期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simulation of gas–liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method
1
作者 冯凯 杨刚 张会臣 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期527-536,共10页
A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, su... A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, surface tension,wetting properties, and rheological characteristics of the fluid on the two-phase flow are analyzed. The results indicate that the flow pattern transfers from slug flow to dry-plug flow with a sufficiently small capillary number. Due to the presence of three-phase contact lines, the contact angle has a more significant effect on the dry-plug flow pattern than on the slug flow pattern. The deformation of the front and rear meniscus of a bubble in the shear-thinning fluid can be explained by the variation of the capillary number. The reduced viscosity and increased contact angle are beneficial for the drag reduction in a microchannel. It also demonstrates the effectiveness of the current method to simulate the gas–liquid two-phase flow in a microchannel. 展开更多
关键词 two-phase flow lattice Boltzmann method pressure drop flow-focusing microchannel
下载PDF
Droplet Pattern Formation and Translation in New Microfluidic Flow- Focusing Devices
2
作者 徐华国 梁好均 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第6期679-684,I0003,I0004,共8页
We conducted experiments on specially designed microfluidic chips that generate droplets through a microfluidic ow-focusing approach. The fluid flow in the microfluidic channel produced a shear flow field at low Reyno... We conducted experiments on specially designed microfluidic chips that generate droplets through a microfluidic ow-focusing approach. The fluid flow in the microfluidic channel produced a shear flow field at low Reynolds numbers. The droplets in the microfluidic system exhibited special droplet pattern formations similar to periodic crystal-like lattices because of the competition between shear forces and surface tension. By adjusting the flow rate ratio of the water (droplet phase) to oil (continuous phase) phases and changing the outlet channel widths, the droplets formed monolayer dispersion to double-layer formation to monolayer squeezing when the outlet channel widths were 250 or 300 μm. We also obtained droplets with monolayer dispersion, three-layer arrangements, double-layer squeezing, and monolayer squeezing when the outlet channel width was 350 μm. The outlet channel width was increased to 400 μm, and four-layer arrangements were observed. We also studied the translation of droplet formation, which resulted in a detailed strategy to control drop size and droplet pattern formation for emulsi cation in microfluidic devices. We expect that our strategy can provide theoretical guidance to synthesize dispersion or polydisperse colloid particles. 展开更多
关键词 Microfluidic flow-focusing device Droplet pattern formation TRANSITION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部