Severe solar events manifested by highly energetic X-Ray events accompanied by coronal mass ejections and proton flares caused flash floods in Makkah AI-Mukaramab, A1-Madinah AI-Munawarah and Jeddah. The responses can...Severe solar events manifested by highly energetic X-Ray events accompanied by coronal mass ejections and proton flares caused flash floods in Makkah AI-Mukaramab, A1-Madinah AI-Munawarah and Jeddah. The responses can be prompt, delayed or prompt-delayed, suggesting that the protons entered the troposphere either through the opening of a direct gate in the magnetosphere to the location concer.led due to magnetic reconnection, through the polar gates or through those two paths respectively. The authors suggest that there is a magnetic anomaly in Makkah AI-Mukaramah area which makes it liable to be subjected to flash floods. The width of the solar streams determines the width of the gate opened in the magnetosphere via magnetic reconnection and thus narrow streams affect only one location of the three cities while extended width streams can cause flash floods in all of Makkah AI-Mukaramah AI-Madinah AI Munawarah and Jeddah. In addition, the November 24-26 Jeddah flash flood could be attributed to a prompt event due to a moderately fast solar stream that arrived the earth on those days.展开更多
A strong rainfall during June 8-13,2010 in Zunyi City is comprehensively analyzed by several diagnosis methods,including space location,maximum value,history comparison,maximum value assumption and disaster influence ...A strong rainfall during June 8-13,2010 in Zunyi City is comprehensively analyzed by several diagnosis methods,including space location,maximum value,history comparison,maximum value assumption and disaster influence analysis.Results show that this time the successive heavy precipitation fall in the northeastern area of Zunyi City,which are Zheng’an,Daozheng and Wuchuan etc..There are in total of 4 times of heavy rainstorms,8 times of rainstorms and 8 times of heavy rains in 14 meteorological observatories of the entire city.In the whole 215 towns,the daily precipitation in 162 stations reaches rainstorm scale,of which 45 stations reaches heavy rainstorm scale.The 24 hours rainfall of the heavy rain in Wuchuan Maotian town reaches 288.6 mm and the maximum rainfall intensity is 90.2 mm.The total precipitation from 22:00 on 7th to 05:00 on 10th in Fenshui,Wuchuan reaches 423.0 mm.The 1 h maximum precipitation,daily maximum precipitation and the maximum precipitation in any 3 days all surpasses the rainstorm which occurs once in a hundred years.The heavy precipitation results in large range of water-logging and flooding;the water level of several rivers passes the dangerous or warning line.The damages and impacts of the disaster are also put forward in this paper.展开更多
China experienced significant flooding in the summer of 2020 and multiple extreme cold surges during the winter of 2020/21.Additionally,the 2020 typhoon season had below average activity with especially quiet activity...China experienced significant flooding in the summer of 2020 and multiple extreme cold surges during the winter of 2020/21.Additionally,the 2020 typhoon season had below average activity with especially quiet activity during the first half of the season in the western North Pacific(WNP).Sea surface temperature changes in the Pacific,Indian,and Atlantic Oceans all contributed to the heavy rainfall in China,but the Atlantic and Indian Oceans seem to have played dominant roles.Enhancement and movement of the Siberian High caused a wavier pattern in the jet stream that allowed cold polar air to reach southward,inducing cold surges in China.Large vertical wind shear and low humidity in the WNP were responsible for fewer typhoons in the first half of the typhoon season.Although it is known that global warming can increase the frequency of extreme weather and climate events,its influences on individual events still need to be quantified.Additionally,the extreme cold surge during 16–18 February 2021 in the United States shares similar mechanisms with the winter 2020/21 extreme cold surges in China.展开更多
The extreme floods in the Middle/Lower Yangtze River Valley(MLYRV)during June−July 2020 caused more than 170 billion Chinese Yuan direct economic losses.Here,we examine the key features related to this extreme event a...The extreme floods in the Middle/Lower Yangtze River Valley(MLYRV)during June−July 2020 caused more than 170 billion Chinese Yuan direct economic losses.Here,we examine the key features related to this extreme event and explore relative contributions of SST anomalies in different tropical oceans.Our results reveal that the extreme floods over the MLYRV were tightly related to a strong anomalous anticyclone persisting over the western North Pacific,which brought tropical warm moisture northward that converged over the MLYRV.In addition,despite the absence of a strong El Niño in 2019/2020 winter,the mean SST anomaly in the tropical Indian Ocean during June−July 2020 reached its highest value over the last 40 years,and 43%(57%)of it is attributed to the multi-decadal warming trend(interannual variability).Based on the NUIST CFS1.0 model that successfully predicted the wet conditions over the MLYRV in summer 2020 initiated from 1 March 2020(albeit the magnitude of the predicted precipitation was only about one-seventh of the observed),sensitivity experiment results suggest that the warm SST condition in the Indian Ocean played a dominant role in generating the extreme floods,compared to the contributions of SST anomalies in the Maritime Continent,central and eastern equatorial Pacific,and North Atlantic.Furthermore,both the multi-decadal warming trend and the interannual variability of the Indian Ocean SSTs had positive impacts on the extreme floods.Our results imply that the strong multi-decadal warming trend in the Indian Ocean needs to be taken into consideration for the prediction/projection of summer extreme floods over the MLYRV in the future.展开更多
With the precipitation data of 113 stations in East China during the last 50 years,the characteristics of the precipitation,including Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PC...With the precipitation data of 113 stations in East China during the last 50 years,the characteristics of the precipitation,including Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PCP) and their tendencies,are analyzed.The results show that the PCD in the northern part of the region is markedly higher than that in the southern part,but the PCP in the south is much earlier than that in the north by about one and a half months,which displays significant regional differences in precipitation.With the global warming,precipitation over East China shows an increasing tendency,but PCD displays a trend that is neither increasing nor decreasing.At the same time,the PCP is later than before,which can be mainly found in Jiangxi and southern Henan provinces.As a result,there are strong associations between the precipitation,PCD and PCP,which can be shown in the years with more precipitation,stronger PCD and later-than-usual PCP.In a word,the abnormal distribution of precipitation,PCP,and PCD over East China results in more extreme events of precipitation and more droughts and floods.展开更多
The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A ...The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A 'soil reservoir' has a large potential storage capacity and its water can be rapidly 'discharged' into the underground water in a timely fashion. The eroded, infertile soils of the Yangtze River Watershed are currently an obstacle to efficient operation of the 'soil reservoir'. The storage capacity of this 'soil reservoir'has been severely hampered due to intensive soil erosion and the formation of soil crusts. Therefore, possible measures to control floods in the Yangtze River Watershed include: rehabilitating the vegetation to preserve soil and water on the eroded infertile soils, enhancing infiltration of the different soil types, and utilizing the large 'soil reservoir' of the upper reaches of the Yangtze River.展开更多
The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricte...The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.展开更多
Mountain catchments are prone to flash flooding due to heavy rainfall. Enhanced understanding of the generation and evolution processes of flash floods is essential for effective flood risk management. However, tradit...Mountain catchments are prone to flash flooding due to heavy rainfall. Enhanced understanding of the generation and evolution processes of flash floods is essential for effective flood risk management. However, traditional distributed hydrological models based on kinematic and diffusion wave approximations ignore certain physical mechanisms of flash floods and thus bear excessive uncertainty. Here a hydrodynamic model is presented for flash floods based on the full two-dimensional shallow water equations incorporating rainfall and infiltration. Laboratory experiments of overland flows were modelled to illustrate the capability of the model. Then the model was applied to resolve two observed flash floods of distinct magnitudes in the Lengkou catchment in Shanxi Province, China. The present model is shown to be able to reproduce the flood flows fairly well compared to the observed data. The spatial distribution of rainfall is shown to be crucial for the modelling of flash floods. Sensitivity analyses of the model parameters reveal that the stage and discharge hydrographs are more sensitive to the Manning roughness and initial water content in the catchment than to the Green-Ampt head. Most notably, as the flash flood augments due to heavier rainfall, the modelling results agree with observed data better, which clearly characterizes the paramount role of rainfall in dictating the floods. From practical perspectives, the proposed model is more appropriate for modelling large flash floods.展开更多
In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results ...In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results were drawn: (1) Altitude effect is the primary factor leading to increased rainstorms in the southern source; (2) Slope effect primarily leads to differences of the weather systems in the two sources, and thus cause the difference of the rainstorms; (3) Slope effect is responsible for the greater fluctuation in the observed floods in the southern source. These landform differences eventually lead to the differences in the characteristics of floods in the southern and northern sources. Commensurability method was used to identify the period of rainstorms in the southern and northern sources. The results showed that although rainstorms do not appear at the same time in the two sources they are characteristic of a 10 years' period in both areas. These results can serve as hydrological references for flood control and long-term flood disaster predictions.展开更多
1 INTRODUCTION In summer, different assembly of the intensity, location and vertical structure of the subtropical high and the earlier/later time of its seasonal northwards jump bring about different precipitation pat...1 INTRODUCTION In summer, different assembly of the intensity, location and vertical structure of the subtropical high and the earlier/later time of its seasonal northwards jump bring about different precipitation patterns over China. Therefore, subtropical high activity and its cause during the occurrence of extreme climatic event over China and the cause of China drought/flood are studied to improve weather forecasting.展开更多
In recent years, flash flood disasters have occurred frequently in southwest China due to the increased frequency of extreme climate events. To solve this problem, great efforts have been made in studying the process ...In recent years, flash flood disasters have occurred frequently in southwest China due to the increased frequency of extreme climate events. To solve this problem, great efforts have been made in studying the process of flash flood. However, little attention was paid on bearing body of hazard, the clusters of buildings. Thus the real disaster mechanism of flash flood remains unclear.Accordingly, based on the experiments of artificial flash floods in a conceptual solid model, this paper focuses on the flood-impacted inundation characteristics of the building clusters at different locations of the gully model, in order to obtain a better understanding of the disaster process and the interaction between the flash floods and building clusters. The results showed that, in a typical smallscale flash flood gully with hot and dry climate, 1)clusters of buildings on an alluvial fan could reduce about 35% of the flooding area by blocking the diffusion of the flood to the depression areas, and could also promote the deposition in lower reaches of the river channel by blocking the overbank flow from going back into the channel, making the width-depth ratio of the channel larger. 2) The flash flood rates of disaster and hazard on the alluvial fan are generally higher than that of the inner gully. For the inner gully,buildings located on the beaches along the lower river and the transitional areas of the straight channel and channel bends can easily be affected because of their lower elevations. For the alluvial fan, buildings nearby the meanders suffer the greatest impacts because of bank collapsing and flooding. 3) The safe vertical distance from a building to the river channel is 13 m for the buildings in the inner gully under extreme floods. Below this threshold, the smaller the vertical distance is, the greater the risk exposure is. For the buildings on the alluvial fan, especially for the buildings near the concave bank of the top rush point,the horizontal distance is more important, and the safe value is 80 m under extreme floods.展开更多
With the IAP/LASG GOALS model, the relationships between the floods in the Yangtze River valley arid sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied. The results sho...With the IAP/LASG GOALS model, the relationships between the floods in the Yangtze River valley arid sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied. The results show that the model can reproduce the heavy rainfall over the Yangtze River valley in the sum-mer of 1998 forced by global observational sea surface temperatures (SST). The model can also reproduce the observed principal features of the subtropical high anomalies over the western Pacific. The experiments with the observed SST in different ocean areas and different periods have been made. By comparing the ef-fects of SSTA of different ocean areas on the floods, it is found that the SSTA in the Indian Ocean are a ma-jor contributor to the floods, and the results also show that the SSTA in the Indian Ocean and the western Pacific have a much closer relationship with the strong anomalies of the subtropical high over the western Pacific than the SSTA in other concerned areas. The study also indicates that the floods and subtropical high anomalies in the summer of 1998 are more controlled by the simultaneous summertime SSTA than by SSTA in the preceding winter and spring seasons.展开更多
The Poyang Lake is one of the most frequently flooded areas in China. Understanding the changing characteristics of floods as well as the affecting factors is an important prerequisite of flood disaster prevention and...The Poyang Lake is one of the most frequently flooded areas in China. Understanding the changing characteristics of floods as well as the affecting factors is an important prerequisite of flood disaster prevention and mitigation. The present study identified the characteristics variations of historical floods in the Poyang Lake and their tendencies based on the Mann-Kendall(M-K) test, and also investigated the related affecting factors, both from climate and human activities. The results revealed that the highest flood stages, duration as well as hazard coefficient of floods showed a long-term increasing linear trend during the last 60 years with the M-K statistic of 1.49, 1.60 and 1.50, respectively. And, a slightly increasing linear trend in the timing of the highest stages indicated the floods occurred later and later during the last six decades. The rainfall during the flood season and subsequent discharges of the Changjiang(Yangtze) River and runoff from the Poyang Lake Basin were mainly responsible for the severe flood situation in the Poyang Lake in the 1990 s. In addition, the intensive human activities, including land reclamation and levee construction, also played a supplementary role in increasing severity of major floods. While, the fewer floods in the Poyang Lake after 2000 can be attributed to not only the less rainfall over the Poyang Lake Basin and low discharges of the Changjiang River during flood periods, but also the stronger influences of human activity which increased the floodwater storage of the Poyang Lake than before.展开更多
Large parts of East and South Asia were affected by heavy precipitation and flooding during early summer 2020.This study provides both a statistical and dynamical characterization of rains and floods affecting the Yan...Large parts of East and South Asia were affected by heavy precipitation and flooding during early summer 2020.This study provides both a statistical and dynamical characterization of rains and floods affecting the Yangtze River Basin(YRB).By aggregating daily and monthly precipitation over river basins across Asia,it is shown that the YRB is one of the areas that was particularly affected.June and July 2020 rainfall was higher than in the previous 20 years,and the YRB experienced anomalously high rainfall across most of its sub-basins.YRB discharge also attained levels not seen since 1998/1999.An automated method detecting the daily position of the East Asian Summer Monsoon Front(EASMF)is applied to show that the anomalously high YRB precipitation was associated with a halted northward progression of the EASMF and prolonged mei-yu conditions over the YRB lasting more than one month.Two 5-day heavy-precipitation episodes(12−16 June and 4−8 July 2020)are selected from this period for dynamical characterization,including Lagrangian trajectory analysis.Particular attention is devoted to the dynamics of the airstreams converging at the EASMF.Both episodes display heavy precipitation and convergence of monsoonal and subtropical air masses.However,clear differences are identified in the upper-level flow pattern,substantially affecting the balance of airmass advection towards the EASMF.This study contextualizes heavy precipitation in Asia in summer 2020 and showcases several analysis tools developed by the authors for the study of such events.展开更多
Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mou...Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mouth bar evolution was investigated under the impacts of floods with different return periods as well as flood-wave interaction.The results showed that floods with different return periods had significant influences on the evolution of the river mouth bar.Particularly on the inner slope of the mouth bar,the sediment was substantially active and moveable.The inner slope and the bar crest tended to be remarkably scoured.The erosion was intensified with the increase of the magnitude of floods.Moreover,the bar crest moved seawards,while the elevation of the bar crest barely changed.Under the flood-wave interaction,a remarkable amount of erosion on the inner and outer slopes of the mouth bar was also found.The seaward displacement of the bar crest under the interaction of floods and waves was less than it was under only the impact of floods,while more deposition was found on the crest of the mouth bar in this case.展开更多
In a globally warming world, subtropical regions are generally expected to become drier while the tropics and mid-high latitudes become wetter. In line with this, Southwest China, close to 25°N, is expected to be...In a globally warming world, subtropical regions are generally expected to become drier while the tropics and mid-high latitudes become wetter. In line with this, Southwest China, close to 25°N, is expected to become increasingly prone to drought if annual mean precipitation decreases. However, despite this trend, changes in the temporal distribution of moisture supply might actually result in increased extreme rainfall in the region, whose climate is characterized by distinct dry and wet seasons. Using hourly and daily gauge observations, rainfall intensity changes since 1971 are exalnined for a network of 142 locations in the region. From the analysis, dry season changes are negligible but wet season changes exhibit a significantly strong downward trend [-2.4% (10 yr)^-1], particularly during the past 15 years [-17.7% (10 yr)^-1]. However, the intensity of events during the wettest of 5% hours appears to steadily increase during the whole period [1.4% (10 yr)^-1], tying in with government statistical reports of recent droughts and flooding. If the opposing trends are a consequence of a warming climate, it is reasonable to expect the contradictory trend to continue with an enhanced risk of flash flooding in coming decades in the region concerned.展开更多
Using the 1970-2005 annual precipitation and evaporation data at 80 gauge stations across Hunan province,this work analyzes the spatial distribution and variation tendency of the local droughts and floods using linear...Using the 1970-2005 annual precipitation and evaporation data at 80 gauge stations across Hunan province,this work analyzes the spatial distribution and variation tendency of the local droughts and floods using linear regression,wavelet analysis,abrupt change,clusters,Empirical Orthogonal Function (EOF) and rotated EOF (REOF).Results show that there are four dry areas and three wet areas in Hunan.The whole province exhibits a moistening trend except some small areas in western,eastern and southern Hunan.The most prominent feature of annual precipitation is that the whole province basically displays a consistent variation tendency,as far as the dominant EOF mode is concerned.In addition,the spatial features of the other EOF modes include dry-wet differences,e.g.wet (or dry) in the north versus dry (or wet) in the south,wet (or dry) in the center and dry (or wet) in the surrounding areas.The distribution of the ratios of evaporation to precipitation exhibits both common features as well as spatial differences,which can be classified into four types:South Hunan,North Hunan,Northeast Hunan,and Central Hunan.There is an abrupt change from dry to wet patterns in the early 1990s.Generally,the drought-flood distribution presents variations of three periods.In the late 2000s,Hunan province will be in a period of drought,followed by a period of flood.展开更多
Concerns regarding urbanization impacts on floods gradually moved from end-of-pipe solutions, based on open channel hydraulics improvement, to imperviousness ratio limiting and then to land use control and to integrat...Concerns regarding urbanization impacts on floods gradually moved from end-of-pipe solutions, based on open channel hydraulics improvement, to imperviousness ratio limiting and then to land use control and to integrated planning at local and large scale levels. The Niushou River basin is one of the fastest urbanizing areas in Nanjing City, East China, however, the high urban land percentage has leaded to series of flooding events. The paper aims to reveal the impact of imperviousness ratio, patterns and drainage system on flooding areas based on the unit of catchment and Storm Water Management Model(SWMM). The following conclusions were reached. 1) The ratio or spatial characteristics of the impervious surface affected the runoff volumes and associated floods areas. Despite the well-established drainage system, the high imperviousness ratio, particularly clustered pattern in locations such as hydrological sensitive zones aggravated the flooding tension across the basin. 2) The poor drainage hydraulic efficiency in local areas, and the lack of integral processes of infiltration, yield, storage and discharge in local catchment and larger basin are also significant factors. 3) The Niushou River basin development should improve the drainage transformations from a single local, short-term drainage process into integral, elastic processes of infiltration, yield, storage, and discharge.展开更多
Pakistan is a developing country that has a population of 190 million people and faces a huge burden of viral diseases. Every year during monsoon season heavy rain fall and lack of disaster management skills potential...Pakistan is a developing country that has a population of 190 million people and faces a huge burden of viral diseases. Every year during monsoon season heavy rain fall and lack of disaster management skills potentially increase the transmission of waterborne diseases, vector borne diseases and viral outbreaks. Due to severe flooding, thousands of people lose their lives and millions are displaced each year. In most of the cases the children who lose their family members are forced into illegal professions of begging, child labor and prostitution which make them prone to sexually transmitted infections. Up to date, no scientific study has been conducted nationwide to illustrate epidemiological patterns of waterborne diseases, vector borne diseases and viral epidemics during flash flood. Mosquito sprays would not be a sufficient approach for dengue eradication; mass awareness, larvicide and biological control by Guppy fishes are also effective strategies to overcome dengue problem. International health bodies and non-governmental organizations must take note of this alerting situation and take adequate steps such as financial/medical aid in order to defeat the after-effects of flood.展开更多
文摘Severe solar events manifested by highly energetic X-Ray events accompanied by coronal mass ejections and proton flares caused flash floods in Makkah AI-Mukaramab, A1-Madinah AI-Munawarah and Jeddah. The responses can be prompt, delayed or prompt-delayed, suggesting that the protons entered the troposphere either through the opening of a direct gate in the magnetosphere to the location concer.led due to magnetic reconnection, through the polar gates or through those two paths respectively. The authors suggest that there is a magnetic anomaly in Makkah AI-Mukaramah area which makes it liable to be subjected to flash floods. The width of the solar streams determines the width of the gate opened in the magnetosphere via magnetic reconnection and thus narrow streams affect only one location of the three cities while extended width streams can cause flash floods in all of Makkah AI-Mukaramah AI-Madinah AI Munawarah and Jeddah. In addition, the November 24-26 Jeddah flash flood could be attributed to a prompt event due to a moderately fast solar stream that arrived the earth on those days.
基金Supported by Zunyi City Science and Technology Program(Zunyi Science Agriculture No.200904)~~
文摘A strong rainfall during June 8-13,2010 in Zunyi City is comprehensively analyzed by several diagnosis methods,including space location,maximum value,history comparison,maximum value assumption and disaster influence analysis.Results show that this time the successive heavy precipitation fall in the northeastern area of Zunyi City,which are Zheng’an,Daozheng and Wuchuan etc..There are in total of 4 times of heavy rainstorms,8 times of rainstorms and 8 times of heavy rains in 14 meteorological observatories of the entire city.In the whole 215 towns,the daily precipitation in 162 stations reaches rainstorm scale,of which 45 stations reaches heavy rainstorm scale.The 24 hours rainfall of the heavy rain in Wuchuan Maotian town reaches 288.6 mm and the maximum rainfall intensity is 90.2 mm.The total precipitation from 22:00 on 7th to 05:00 on 10th in Fenshui,Wuchuan reaches 423.0 mm.The 1 h maximum precipitation,daily maximum precipitation and the maximum precipitation in any 3 days all surpasses the rainstorm which occurs once in a hundred years.The heavy precipitation results in large range of water-logging and flooding;the water level of several rivers passes the dangerous or warning line.The damages and impacts of the disaster are also put forward in this paper.
基金the National Natural Science Foundation of China(Grant No.41731173)the National Key R&D Program of China(Grant No.2019YFA0606701)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB42000000 and XDA20060502)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(Grant No.GML2019ZD0306)the Innovation Academy of South China Sea Ecology and Environmental Engineering,the Chinese Academy of Sciences(Grant No.ISEE2018PY06)。
文摘China experienced significant flooding in the summer of 2020 and multiple extreme cold surges during the winter of 2020/21.Additionally,the 2020 typhoon season had below average activity with especially quiet activity during the first half of the season in the western North Pacific(WNP).Sea surface temperature changes in the Pacific,Indian,and Atlantic Oceans all contributed to the heavy rainfall in China,but the Atlantic and Indian Oceans seem to have played dominant roles.Enhancement and movement of the Siberian High caused a wavier pattern in the jet stream that allowed cold polar air to reach southward,inducing cold surges in China.Large vertical wind shear and low humidity in the WNP were responsible for fewer typhoons in the first half of the typhoon season.Although it is known that global warming can increase the frequency of extreme weather and climate events,its influences on individual events still need to be quantified.Additionally,the extreme cold surge during 16–18 February 2021 in the United States shares similar mechanisms with the winter 2020/21 extreme cold surges in China.
基金This work is supported by National Natural Science Foundation of China(Grant No.42030605 and 42088101)National Key R&D Program of China(Grant No.2020YFA0608004).
文摘The extreme floods in the Middle/Lower Yangtze River Valley(MLYRV)during June−July 2020 caused more than 170 billion Chinese Yuan direct economic losses.Here,we examine the key features related to this extreme event and explore relative contributions of SST anomalies in different tropical oceans.Our results reveal that the extreme floods over the MLYRV were tightly related to a strong anomalous anticyclone persisting over the western North Pacific,which brought tropical warm moisture northward that converged over the MLYRV.In addition,despite the absence of a strong El Niño in 2019/2020 winter,the mean SST anomaly in the tropical Indian Ocean during June−July 2020 reached its highest value over the last 40 years,and 43%(57%)of it is attributed to the multi-decadal warming trend(interannual variability).Based on the NUIST CFS1.0 model that successfully predicted the wet conditions over the MLYRV in summer 2020 initiated from 1 March 2020(albeit the magnitude of the predicted precipitation was only about one-seventh of the observed),sensitivity experiment results suggest that the warm SST condition in the Indian Ocean played a dominant role in generating the extreme floods,compared to the contributions of SST anomalies in the Maritime Continent,central and eastern equatorial Pacific,and North Atlantic.Furthermore,both the multi-decadal warming trend and the interannual variability of the Indian Ocean SSTs had positive impacts on the extreme floods.Our results imply that the strong multi-decadal warming trend in the Indian Ocean needs to be taken into consideration for the prediction/projection of summer extreme floods over the MLYRV in the future.
基金National Foundation for Outstanding Young Scientists (40825008)National Natural Science Foundation of China (40975020)Models and Technical Composites for Comprehensive Improvement of Ecological and Environmental Conditions in the Basin of Qinghai Lake (2007BAC30B05-4)
文摘With the precipitation data of 113 stations in East China during the last 50 years,the characteristics of the precipitation,including Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PCP) and their tendencies,are analyzed.The results show that the PCD in the northern part of the region is markedly higher than that in the southern part,but the PCP in the south is much earlier than that in the north by about one and a half months,which displays significant regional differences in precipitation.With the global warming,precipitation over East China shows an increasing tendency,but PCD displays a trend that is neither increasing nor decreasing.At the same time,the PCP is later than before,which can be mainly found in Jiangxi and southern Henan provinces.As a result,there are strong associations between the precipitation,PCD and PCP,which can be shown in the years with more precipitation,stronger PCD and later-than-usual PCP.In a word,the abnormal distribution of precipitation,PCP,and PCD over East China results in more extreme events of precipitation and more droughts and floods.
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011810) the National Natural Science Foundation of China (No. 49971039).
文摘The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A 'soil reservoir' has a large potential storage capacity and its water can be rapidly 'discharged' into the underground water in a timely fashion. The eroded, infertile soils of the Yangtze River Watershed are currently an obstacle to efficient operation of the 'soil reservoir'. The storage capacity of this 'soil reservoir'has been severely hampered due to intensive soil erosion and the formation of soil crusts. Therefore, possible measures to control floods in the Yangtze River Watershed include: rehabilitating the vegetation to preserve soil and water on the eroded infertile soils, enhancing infiltration of the different soil types, and utilizing the large 'soil reservoir' of the upper reaches of the Yangtze River.
基金Under the auspices of National Natural Science Foundation(No.50879028)Open Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Nanjing Hydraulic Research institute(No.2009491311)+1 种基金Open Research Fund Program of State key Laboratory of Hydroscience and Engineering,Tsinghua University(No.sklhse-2010-A-02)Application Foundation Items of Science and Technology Department of Jilin Province(No.2011-05013)
文摘The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.
基金funded by Natural Science Foundation of China (Grants Nos. 51279144 and 11432015)Chinese Academy of Sciences (Grant No. KZZD-EW-05-01-03)
文摘Mountain catchments are prone to flash flooding due to heavy rainfall. Enhanced understanding of the generation and evolution processes of flash floods is essential for effective flood risk management. However, traditional distributed hydrological models based on kinematic and diffusion wave approximations ignore certain physical mechanisms of flash floods and thus bear excessive uncertainty. Here a hydrodynamic model is presented for flash floods based on the full two-dimensional shallow water equations incorporating rainfall and infiltration. Laboratory experiments of overland flows were modelled to illustrate the capability of the model. Then the model was applied to resolve two observed flash floods of distinct magnitudes in the Lengkou catchment in Shanxi Province, China. The present model is shown to be able to reproduce the flood flows fairly well compared to the observed data. The spatial distribution of rainfall is shown to be crucial for the modelling of flash floods. Sensitivity analyses of the model parameters reveal that the stage and discharge hydrographs are more sensitive to the Manning roughness and initial water content in the catchment than to the Green-Ampt head. Most notably, as the flash flood augments due to heavier rainfall, the modelling results agree with observed data better, which clearly characterizes the paramount role of rainfall in dictating the floods. From practical perspectives, the proposed model is more appropriate for modelling large flash floods.
基金supported by the Application Foundation Item of Science and Technology Department of Jilin Province (Grant No. 2011-05013)the National Natural Science Foundation of China (Grant No. 50879028)
文摘In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results were drawn: (1) Altitude effect is the primary factor leading to increased rainstorms in the southern source; (2) Slope effect primarily leads to differences of the weather systems in the two sources, and thus cause the difference of the rainstorms; (3) Slope effect is responsible for the greater fluctuation in the observed floods in the southern source. These landform differences eventually lead to the differences in the characteristics of floods in the southern and northern sources. Commensurability method was used to identify the period of rainstorms in the southern and northern sources. The results showed that although rainstorms do not appear at the same time in the two sources they are characteristic of a 10 years' period in both areas. These results can serve as hydrological references for flood control and long-term flood disaster predictions.
基金Research on Floods-Causing Heavy Rains in the Valley of Huaihe River in 2003, a projectfrom the National Meteorological Center
文摘1 INTRODUCTION In summer, different assembly of the intensity, location and vertical structure of the subtropical high and the earlier/later time of its seasonal northwards jump bring about different precipitation patterns over China. Therefore, subtropical high activity and its cause during the occurrence of extreme climatic event over China and the cause of China drought/flood are studied to improve weather forecasting.
基金supported by the Specific Research of China Institute of Water Resources and Hydropower Research (Grant Nos. Fangji 1240)Chinese Ministry of Water Resources (Grant Nos. 201301058 and 20131059)the Basic Research Fund for Central Public Research Institutes (Grant No. CKSF2015010/TB)
文摘In recent years, flash flood disasters have occurred frequently in southwest China due to the increased frequency of extreme climate events. To solve this problem, great efforts have been made in studying the process of flash flood. However, little attention was paid on bearing body of hazard, the clusters of buildings. Thus the real disaster mechanism of flash flood remains unclear.Accordingly, based on the experiments of artificial flash floods in a conceptual solid model, this paper focuses on the flood-impacted inundation characteristics of the building clusters at different locations of the gully model, in order to obtain a better understanding of the disaster process and the interaction between the flash floods and building clusters. The results showed that, in a typical smallscale flash flood gully with hot and dry climate, 1)clusters of buildings on an alluvial fan could reduce about 35% of the flooding area by blocking the diffusion of the flood to the depression areas, and could also promote the deposition in lower reaches of the river channel by blocking the overbank flow from going back into the channel, making the width-depth ratio of the channel larger. 2) The flash flood rates of disaster and hazard on the alluvial fan are generally higher than that of the inner gully. For the inner gully,buildings located on the beaches along the lower river and the transitional areas of the straight channel and channel bends can easily be affected because of their lower elevations. For the alluvial fan, buildings nearby the meanders suffer the greatest impacts because of bank collapsing and flooding. 3) The safe vertical distance from a building to the river channel is 13 m for the buildings in the inner gully under extreme floods. Below this threshold, the smaller the vertical distance is, the greater the risk exposure is. For the buildings on the alluvial fan, especially for the buildings near the concave bank of the top rush point,the horizontal distance is more important, and the safe value is 80 m under extreme floods.
基金the"National Key Programme for Developing Basic Sciences"--Research on the Formation Mechanism and Prediction Theory of Severe Climate Disasters in China(G1998040900)the National Natrual Science Foundation of China under Grant No.40135020the Project ZKCX2-SW-2t0
文摘With the IAP/LASG GOALS model, the relationships between the floods in the Yangtze River valley arid sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied. The results show that the model can reproduce the heavy rainfall over the Yangtze River valley in the sum-mer of 1998 forced by global observational sea surface temperatures (SST). The model can also reproduce the observed principal features of the subtropical high anomalies over the western Pacific. The experiments with the observed SST in different ocean areas and different periods have been made. By comparing the ef-fects of SSTA of different ocean areas on the floods, it is found that the SSTA in the Indian Ocean are a ma-jor contributor to the floods, and the results also show that the SSTA in the Indian Ocean and the western Pacific have a much closer relationship with the strong anomalies of the subtropical high over the western Pacific than the SSTA in other concerned areas. The study also indicates that the floods and subtropical high anomalies in the summer of 1998 are more controlled by the simultaneous summertime SSTA than by SSTA in the preceding winter and spring seasons.
基金Under the auspices of National Basic Research Program of China(No.2012CB417003)National Natural Science Foundation of China(No.41101024)
文摘The Poyang Lake is one of the most frequently flooded areas in China. Understanding the changing characteristics of floods as well as the affecting factors is an important prerequisite of flood disaster prevention and mitigation. The present study identified the characteristics variations of historical floods in the Poyang Lake and their tendencies based on the Mann-Kendall(M-K) test, and also investigated the related affecting factors, both from climate and human activities. The results revealed that the highest flood stages, duration as well as hazard coefficient of floods showed a long-term increasing linear trend during the last 60 years with the M-K statistic of 1.49, 1.60 and 1.50, respectively. And, a slightly increasing linear trend in the timing of the highest stages indicated the floods occurred later and later during the last six decades. The rainfall during the flood season and subsequent discharges of the Changjiang(Yangtze) River and runoff from the Poyang Lake Basin were mainly responsible for the severe flood situation in the Poyang Lake in the 1990 s. In addition, the intensive human activities, including land reclamation and levee construction, also played a supplementary role in increasing severity of major floods. While, the fewer floods in the Poyang Lake after 2000 can be attributed to not only the less rainfall over the Poyang Lake Basin and low discharges of the Changjiang River during flood periods, but also the stronger influences of human activity which increased the floodwater storage of the Poyang Lake than before.
基金AV,MM,RS,AGT and NPK were supported by the COSMIC project through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund,contract number P106301.NPK was supported by a Natural Environmental Research Council(NERC)Independent Research Fellowship(NE/L010976/1)and by the ACREW programme of the National Centre for Atmospheric Science.We thank Omar V.MÜLLER for help with GloFAS-ERA5.
文摘Large parts of East and South Asia were affected by heavy precipitation and flooding during early summer 2020.This study provides both a statistical and dynamical characterization of rains and floods affecting the Yangtze River Basin(YRB).By aggregating daily and monthly precipitation over river basins across Asia,it is shown that the YRB is one of the areas that was particularly affected.June and July 2020 rainfall was higher than in the previous 20 years,and the YRB experienced anomalously high rainfall across most of its sub-basins.YRB discharge also attained levels not seen since 1998/1999.An automated method detecting the daily position of the East Asian Summer Monsoon Front(EASMF)is applied to show that the anomalously high YRB precipitation was associated with a halted northward progression of the EASMF and prolonged mei-yu conditions over the YRB lasting more than one month.Two 5-day heavy-precipitation episodes(12−16 June and 4−8 July 2020)are selected from this period for dynamical characterization,including Lagrangian trajectory analysis.Particular attention is devoted to the dynamics of the airstreams converging at the EASMF.Both episodes display heavy precipitation and convergence of monsoonal and subtropical air masses.However,clear differences are identified in the upper-level flow pattern,substantially affecting the balance of airmass advection towards the EASMF.This study contextualizes heavy precipitation in Asia in summer 2020 and showcases several analysis tools developed by the authors for the study of such events.
基金supported by the Changjiang River Scientific Research Institute(CRSRI)Open Research Program(Grant No.CKWV2017499/KY)the National Natural Science Foundation of China(Grant No.51779280)
文摘Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mouth bar evolution was investigated under the impacts of floods with different return periods as well as flood-wave interaction.The results showed that floods with different return periods had significant influences on the evolution of the river mouth bar.Particularly on the inner slope of the mouth bar,the sediment was substantially active and moveable.The inner slope and the bar crest tended to be remarkably scoured.The erosion was intensified with the increase of the magnitude of floods.Moreover,the bar crest moved seawards,while the elevation of the bar crest barely changed.Under the flood-wave interaction,a remarkable amount of erosion on the inner and outer slopes of the mouth bar was also found.The seaward displacement of the bar crest under the interaction of floods and waves was less than it was under only the impact of floods,while more deposition was found on the crest of the mouth bar in this case.
基金jointly supported by the National Key R&D Program of China(Grant Nos.2016YFE0102400 and 2017YFC1502701)the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP) China as part of the Newton Fund
文摘In a globally warming world, subtropical regions are generally expected to become drier while the tropics and mid-high latitudes become wetter. In line with this, Southwest China, close to 25°N, is expected to become increasingly prone to drought if annual mean precipitation decreases. However, despite this trend, changes in the temporal distribution of moisture supply might actually result in increased extreme rainfall in the region, whose climate is characterized by distinct dry and wet seasons. Using hourly and daily gauge observations, rainfall intensity changes since 1971 are exalnined for a network of 142 locations in the region. From the analysis, dry season changes are negligible but wet season changes exhibit a significantly strong downward trend [-2.4% (10 yr)^-1], particularly during the past 15 years [-17.7% (10 yr)^-1]. However, the intensity of events during the wettest of 5% hours appears to steadily increase during the whole period [1.4% (10 yr)^-1], tying in with government statistical reports of recent droughts and flooding. If the opposing trends are a consequence of a warming climate, it is reasonable to expect the contradictory trend to continue with an enhanced risk of flash flooding in coming decades in the region concerned.
基金Project of Key Disciplines of Research of Hunan ProvinceNatural Science Foundation of China (40741002)
文摘Using the 1970-2005 annual precipitation and evaporation data at 80 gauge stations across Hunan province,this work analyzes the spatial distribution and variation tendency of the local droughts and floods using linear regression,wavelet analysis,abrupt change,clusters,Empirical Orthogonal Function (EOF) and rotated EOF (REOF).Results show that there are four dry areas and three wet areas in Hunan.The whole province exhibits a moistening trend except some small areas in western,eastern and southern Hunan.The most prominent feature of annual precipitation is that the whole province basically displays a consistent variation tendency,as far as the dominant EOF mode is concerned.In addition,the spatial features of the other EOF modes include dry-wet differences,e.g.wet (or dry) in the north versus dry (or wet) in the south,wet (or dry) in the center and dry (or wet) in the surrounding areas.The distribution of the ratios of evaporation to precipitation exhibits both common features as well as spatial differences,which can be classified into four types:South Hunan,North Hunan,Northeast Hunan,and Central Hunan.There is an abrupt change from dry to wet patterns in the early 1990s.Generally,the drought-flood distribution presents variations of three periods.In the late 2000s,Hunan province will be in a period of drought,followed by a period of flood.
基金Under the auspices of National Natural Science Foundation of China(No.41171429,41571511)
文摘Concerns regarding urbanization impacts on floods gradually moved from end-of-pipe solutions, based on open channel hydraulics improvement, to imperviousness ratio limiting and then to land use control and to integrated planning at local and large scale levels. The Niushou River basin is one of the fastest urbanizing areas in Nanjing City, East China, however, the high urban land percentage has leaded to series of flooding events. The paper aims to reveal the impact of imperviousness ratio, patterns and drainage system on flooding areas based on the unit of catchment and Storm Water Management Model(SWMM). The following conclusions were reached. 1) The ratio or spatial characteristics of the impervious surface affected the runoff volumes and associated floods areas. Despite the well-established drainage system, the high imperviousness ratio, particularly clustered pattern in locations such as hydrological sensitive zones aggravated the flooding tension across the basin. 2) The poor drainage hydraulic efficiency in local areas, and the lack of integral processes of infiltration, yield, storage and discharge in local catchment and larger basin are also significant factors. 3) The Niushou River basin development should improve the drainage transformations from a single local, short-term drainage process into integral, elastic processes of infiltration, yield, storage, and discharge.
文摘Pakistan is a developing country that has a population of 190 million people and faces a huge burden of viral diseases. Every year during monsoon season heavy rain fall and lack of disaster management skills potentially increase the transmission of waterborne diseases, vector borne diseases and viral outbreaks. Due to severe flooding, thousands of people lose their lives and millions are displaced each year. In most of the cases the children who lose their family members are forced into illegal professions of begging, child labor and prostitution which make them prone to sexually transmitted infections. Up to date, no scientific study has been conducted nationwide to illustrate epidemiological patterns of waterborne diseases, vector borne diseases and viral epidemics during flash flood. Mosquito sprays would not be a sufficient approach for dengue eradication; mass awareness, larvicide and biological control by Guppy fishes are also effective strategies to overcome dengue problem. International health bodies and non-governmental organizations must take note of this alerting situation and take adequate steps such as financial/medical aid in order to defeat the after-effects of flood.