期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Unsteady aerodynamics modeling for flight dynamics application 被引量:13
1
作者 Qing Wang Kai-Feng He. +3 位作者 Wei-Qi Qian Tian-Jiao Zhang Yan-Qing Cheng Kai-Yuan Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期14-23,共10页
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due... In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6- component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynam- ics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability 展开更多
关键词 Unsteady aerodynamics High angle of attack Mathematical model flight dynamics - Bifurcation analysis Post-stall maneuver
下载PDF
Robust bounded control for uncertain flight dynamics using disturbance observer 被引量:1
2
作者 Mou Chen Bin Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第4期640-647,共8页
The robust bounded flight control scheme is developed for the uncertain longitudinal flight dynamics of the fighter with control input saturation invoking the backstepping technique. To enhance the disturbance rejecti... The robust bounded flight control scheme is developed for the uncertain longitudinal flight dynamics of the fighter with control input saturation invoking the backstepping technique. To enhance the disturbance rejection ability of the robust flight control for fighters, the sliding mode disturbance observer is designed to estimate the compounded disturbance including the unknown external disturbance and the effect of the control input saturation. Based on the backstepping technique and the compounded disturbance estimated output, the robust bounded flight control scheme is proposed for the fighter with the unknown external disturbance and the control input saturation. The closed-loop system stability under the developed robust bounded flight control scheme is rigorously proved using the Lyapunov method and the uniformly asymptotical convergences of all closed-loop signals are guaranteed. Finally, simulation results are presented to show the effectiveness of the proposed robust bounded flight control scheme for the uncertain longitudinal flight dynamics of the fighter. 展开更多
关键词 flight dynamics bounded control robust control backstepping control disturbance observer.
下载PDF
Model of Airflow Field on the Deck for Shipborne Helicopter Flight Dynamics Analysis
3
作者 Hu Guocai Xu Guang +1 位作者 Wang Yunliang Liu Shuyan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期567-577,共11页
For the research of helicopter/ship dynamic interface,the method of combining steady flow and stochastic flow is adopted to establish a flow field model applied to the flight dynamics analysis of shipborne helicopter.... For the research of helicopter/ship dynamic interface,the method of combining steady flow and stochastic flow is adopted to establish a flow field model applied to the flight dynamics analysis of shipborne helicopter.The steady flow is calculated by computational fluid dynamics(CFD)method,while the stochastic flow is composed of the compensation velocity derived from ship motion and turbulence above the deck.The accuracy of the proposed flow field model is verified by comparing the helicopter response in the proposed flow field with the results calculated by US Army′s Military Specifications(MIL)model which is commonly used in engineering.Meanwhile,it also shows the proposed flow field model is more appliable to flight dynamics analysis of shipborne helicopter.On that the basis,ship deck flow field is simulated at different sea conditions by adjusting the wind speed on the deck,mother ship movement and shipboard turbulence,etc.And helicopter angular rate response is calculated.The results show that the difference of dynamic stability between helicopter′s roll and pitch leads to the facts that the influence of above factors on the helicopter′s roll angular rate response is greater than that of pitch angular rate,that the frequency and amplitude of mother ship roll motion are much greater than those of pitch motion,and that the disturbance caused by roll motion on the air has greater influence on the helicopter response.The shipboard turbulence is the main disturbance factor that influences helicopter flight stability and its intensity determines the amplitudes of angular rate response. 展开更多
关键词 shipborne helicopter flight dynamics airflow field on the deck time-space characteristics sea condition
下载PDF
Flight dynamics modeling and analysis for a Mars helicopter 被引量:2
4
作者 Hong ZHAO Zhiwei DING +1 位作者 Gen LENG Jianbo LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期221-230,共10页
Flight dynamics modeling for the Mars helicopter faces great challenges.Aerodynamic modeling of coaxial rotor with high confidence and high computational efficiency is a major difficulty for the field.This paper build... Flight dynamics modeling for the Mars helicopter faces great challenges.Aerodynamic modeling of coaxial rotor with high confidence and high computational efficiency is a major difficulty for the field.This paper builds an aerodynamic model of coaxial rotor in the extremely thin Martian atmosphere using the viscous vortex particle method.The aerodynamic forces and flow characteristics of rigid coaxial rotor are computed and analyzed.Meanwhile,a high fidelity aerodynamic surrogate model is built to improve the computational efficiency of the flight dynamics model.Results in this paper reveal that rigid coaxial rotor can bring the Mars helicopter sufficient controllability but result in obvious instability and control couplings in forward flight.This highlights the great differences in flight dynamics characteristics compared with conventional helicopters on Earth. 展开更多
关键词 Aerodynamic modeling Coaxial rotor flight dynamics Mars helicopter Viscous Vortex Particle Method(VVPM)
原文传递
Control-oriented modeling of a high-aspect-ratio flying wing with coupled flight dynamics
5
作者 Cong NIU Xiutian YAN Boyi CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第4期409-422,共14页
The flight-structural dynamics of a high-aspect-ratio wing challenge the flight control design.This paper develops a reduced model of coupled dynamics with stability consideration.The structural dynamics are formulate... The flight-structural dynamics of a high-aspect-ratio wing challenge the flight control design.This paper develops a reduced model of coupled dynamics with stability consideration.The structural dynamics are formulated with dihedrals,and the central loads drive the deformation.The control-oriented model with essential coupled dynamics is formulated.Modal sensitivity anal-ysis and input–output pairing are performed to identify the control structure.Besides,an example of flight control design is provided to discuss the necessity of considering structural dynamics in controller design.Analytical coupled flight dynamics provide a system-theoretic approach for sta-bility and facilitate model-based control techniques.Simulation results reveal the characteristics of flight-structural coupled dynamics and demonstrate that the influence of flexible modes should be considered in control design,especially in lateral dynamics. 展开更多
关键词 Flexible couplings Flexible wings flight control systems flight dynamics Sensitivity analysis
原文传递
Flight Loads and Dynamics of Flexible Air Vehicles 被引量:11
6
作者 吴志刚 杨超 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第1期17-22,共6页
Based on the equations of motion of flexible air vehicles includingrigid-body modes and elastic structural modes, and applying influence coefficients of linearaerodynamics, a set of equations are derived and a method ... Based on the equations of motion of flexible air vehicles includingrigid-body modes and elastic structural modes, and applying influence coefficients of linearaerodynamics, a set of equations are derived and a method is presented for analysis of flight loadsand dynamic characteristics. The problems in the fields of flight mechanics and aeroelasticity suchas static aeroelastic divergence, trim and deformation, aerodynamic loads distribution, flutter andflight dynamics can be solved by the procedure. An airplane with high aspect ratio wings isanalyzed, and the results show that the coupling between rigid -body modes and elastic modes isdistinct and should not be overlooked. 展开更多
关键词 flexible air vehicle aeroelasticity flight dynamics flight load
下载PDF
Identification method for helicopter flight dynamics modeling with rotor degrees of freedom 被引量:4
7
作者 Wu Wei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1363-1372,共10页
A comprehensive method based on system identification theory for helicopter flight dynamics modeling with rotor degrees of freedom is developed. A fully parameterized rotor flapping equation for identification purpose... A comprehensive method based on system identification theory for helicopter flight dynamics modeling with rotor degrees of freedom is developed. A fully parameterized rotor flapping equation for identification purpose is derived without using any theoretical model, so the confidence of the identified model is increased, and then the 6 degrees of freedom rigid body model is extended to 9 degrees of freedom high-order model. Bode sensitivity function is derived to increase the accuracy of frequency spectra calculation which influences the accuracy of model parameter identification. Then a frequency domain identification algorithm is established. Acceleration technique is developed furthermore to increase calculation efficiency, and the total identification time is reduced by more than 50% using this technique. A comprehensive two-step method is established for helicopter high-order flight dynamics model identification which increases the numerical stability of model identification compared with single step algorithm. Application of the developed method to identify the flight dynamics model of BO 105 helicopter based on flight test data is implemented. A comparative study between the high-order model and rigid body model is performed at last. The results show that the developed method can be used for helicopter high-order flight dynamics model identification with high accuracy as well as efficiency, and the advantage of identified high-order model is very obvious compared with low-order model. 展开更多
关键词 flight dynamics Frequency domain Helicopters Identification Modeling Rotors
原文传递
AIRCRAFT FLIGHT SAFETY ANALYSIS IN LOW ALTITUDE AIRSPACE 被引量:6
8
作者 王世锦 隋东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期147-153,共7页
The low altitude airspace will be open in China, general aviation flights are tremendously increased. Whether aircrafts can fly safely and how to determine the requirements of safety flight are the problems needed to ... The low altitude airspace will be open in China, general aviation flights are tremendously increased. Whether aircrafts can fly safely and how to determine the requirements of safety flight are the problems needed to be confirmed. Under this circumstances, based on the international Civil Aviation Organization(ICAO) criteria and the standards made by CAAC, this paper adopts the "See and Avoid" principle. Under the binding conditions of flight rules, visibility requirements, responding time, the aircraft speed, circle banking angle or the climbing angle, based on its study on aircraft dynamics principles, this paper establishes a mathematical collision avoidance model for head-to-head traffic and crossing converging traffic at the same level. And the safety separation requirements of the aircrafts in low altitude flight are equantitatively analyzed. Finally, the Matlab software is used to analyze the above method. The result shows that the safe traffic avoidance of the converging traffic at the same level meets certain flight conditions, while intersecting the traffic at the same level can safely avoid the collision. 展开更多
关键词 AIRCRAFT SAFETY flight dynamics low altitude airspace conflict avoiding
下载PDF
Dynamic flight stability of a hovering model insect:lateral motion 被引量:17
9
作者 Yanlai Zhang Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期175-190,共16页
The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigen... The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigenvector analysis for solving the equations of motion. The main results are as following. (i) Three natural modes of motion were identified: one unstable slow divergence mode (mode 1), one stable slow oscillatory mode (mode 2), and one stable fast subsidence mode (mode 3). Modes 1 and 2 mainly consist of a rotation about the horizontal longitudinal axis (x-axis) and a side translation; mode 3 mainly consists of a rotation about the x-axis and a rotation about the vertical axis. (ii) Approximate analytical expressions of the eigenvalues are derived, which give physical insight into the genesis of the natural modes of motion. (iii) For the unstable divergence mode, td, the time for initial disturbances to double, is about 9 times the wingbeat period (the longitudinal motion of the model insect was shown to be also unstable and td of the longitudinal unstable mode is about 14 times the wingbeat period). Thus, although the flight is not dynamically stable, the instability does not grow very fast and the insect has enough time to control its wing motion to suppress the disturbances. 展开更多
关键词 INSECT Dynamic flight stability Hovering ·Lateral motion Natural modes of motion
下载PDF
Dynamic flight stability of hovering model insects:theory versus simulation using equations of motion coupled with Navier-Stokes equations 被引量:9
10
作者 Yan-Lai Zhang Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第4期509-520,共12页
In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model ... In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects. 展开更多
关键词 Insect Hovering Dynamic flight stability Averaged model Equations-of-motion Navier-Stokes simulation
下载PDF
Dynamic flight stability of a bumblebee in forward flight 被引量:8
11
作者 Yan Xiong Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第1期25-36,共12页
The longitudinal dynamic flight stability of a bumblebee in forward flight is studied. The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eig... The longitudinal dynamic flight stability of a bumblebee in forward flight is studied. The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are employed for solving the equations of motion. The primary findings are as the following. The forward flight of the bumblebee is not dynamically stable due to the existence of one (or two) unstable or approximately neutrally stable natural modes of motion. At hovering to medium flight speed [flight speed Ue = (0-3.5)m s^-1; advance ratio J = 0-0.44], the flight is weakly unstable or approximately neutrally stable; at high speed (Ue = 4.5 m s^-1; J = 0.57), the flight becomes strongly unstable (initial disturbance double its value in only 3.5 wingbeats). 展开更多
关键词 Bumblebee Dynamic stability Forward flight Navier-Stokes simulation Natural modes of motion
下载PDF
Lateral dynamic flight stability of hovering insects: theory vs. numerical simulation 被引量:4
12
作者 Yan-Lai Zhang Jiang-Hao Wu Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期221-231,共11页
In the present paper, the lateral dynamic flight stability properties of two hovering model insects are predicted by an approximate theory based on the averaged model, and computed by numerical simulation that solves ... In the present paper, the lateral dynamic flight stability properties of two hovering model insects are predicted by an approximate theory based on the averaged model, and computed by numerical simulation that solves the complete equations of motion coupled with the Naviertokes equations. Comparison between the theoretical and simulational results provides a test to the validity of the assumptions made in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The following conclusion has been drawn. The theory based on the averaged model works well for the lateral motion of the dronefly. For the hawkmoth, relatively large quantitative differences exist between theory and simulation. This is because the lateral non-dimensional eigenvalues of the hawkmoth are not very small compared with the non-dimensional flapping frequency (the largest lateral non-dimensional eigenvalue is only about 10% smaller than the non-dimensional flapping frequency). Nevertheless, the theory can still correctly predict variational trends of the dynamic properties of the hawkmoth's lateral motion. 展开更多
关键词 Insect - Hovering Lateral dynamic flight stabil- ity Averaged model Equations-of-motion Navier-Stokes simulation
下载PDF
Iterative Estimation for Flight Dynamic Helicopter Simulator
13
作者 Ivana Yoshie Sumida Haroldo F. de Campos Velho +2 位作者 Eduardo F. P. da Luz Ronaldo V. Cruz Luiz CarlosS. Goes 《Journal of Mathematics and System Science》 2015年第12期501-508,共8页
Flight simulators can provide a suitable alternative to real flight, mainly to increase safety through the training of crew, and evaluation data from simulator can be used to validation and certification of aircraft s... Flight simulators can provide a suitable alternative to real flight, mainly to increase safety through the training of crew, and evaluation data from simulator can be used to validation and certification of aircraft systems. However, it must convey some degree of realism to the user to be effective. For that reason, it is necessary to calibrate the simulator software. Calibration for flight simulation is parameter identification process. The process is formulated as an optimization problem, and it is solved by using a new approach named Multiple Particle Collision Algorithm (MPCA). Results show a good performance for the employed approach. 展开更多
关键词 Dynamic flight Parameter Identification Multiple Particle Collision Algorithm
下载PDF
Study on Intelligent Control and 3D Real-time Distributed Animation Simulation for Super-maneuver Attack of the New Generation Fighter 被引量:8
14
作者 黎明 姜长生 +1 位作者 叶文青 张立 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2001年第4期235-244,共10页
The super-maneuver flight performance has a very high tactical value, and the development of this tactical value has great significance. A discussion is devoted to the study of intelligent control methods and technolo... The super-maneuver flight performance has a very high tactical value, and the development of this tactical value has great significance. A discussion is devoted to the study of intelligent control methods and technologies of real-time distributed 3-dimensional animation simulation for the super-maneuverable attack of new generational fighter in this paper. A flight control system of super-maneuver is reconstructed by adopting three layers BP neural networks of number 3, and the fire/flight coupler is designed by introducing a fuzzy control rule whose universe of discourse and gain are regulated adaptively on the line. Furthermore, a new method of real-time distributed 3-dimensional animation simulation is put forward, and a real-time distributed 3-dimensional animation simulation tool platform is constructed in this paper. The simulation result is lifelike, perceivable directly and useful. 展开更多
关键词 ANIMATION Computer simulation flight dynamics Fuzzy control Intelligent control MANEUVERABILITY Neural networks
下载PDF
Adaptive Backstepping Tracking Control of a 6-DOF Unmanned Helicopter 被引量:11
15
作者 Bin Xian Jianchuan Guo Yao Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期19-24,共6页
This paper presents an adaptive backstepping control design for a class of unmanned helicopters with parametric uncertainties. The control objective is to let the helicopter track some pre-defined position and yaw tra... This paper presents an adaptive backstepping control design for a class of unmanned helicopters with parametric uncertainties. The control objective is to let the helicopter track some pre-defined position and yaw trajectories. In order to facilitate the control design, we divide the helicopter's dynamic model into three subsystems. The proposed controller combines the backstepping method with online parameter update laws to achieve the control objective. The global asymptotical stability (GAS) of the closed-loop system is proved by a Lyapunov based stability analysis. Numerical simulations demonstrate that the controller can achieve good tracking performance in the presence of parametric uncertainties. © 2014 Chinese Association of Automation. 展开更多
关键词 BACKSTEPPING Closed loop control systems Closed loop systems Controllers flight dynamics Helicopters
下载PDF
RELATIONSHIPS FOR MOTION DESCRIBED IN ANY TWO ROTATION ALREFE RENCEF RAMES 被引量:2
16
作者 陈万春 肖业伦 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1999年第4期193-196,221,共5页
In this paper the definitions of the relative derivatives of a vector with respect to time in any reference frame by using the notation of vectrix are proposed. It is further shown that with the help of vectrix one ca... In this paper the definitions of the relative derivatives of a vector with respect to time in any reference frame by using the notation of vectrix are proposed. It is further shown that with the help of vectrix one can treat the relative derivatives more clearly and more rigorously when multiple reference frames are concerned. Very useful relationships between the first order relative derivatives described in any two reference frames are derived. Relationships for the second order relative derivatives are also presented in detail. A new concept called `rotation induced acceleration' which is caused by the rotation of two reference frames when motion is necessarily described in them is presented. The result obtained in this paper is the generalization of the acceleration theorem given in conventional theoretical mechanics. 展开更多
关键词 flight dynamics KINEMATICS VECTORS
下载PDF
Dynamic Modeling, Testing, and Stability Analysis of an Ornithoptic Blimp 被引量:1
17
作者 John Dietl Thomas Herrmann +1 位作者 Gregory Reich Ephrahim Garcia 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第4期375-386,共12页
In order to study omithopter flight and to improve a dynamic model of flapping propulsion, a series 0f tests are conducted on a flapping-wing blimp. The blimp is designed and constructed from mylar plastic and balsa w... In order to study omithopter flight and to improve a dynamic model of flapping propulsion, a series 0f tests are conducted on a flapping-wing blimp. The blimp is designed and constructed from mylar plastic and balsa wood as a test platform for aerodynamics and flight dynamics. The blimp, 2.3 meters long and 420 gram mass, is propelled by its flapping wings. Due to buoyancy the wings have no lift requirement so that the distinction between lift and propulsion can be analyzed in a flight platform at low flight speeds. The blimp is tested using a Vicon motion tracking system and various initial conditions are tested including accelerating flight from standstill, decelerating from an initial speed higher than its steady state, and from its steady-state speed but disturbed in pitch angle. Test results are used to estimate parameters in a coupled quasi-steady aerodynamics/Newtonian flight dynamics model. This model is then analyzed using Floquet theory to determine local dynamic modes and stability. It is concluded that the dynamic model adequately describes the vehicle's nonlinear behavior near the steady-state velocity and that the vehicle's linearized modes are akin to those of a fixed-wing aircraft. 展开更多
关键词 omithopter blimp flight dynamics stability analysis
下载PDF
Ecolifter Conceptual Configuration Design and Parameter Analysis 被引量:1
18
作者 唐胜景 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期149-153,共5页
In the phase of conceptually designing, the Ecolifter with three lift surface configuration, the influences of aircraft geometric parameters and configuration such as wing geometric parameters, canard parameters, ai... In the phase of conceptually designing, the Ecolifter with three lift surface configuration, the influences of aircraft geometric parameters and configuration such as wing geometric parameters, canard parameters, aircraft center of gravity and engine positions and so on, on flight dynamic stability are discussed with the integrated analysis method. On the basis of the analysis of flight dynamic stability, the suitable wing geometric parameters are given and the improved aircraft configuration is proposed. 展开更多
关键词 aircraft design transport plane flight dynamics
下载PDF
INTELLIGENT RESOLUTION OF COOPERATIVE CONFLICT
19
作者 李林森 于海勋 +1 位作者 罗继勋 佟明安 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2000年第1期24-28,共6页
First, the concept of cooperative conflict is presented, and the characteristic of cooperative air combat is researched. Then, four methods of conflict resolution are designed by way of the first order predicate logic... First, the concept of cooperative conflict is presented, and the characteristic of cooperative air combat is researched. Then, four methods of conflict resolution are designed by way of the first order predicate logic, i.e., link-up, coordination, accommodation and integration, and corresponding examples are given. A 2 vs 2 air combat simulation was carried out; after conflict resolution, the loss ratio is dropped to 0.54 from the original 1.32, so the enhancement of effectiveness is notable. The present research findings are that the wide conflicts discover the essence of multi-fighter cooperation, i.e., to as fully as possible enhance the effectiveness of each fighter to attain global optimization, and that the possibility of conflict resolution shows the application prospect. The proposed method in this paper is a helpful try to the application of the Fifth Generation Computer in the new generation of C3I system. 展开更多
关键词 ALGORITHMS Artificial intelligence Computer simulation flight dynamics Knowledge based systems Logic programming OPTIMIZATION
下载PDF
Study on conditions of internally carried air-launched launch vehicles based on the virtual prototype technology
20
作者 张久星 Xu Haojun +1 位作者 Zhang Dengcheng Zhang Yanhua 《High Technology Letters》 EI CAS 2014年第2期166-172,共7页
A method based on the virtual prototype technology simulating the separation of a launch vehicle from its aircraft in the aircraft wake was proposed based on the internally carried air-launched launch vehicle program.... A method based on the virtual prototype technology simulating the separation of a launch vehicle from its aircraft in the aircraft wake was proposed based on the internally carried air-launched launch vehicle program.In this method,the full-scale model of the aircraft,the vehicle and the parachute are constructed.Then,they are imported into the ADAMS software,constraint solutions and driving forces are then added for visual dynamic simulation.The unsteady aerodynamic forces of the vehicle in the aircraft wake are calculated by CFD and the moving grid technique.The forces generated by the parachute can be derived from the Kirchhoff motion equation.Through comparing and analyzing the simulation results under different launch conditions,it has been proven that this method simulates the separation of a launch vehicle from the aircraft in the aircraft wake accurately.It provides the foundation for the aggregate project of internally carried air-launch vehicles,and offers a new referenced method for multi-body dynamic simulation. 展开更多
关键词 air launch flight dynamics virtual prototype automatic dynamic analysis of me- chanical system (ADAMS) PARACHUTE
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部