex situations where UAVs fly at high speed with high inertia,this paper comes up with the improved APF method with deformation factor considered.The judgment criterion is proposed and applied to ensure flight safety.In the end,the simulation results show that the designed controller is effective with the formation keeping a high accuracy and in the meantime,it enables UAVs to avoid obstacles autonomously and recover the formation rapidly when coming close to obstacles.Therefore,the method proposed here boasts good engineering application prospect. 展开更多
关键词 Formation flight Artificial potential field(APF) MULTI-UAV Trajectory planning flight control systems
原文传递
Robust gain-scheduled missile autopilot design based on multifrequency extended state observers
16
作者 Zonghua SUN Liaoni WU Yancheng YOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期390-407,共18页
This paper describes the design and implementation of a three-axis acceleration control autopilot for an asymmetric tail-controlled,skid-to-turn tactical missile.In an earlier flight test,degraded autopilot performanc... This paper describes the design and implementation of a three-axis acceleration control autopilot for an asymmetric tail-controlled,skid-to-turn tactical missile.In an earlier flight test,degraded autopilot performance was attributed to multiple disturbances and uncertainties and the presence of hidden coupling terms,giving rise to a miss distance of greater than 20 m.To address these issues,the missile dynamics are decomposed into the angular rate dynamics as fast and the acceleration dynamics as slow subsystem using the singular perturbation theory to analyze a multi-time-scale property.Multifrequency extended state observers are then incorporated into the gain scheduling technique to attenuate disturbances,thus enhancing the control performance significantly.In the proposed engineering/practical design framework for missile autopilot,simple,conventional,and explicit tuning rules are provided.And the proposed control scheme can achieve input-to-state stability across the entire flight envelope under unknown but bounded disturbances.The advantages of the method over existing benchmark approaches are shown through nonlinear numerical simulations.This is supported by evidence from a new flight test result with a miss distance of only 2 m. 展开更多
关键词 Acceleration control control engineering Disturbance rejection Multifrequency extended state observer flight control systems Gain scheduling Singular perturbation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部