This paper is concerned with the initial-boundary value problem of a nonlinear conservation law in the half space R+= {x |x > 0} where a>0 , u(x,t) is an unknown function of x ∈ R+ and t>0 , u ± , um ar...This paper is concerned with the initial-boundary value problem of a nonlinear conservation law in the half space R+= {x |x > 0} where a>0 , u(x,t) is an unknown function of x ∈ R+ and t>0 , u ± , um are three given constants satisfying um=u+≠u- or um=u-≠u+ , and the flux function f is a given continuous function with a weak discontinuous point ud. The main purpose of our present manuscript is devoted to studying the structure of the global weak entropy solution for the above initial-boundary value problem under the condition of f '-(ud) > f '+(ud). By the characteristic method and the truncation method, we construct the global weak entropy solution of this initial-boundary value problem, and investigate the interaction of elementary waves with the boundary and the boundary behavior of the weak entropy solution.展开更多
The ESMD method can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) for non-steady data processing. It is good at finding the optimal adaptive global mean fitting curve, which is superior to...The ESMD method can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) for non-steady data processing. It is good at finding the optimal adaptive global mean fitting curve, which is superior to the common least-square method and running-mean approach. Take the air-sea momentum flux investigation as an example, only when the non-turbulent wind components is well extracted, can the remainder signal be seen as actual oscillations caused by turbulence. With the aid of —5/3 power law for the turbulence, a mode-filtering approach based on ESMD decomposition is developed here. The test on observational data indicates that this approach is very feasible and it may greatly reduce the error caused by the non-turbulent components.展开更多
This paper is concerned with the initial-boundary value problem of scalar conservation laws with weak discontinuous flux, whose initial data are a function with two pieces of constant and whose boundary data are a con...This paper is concerned with the initial-boundary value problem of scalar conservation laws with weak discontinuous flux, whose initial data are a function with two pieces of constant and whose boundary data are a constant function. Under the condition that the flux function has a finite number of weak discontinuous points, by using the structure of weak entropy solution of the corresponding initial value problem and the boundary entropy condition developed by Bardos-Leroux-Nedelec, we give a construction method to the global weak entropy solution for this initial-boundary value problem, and by investigating the interaction of elementary waves and the boundary, we clarify the geometric structure and the behavior of boundary for the weak entropy solution.展开更多
An underlying wetland surface comprises soil, water and vegetation and is sensitive to local climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how ...An underlying wetland surface comprises soil, water and vegetation and is sensitive to local climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how environmental factors influence latent heat flux have considerable scientific significance. Using data from observational tests of the Maduo Observatory of Climate and Environment of the Northwest Institute of Eco-Environment and Resource, CAS, from June 1 to August 31, 2014, this study analysed the time-varying characteristics and causes of the degree of coupling(Ω factor)between alpine wetlands underlying surface and the atmosphere and quantitatively calculated the influences of different environmental factors(solar radiation and vapour pressure deficit) on latent heat flux. The results were as follows:(1) Due to diurnal variations of solar radiation and wind speed, a trend developed where diurnal variations of the Ω factor were small in the morning and large in the evening. Due to the vegetation growing cycle, seasonal variations of the Ω factor present a reverse "U" trend. These trends are similar to the diurnal and seasonal variations of the absolute control exercised by solar radiation over latent heat flux. This conforms to the Omega Theory.(2) The values for average absolute atmospheric factor(surface factor or total) control exercised by solar radiation and water vapour pressure are 0.20(0.02 or 0.22) and 0.005(-0.07 or-0.06) W/(m2·Pa), respectively. Generally speaking, solar radiation and water vapour pressure deficit exert opposite forces on latent heat flux.(3) At the underlying alpine wetland surface, solar radiation primarily influences latent heat flux through its direct effects(atmospheric factor controls). Water vapour pressure deficit primarily influences latent heat flux through its indirect effects(surface factor controls) on changing the surface resistance.(4) The average Ω factor in the underlying alpine wetland surface is high during the vegetation growing season, with a value of 0.38, and the degree of coupling between alpine wetland surface and atmosphere system is low. The actual measurements agree with the Omega Theory. The latent heat flux is mainly influenced by solar radiation.展开更多
Based on the gene-protein-reaction (GPR) model of S. cerevisiae_iND750 and the method of constraint-based analysis, we first calculated the metabolic flux distribution of S. cere-visiae_iND750. Then we calculated the ...Based on the gene-protein-reaction (GPR) model of S. cerevisiae_iND750 and the method of constraint-based analysis, we first calculated the metabolic flux distribution of S. cere-visiae_iND750. Then we calculated the deletion impact of 438 calculable genes, one by one, on the metabolic flux redistribution of S. cere-visiae_iND750. Next we analyzed the correlation between v (describing deletion impact of one gene) and d (connection degree of one gene) and the correlation between v and Vgene (flux sum controlled by one gene), and found that both of them were not of linear relation. Furthermore, we sought out 38 important genes that most greatly affected the metabolic flux distribution, and determined their functional subsystems. We also found that many of these key genes were related to many but not several subsystems. Because the in silico model of S. cere-visiae_iND750 has been tested by many ex-periments, thus is credible, we can conclude that the result we obtained has biological sig-nificance.展开更多
Three speed controllers for an axial magnetic flux switched reluctance motor with only one stator, are described and experimentally tested. As it is known, when current pulses are imposed in their windings, high rippl...Three speed controllers for an axial magnetic flux switched reluctance motor with only one stator, are described and experimentally tested. As it is known, when current pulses are imposed in their windings, high ripple torque is obtained. In order to reduce this ripple, a control strategy with modified current shapes is proposed. A workbench consisting of a machine prototype and the control system based on a microcontroller was built. These controllers were: a conventional PID, a fuzzy logic PID and a neural PID type. From experimental results, the effective reduction of the torque ripple was confirmed and the performance of the controllers was compared.展开更多
The melting temperature of Z coal ash was reduced by adding calcium–magnesium compound flux(WCaO/WMgO=1). In the process of simulated coal gasification, the coal ash and slag were prepared. The transformation of mine...The melting temperature of Z coal ash was reduced by adding calcium–magnesium compound flux(WCaO/WMgO=1). In the process of simulated coal gasification, the coal ash and slag were prepared. The transformation of minerals in coal ash and slag upon the change of temperature was studied by using X-ray diffraction(XRD). With the increase of temperatures, forsterite in the ash disappears, while the diffraction peak strength of magnesium spinel increases,and the content of the calcium feldspar increases, then the content of the amorphous phase in the ash increases obviously. The species and evolution process of oxygen, silicon, aluminum, calcium, magnesium at different temperatures were analyzed by X-ray photoelectron spectroscopy(XPS). The decrease of the ash melting point mainly affects the structural changes of silicon, aluminum and oxygen. The coordination of aluminum and oxygen in the aluminum element structure, e.g., tetracoordinated aluminum oxide, was changed. Tetrahedral [AlO4] and hexacoordinated aluminoxy octahedral [AlO6] change with the temperature changing. The addition of Ca2+ and Mg2+ destroys silica chain, making bridge oxide silicon change into non-bridge oxysilicon;and bridge oxygen bond was broken and non-bridge oxygen bond was produced in the oxygen element structure. The addition of calcium and magnesium compound flux reacts with aluminum oxide tetrahedron, aluminum oxide octahedron and silicon tetrahedron to promote the breakage of the bridge oxygen bond. Ca2+ and Mg2+ are easily combined with silicon oxide and aluminum oxide tetrahedron and aluminum. Oxygen octahedrons combine with non-oxygen bonds to generate low-melting temperature feldspars and magnesite minerals, thereby reducing the coal ash melting temperatures. The structure of kaolinite and mullite was simulated by quantum chemistry calculation, and kaolinite molecule has a stable structure.展开更多
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest...During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.展开更多
Global food demand requires that soils be used intensively for agriculture, but how these soils are managed greatly impacts soil fluxes of carbon dioxide (CO2). Soil management practices can cause carbon to be either ...Global food demand requires that soils be used intensively for agriculture, but how these soils are managed greatly impacts soil fluxes of carbon dioxide (CO2). Soil management practices can cause carbon to be either sequestered or emitted, with corresponding uncertain influence on atmospheric CO2 concentrations. The situation is further complicated by the lack of CO2 flux measurements for African subsistence farms. For widespread application in remote areas, a simple experimental methodology is desired. As a first step, the present study investigated the use of Bowen Ratio Energy Balance (BREB) instrumentation to measure the energy balance and CO2 fluxes of two contrasting crop management systems, till and no-till, in the lowlands within the mountains of Lesotho. Two BREB micrometeorological systems were established on 100-m by 100-m sites, both planted with maize (Zea mays) but under either conventional (plow, disk-disk) or no-till soil mangement systems. The results demonstrate that with careful maintenance of the instruments by appropriately trained local personnel, the BREB approach offers substantial benefits in measuring real time changes in agroecosystem CO2 flux. The periods where the two treatments could be compared indicated greater CO2 sequestration over the no-till treatments during both the growing and non-growing seasons.展开更多
High temperature superconductor research is presently concentrated upon the flux pinning properties of the Abrikosov lattice of the mixed-mode superconducting phase. The temperature thermal fluctuations, current and m...High temperature superconductor research is presently concentrated upon the flux pinning properties of the Abrikosov lattice of the mixed-mode superconducting phase. The temperature thermal fluctuations, current and magnetic field unpin the flux vortices and so cause electromagnetic resistivity in high temperature superconductors. Materials with higher vortex pinning exhibit less resistivity and are more attractive for industrial uses. In the present article, we measured and correlated the pinning flux energy barrier, determined by AC magnetic measurements, and transmission electron microscopy measurements to the critical current Jc in Yttrium- and Silver-doped MgB2 superconductors. The energy of the flux vortex was evaluated as a function of the magnetic field. The energy barrier curves suggest an optimal doping level to occur in doped materials. This result only depends on the optimal size and distribution of precipitates, and not on their chemical composition. The energy barriers have been compared with that of undoped MgB2 in literature.展开更多
Since the mud snail Bullacta exarata was introduced for economic aquaculture in the Huanghe River(Yellow River) Delta in 2001, its quick population growth and expanded distribution make it a key-species in the interti...Since the mud snail Bullacta exarata was introduced for economic aquaculture in the Huanghe River(Yellow River) Delta in 2001, its quick population growth and expanded distribution make it a key-species in the intertidal zone of this area. This significantly contributed to the economic income of the local people, but its potential ecological impact on the benthic ecosystem remains unknown. A mesocosm study was conducted to test whether its bioturbation activities affect the microphytobenthos(MPBs;i.e., sedimentary microbes and unicellular algae)productivity and the nutrient exchange between the sediment-water interface. Our results show that the mud snail significantly impacted the dissolved oxygen(DO) flux across the sediment-water interface on the condition of normal sediment and light treatment, and significantly increased the ammonium efflux during recovery period in the defaunated sediment and dark treatment. The presence of micro-and meiofauna significantly increased the NH4-N flux in dark treatment. Whereas, in light treatment, these small animals had less effects on the DO and NH4-N flux between sediment-water interface. Our results provide better insight into the effect of the mud snail B.exarata on the ecosystem functioning via benthic fluxes.展开更多
This paper presents design feasibility study and development of a new hybrid excitation flux switching motor (HEFSM) as a contender for traction drives in hybrid electric vehicles (HEVs). Initially, the motor general ...This paper presents design feasibility study and development of a new hybrid excitation flux switching motor (HEFSM) as a contender for traction drives in hybrid electric vehicles (HEVs). Initially, the motor general construction, the basic working principle and the design concept of the proposed HEFSM are outlined. Then, the initial drive performances of the proposed HEFSM are evaluated based on 2D-FEA, in which the design restrictions, specifications and target performances are similar with conventional interior permanent magnet synchronous motor (IPMSM) used in HEV. Since the initial results fail to achieve the target performances, deterministic design optimization approach is used to treat several design parameters. After several cycles of optimization, the proposed motor makes it possible to obtain the target torque and power of 333 Nm and 123 kW, respectively. In addition, due to definite advantage of robust rotor structure of HEFSM, rotor mechanical stress prediction at maximum speed of 12,400 r/min is much lower than the mechanical stress in conventional IPMSM. Finally, the maximum torque and power density of the final design HEFSM are approximately 11.41 Nm/kg and 5.55 kW/kg, respectively, which is 19.98% and 58.12% more than the torque and power density in existing IPMSM for Lexus RX400h.展开更多
In this paper,the finite difference weighted essentially non-oscillatory (WENO) scheme is incorporated into the recently developed four kinds of lattice Boltzmann flux solver (LBFS) to simulate compressible flows,incl...In this paper,the finite difference weighted essentially non-oscillatory (WENO) scheme is incorporated into the recently developed four kinds of lattice Boltzmann flux solver (LBFS) to simulate compressible flows,including inviscid LBFS Ⅰ,viscous LBFS Ⅱ,hybrid LBFS Ⅲ and hybrid LBFS Ⅳ.Hybrid LBFS can automatically realize the switch between inviscid LBFS Ⅰ and viscous LBFS Ⅱ through introducing a switch function.The resultant hybrid WENO-LBFS scheme absorbs the advantages of WENO scheme and hybrid LBFS.We investigate the performance of WENO scheme based on four kinds of LBFS systematically.Numerical results indicate that the devopled hybrid WENO-LBFS scheme has high accuracy,high resolution and no oscillations.It can not only accurately calculate smooth solutions,but also can effectively capture contact discontinuities and strong shock waves.展开更多
In this paper, the analytical solution of a viscous and incompressible fluid towards an exponentially stretching porous sheet with surface heat flux in porous medium, for the boundary layer and heat transfer flow, is ...In this paper, the analytical solution of a viscous and incompressible fluid towards an exponentially stretching porous sheet with surface heat flux in porous medium, for the boundary layer and heat transfer flow, is presented. The equations of continuity, momentum and the energy are transformed into non-linear ordinary differential by using similarity transformation. The solutions of these highly non-linear ordinary differential equations are found analytically by means of Homotopy Analysis Method (HAM). The result obtained by HAM is compared with numerical results presented in the literature. The accuracy of the HAM is indicated by close agreement of the two sets of results. By this method, an expression is obtained which is admissible for all values of effective parameters. This method has the ability to control the convergence of the solution.展开更多
The estimation of non-point source pollution loads into the Danjiangkou Reservoir is highly significant to environmental protection in the watershed. In order to overcome the drawbacks of traditional watershed numeric...The estimation of non-point source pollution loads into the Danjiangkou Reservoir is highly significant to environmental protection in the watershed. In order to overcome the drawbacks of traditional watershed numerical models, a base flow separation method was established coupled with a digital filtering method and a flux method. The digital filtering method has been used to separate the base flows of the Hanjiang,Tianhe, Duhe, Danjiang, Laoguan, and Qihe rivers. Based on daily discharge, base flow, and pollutant concentration data, the flux method was used to calculate the point source pollution load and non-point source pollution load. The results show that:(1) In the year 2013, the total inflow of the six rivers mentioned above accounted for 95.9% of the total inflow to the Danjiangkou Reservoir. The total pollution loads of chemical oxygen demand(CODMn) and total phosphorus(TP) from the six rivers were 58.20 103 t and 1.863 10~3 t, respectively, and the non-point source pollution loads were 39.82 10~3 t and 1.544 10~3 t, respectively, indicating that the non-point source pollution is a major factor(with a contribution rate of 68.4% for CODMnand 82.9% for TP).(2) The Hanjiang River is the most significant contributor of pollution loads to the Danjiangkou Reservoir, and its CODMnand TP contribution rates reached 79.3% and 83.2%, respectively. The Duhe River took the second place.(3) Non-point source pollution mainly occurred in the wet season in 2013, accounting for 80.8% and 90.9% of the total pollution loads of CODMnand TP, respectively. It is concluded that the emphasis of pollution control should be placed on non-point source pollution.展开更多
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish...Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.展开更多
To improve the heat transfer capability and the crystallization property of the traditional mold flux, CaF_2 was replaced with B_2O_3. Then, the influences of CeO_2 on the heat transfer and the crystallization of the ...To improve the heat transfer capability and the crystallization property of the traditional mold flux, CaF_2 was replaced with B_2O_3. Then, the influences of CeO_2 on the heat transfer and the crystallization of the CaF_2-bearing mold flux and the new mold flux with 10 wt% B_2O_3 were studied using a slag film heat flux simulator and X-ray diffraction(XRD). The results revealed that the addition of CeO2 reduced the heat transfer by increasing the solid slag thickness and the crystallization of two mold fluxes. However, CeO_2 had less effect on the B_2O_3-containing mold flux compared with the CaF_2-bearing mold flux. According to the analyses, the CeO_2 contents in the CaF_2-bearing mold flux and the B_2O_3-containing mold flux should not exceed 8 wt% and 12 wt%, respectively. Therefore, these experimental results are beneficial to improve and develop the mold flux for casting rare earth alloy steels.展开更多
The differences in the influences of the North Atlantic Oscillation (NAO) on the air–sea CO2 fluxes (fCO2) in the North Atlantic (NA) between different seasons and between different regions are rarely fully investiga...The differences in the influences of the North Atlantic Oscillation (NAO) on the air–sea CO2 fluxes (fCO2) in the North Atlantic (NA) between different seasons and between different regions are rarely fully investigated. We used observation-based data of fCO2, surface-ocean CO2 partial pressure (pCO2sea), wind speed and sea surface temperature (SST) to analyze the relationship between the NAO and fCO2 of the subtropical and subpolar NA in winter and summer on the interannual time scale. Based on power spectrum estimation, there are significant interannual signs with a 2–6 year cycle in the NAO indexes and area-averaged fCO2 anomalies in winter and summer from 1980 to 2015. Regression analysis with the 2–6 year filtered data shows that on the interannual scale the response of the fCO2 anomalies to the NAO has an obvious meridional wave-train-like pattern in winter, but a zonal distribution in summer. This seasonal difference is because in winter the fCO2 anomalies are mainly controlled by the NAO-driven wind speed anomalies, which have a meridional distribution pattern, while in summer they are dominated by the NAO-driven SST anomalies, which show distinct zonal difference in the subtropical NA. In addition, in the same season, there are different factors controlling the variation of pCO2sea in different regions. In summer, SST is important to the interannual variation of pCO2sea in the subtropical NA, while some biogeochemical variables probably control the pCO2sea variation in the subpolar NA.展开更多
In this study,adopting uniform design method established a mathematical model to prepare multi-element active flux. GH4169 superalloy plates were welded by the Nd: YAG laser equipment with the prepared active flux. Th...In this study,adopting uniform design method established a mathematical model to prepare multi-element active flux. GH4169 superalloy plates were welded by the Nd: YAG laser equipment with the prepared active flux. The results show all kinds of fluxes increase the depth to width ratio and the multi-component systems are more significant. The largest increment of the weld depth to width ratio is 159%,obtained by using of the F12 series flux. It is proved that by using of the active flux to increase the depth to width ratio of micro laser welding is feasible.展开更多
Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of t...Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.展开更多
文摘This paper is concerned with the initial-boundary value problem of a nonlinear conservation law in the half space R+= {x |x > 0} where a>0 , u(x,t) is an unknown function of x ∈ R+ and t>0 , u ± , um are three given constants satisfying um=u+≠u- or um=u-≠u+ , and the flux function f is a given continuous function with a weak discontinuous point ud. The main purpose of our present manuscript is devoted to studying the structure of the global weak entropy solution for the above initial-boundary value problem under the condition of f '-(ud) > f '+(ud). By the characteristic method and the truncation method, we construct the global weak entropy solution of this initial-boundary value problem, and investigate the interaction of elementary waves with the boundary and the boundary behavior of the weak entropy solution.
文摘The ESMD method can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) for non-steady data processing. It is good at finding the optimal adaptive global mean fitting curve, which is superior to the common least-square method and running-mean approach. Take the air-sea momentum flux investigation as an example, only when the non-turbulent wind components is well extracted, can the remainder signal be seen as actual oscillations caused by turbulence. With the aid of —5/3 power law for the turbulence, a mode-filtering approach based on ESMD decomposition is developed here. The test on observational data indicates that this approach is very feasible and it may greatly reduce the error caused by the non-turbulent components.
文摘This paper is concerned with the initial-boundary value problem of scalar conservation laws with weak discontinuous flux, whose initial data are a function with two pieces of constant and whose boundary data are a constant function. Under the condition that the flux function has a finite number of weak discontinuous points, by using the structure of weak entropy solution of the corresponding initial value problem and the boundary entropy condition developed by Bardos-Leroux-Nedelec, we give a construction method to the global weak entropy solution for this initial-boundary value problem, and by investigating the interaction of elementary waves and the boundary, we clarify the geometric structure and the behavior of boundary for the weak entropy solution.
基金supported by funding from the National Natural Science Foundation of China(Grant Nos.41530529 and 91737103)
文摘An underlying wetland surface comprises soil, water and vegetation and is sensitive to local climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how environmental factors influence latent heat flux have considerable scientific significance. Using data from observational tests of the Maduo Observatory of Climate and Environment of the Northwest Institute of Eco-Environment and Resource, CAS, from June 1 to August 31, 2014, this study analysed the time-varying characteristics and causes of the degree of coupling(Ω factor)between alpine wetlands underlying surface and the atmosphere and quantitatively calculated the influences of different environmental factors(solar radiation and vapour pressure deficit) on latent heat flux. The results were as follows:(1) Due to diurnal variations of solar radiation and wind speed, a trend developed where diurnal variations of the Ω factor were small in the morning and large in the evening. Due to the vegetation growing cycle, seasonal variations of the Ω factor present a reverse "U" trend. These trends are similar to the diurnal and seasonal variations of the absolute control exercised by solar radiation over latent heat flux. This conforms to the Omega Theory.(2) The values for average absolute atmospheric factor(surface factor or total) control exercised by solar radiation and water vapour pressure are 0.20(0.02 or 0.22) and 0.005(-0.07 or-0.06) W/(m2·Pa), respectively. Generally speaking, solar radiation and water vapour pressure deficit exert opposite forces on latent heat flux.(3) At the underlying alpine wetland surface, solar radiation primarily influences latent heat flux through its direct effects(atmospheric factor controls). Water vapour pressure deficit primarily influences latent heat flux through its indirect effects(surface factor controls) on changing the surface resistance.(4) The average Ω factor in the underlying alpine wetland surface is high during the vegetation growing season, with a value of 0.38, and the degree of coupling between alpine wetland surface and atmosphere system is low. The actual measurements agree with the Omega Theory. The latent heat flux is mainly influenced by solar radiation.
文摘Based on the gene-protein-reaction (GPR) model of S. cerevisiae_iND750 and the method of constraint-based analysis, we first calculated the metabolic flux distribution of S. cere-visiae_iND750. Then we calculated the deletion impact of 438 calculable genes, one by one, on the metabolic flux redistribution of S. cere-visiae_iND750. Next we analyzed the correlation between v (describing deletion impact of one gene) and d (connection degree of one gene) and the correlation between v and Vgene (flux sum controlled by one gene), and found that both of them were not of linear relation. Furthermore, we sought out 38 important genes that most greatly affected the metabolic flux distribution, and determined their functional subsystems. We also found that many of these key genes were related to many but not several subsystems. Because the in silico model of S. cere-visiae_iND750 has been tested by many ex-periments, thus is credible, we can conclude that the result we obtained has biological sig-nificance.
文摘Three speed controllers for an axial magnetic flux switched reluctance motor with only one stator, are described and experimentally tested. As it is known, when current pulses are imposed in their windings, high ripple torque is obtained. In order to reduce this ripple, a control strategy with modified current shapes is proposed. A workbench consisting of a machine prototype and the control system based on a microcontroller was built. These controllers were: a conventional PID, a fuzzy logic PID and a neural PID type. From experimental results, the effective reduction of the torque ripple was confirmed and the performance of the controllers was compared.
基金Supported partially by the Major Science and Technology Special Projects Foundation of Anhui Province(15czz02045)the Natural Science Foundation of Anhui Province(1508085MB41)the China Postdoctoral Science Foundation(2015M571915)
文摘The melting temperature of Z coal ash was reduced by adding calcium–magnesium compound flux(WCaO/WMgO=1). In the process of simulated coal gasification, the coal ash and slag were prepared. The transformation of minerals in coal ash and slag upon the change of temperature was studied by using X-ray diffraction(XRD). With the increase of temperatures, forsterite in the ash disappears, while the diffraction peak strength of magnesium spinel increases,and the content of the calcium feldspar increases, then the content of the amorphous phase in the ash increases obviously. The species and evolution process of oxygen, silicon, aluminum, calcium, magnesium at different temperatures were analyzed by X-ray photoelectron spectroscopy(XPS). The decrease of the ash melting point mainly affects the structural changes of silicon, aluminum and oxygen. The coordination of aluminum and oxygen in the aluminum element structure, e.g., tetracoordinated aluminum oxide, was changed. Tetrahedral [AlO4] and hexacoordinated aluminoxy octahedral [AlO6] change with the temperature changing. The addition of Ca2+ and Mg2+ destroys silica chain, making bridge oxide silicon change into non-bridge oxysilicon;and bridge oxygen bond was broken and non-bridge oxygen bond was produced in the oxygen element structure. The addition of calcium and magnesium compound flux reacts with aluminum oxide tetrahedron, aluminum oxide octahedron and silicon tetrahedron to promote the breakage of the bridge oxygen bond. Ca2+ and Mg2+ are easily combined with silicon oxide and aluminum oxide tetrahedron and aluminum. Oxygen octahedrons combine with non-oxygen bonds to generate low-melting temperature feldspars and magnesite minerals, thereby reducing the coal ash melting temperatures. The structure of kaolinite and mullite was simulated by quantum chemistry calculation, and kaolinite molecule has a stable structure.
基金financially supported by the National Natural Science Foundation of China(Nos.52274315 and 52374320)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-011A1 and FRF-DF22-16)。
文摘During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
文摘Global food demand requires that soils be used intensively for agriculture, but how these soils are managed greatly impacts soil fluxes of carbon dioxide (CO2). Soil management practices can cause carbon to be either sequestered or emitted, with corresponding uncertain influence on atmospheric CO2 concentrations. The situation is further complicated by the lack of CO2 flux measurements for African subsistence farms. For widespread application in remote areas, a simple experimental methodology is desired. As a first step, the present study investigated the use of Bowen Ratio Energy Balance (BREB) instrumentation to measure the energy balance and CO2 fluxes of two contrasting crop management systems, till and no-till, in the lowlands within the mountains of Lesotho. Two BREB micrometeorological systems were established on 100-m by 100-m sites, both planted with maize (Zea mays) but under either conventional (plow, disk-disk) or no-till soil mangement systems. The results demonstrate that with careful maintenance of the instruments by appropriately trained local personnel, the BREB approach offers substantial benefits in measuring real time changes in agroecosystem CO2 flux. The periods where the two treatments could be compared indicated greater CO2 sequestration over the no-till treatments during both the growing and non-growing seasons.
文摘High temperature superconductor research is presently concentrated upon the flux pinning properties of the Abrikosov lattice of the mixed-mode superconducting phase. The temperature thermal fluctuations, current and magnetic field unpin the flux vortices and so cause electromagnetic resistivity in high temperature superconductors. Materials with higher vortex pinning exhibit less resistivity and are more attractive for industrial uses. In the present article, we measured and correlated the pinning flux energy barrier, determined by AC magnetic measurements, and transmission electron microscopy measurements to the critical current Jc in Yttrium- and Silver-doped MgB2 superconductors. The energy of the flux vortex was evaluated as a function of the magnetic field. The energy barrier curves suggest an optimal doping level to occur in doped materials. This result only depends on the optimal size and distribution of precipitates, and not on their chemical composition. The energy barriers have been compared with that of undoped MgB2 in literature.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract Nos XDA23050304 and XDA23050202the Key Research Project of Frontier Science of Chinese Academy of Sciences under contract No.QYZDB-SSWDQC041+3 种基金the Program of Ministry of Science and Technology of the People’s Republic of China under contract No.2015FY210300the National Natural Science Foundation of China under contract No.41061130543the Netherlands Organization for Scientific Research under contract No.843.10.003 as part of the NSFC-NOW “Water ways,Harbours,Estuaries and Coastal Engineering” schemethe self-deployment project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences under contract No.YIC755021012
文摘Since the mud snail Bullacta exarata was introduced for economic aquaculture in the Huanghe River(Yellow River) Delta in 2001, its quick population growth and expanded distribution make it a key-species in the intertidal zone of this area. This significantly contributed to the economic income of the local people, but its potential ecological impact on the benthic ecosystem remains unknown. A mesocosm study was conducted to test whether its bioturbation activities affect the microphytobenthos(MPBs;i.e., sedimentary microbes and unicellular algae)productivity and the nutrient exchange between the sediment-water interface. Our results show that the mud snail significantly impacted the dissolved oxygen(DO) flux across the sediment-water interface on the condition of normal sediment and light treatment, and significantly increased the ammonium efflux during recovery period in the defaunated sediment and dark treatment. The presence of micro-and meiofauna significantly increased the NH4-N flux in dark treatment. Whereas, in light treatment, these small animals had less effects on the DO and NH4-N flux between sediment-water interface. Our results provide better insight into the effect of the mud snail B.exarata on the ecosystem functioning via benthic fluxes.
文摘This paper presents design feasibility study and development of a new hybrid excitation flux switching motor (HEFSM) as a contender for traction drives in hybrid electric vehicles (HEVs). Initially, the motor general construction, the basic working principle and the design concept of the proposed HEFSM are outlined. Then, the initial drive performances of the proposed HEFSM are evaluated based on 2D-FEA, in which the design restrictions, specifications and target performances are similar with conventional interior permanent magnet synchronous motor (IPMSM) used in HEV. Since the initial results fail to achieve the target performances, deterministic design optimization approach is used to treat several design parameters. After several cycles of optimization, the proposed motor makes it possible to obtain the target torque and power of 333 Nm and 123 kW, respectively. In addition, due to definite advantage of robust rotor structure of HEFSM, rotor mechanical stress prediction at maximum speed of 12,400 r/min is much lower than the mechanical stress in conventional IPMSM. Finally, the maximum torque and power density of the final design HEFSM are approximately 11.41 Nm/kg and 5.55 kW/kg, respectively, which is 19.98% and 58.12% more than the torque and power density in existing IPMSM for Lexus RX400h.
基金This study was supported by the National Natural Science Foundation of China(Grants 11372168,11772179).
文摘In this paper,the finite difference weighted essentially non-oscillatory (WENO) scheme is incorporated into the recently developed four kinds of lattice Boltzmann flux solver (LBFS) to simulate compressible flows,including inviscid LBFS Ⅰ,viscous LBFS Ⅱ,hybrid LBFS Ⅲ and hybrid LBFS Ⅳ.Hybrid LBFS can automatically realize the switch between inviscid LBFS Ⅰ and viscous LBFS Ⅱ through introducing a switch function.The resultant hybrid WENO-LBFS scheme absorbs the advantages of WENO scheme and hybrid LBFS.We investigate the performance of WENO scheme based on four kinds of LBFS systematically.Numerical results indicate that the devopled hybrid WENO-LBFS scheme has high accuracy,high resolution and no oscillations.It can not only accurately calculate smooth solutions,but also can effectively capture contact discontinuities and strong shock waves.
文摘In this paper, the analytical solution of a viscous and incompressible fluid towards an exponentially stretching porous sheet with surface heat flux in porous medium, for the boundary layer and heat transfer flow, is presented. The equations of continuity, momentum and the energy are transformed into non-linear ordinary differential by using similarity transformation. The solutions of these highly non-linear ordinary differential equations are found analytically by means of Homotopy Analysis Method (HAM). The result obtained by HAM is compared with numerical results presented in the literature. The accuracy of the HAM is indicated by close agreement of the two sets of results. By this method, an expression is obtained which is admissible for all values of effective parameters. This method has the ability to control the convergence of the solution.
基金supported by the National Key Research and Development Program of China(Grants No.2016YFC0402204 and 2016YFC0402207)
文摘The estimation of non-point source pollution loads into the Danjiangkou Reservoir is highly significant to environmental protection in the watershed. In order to overcome the drawbacks of traditional watershed numerical models, a base flow separation method was established coupled with a digital filtering method and a flux method. The digital filtering method has been used to separate the base flows of the Hanjiang,Tianhe, Duhe, Danjiang, Laoguan, and Qihe rivers. Based on daily discharge, base flow, and pollutant concentration data, the flux method was used to calculate the point source pollution load and non-point source pollution load. The results show that:(1) In the year 2013, the total inflow of the six rivers mentioned above accounted for 95.9% of the total inflow to the Danjiangkou Reservoir. The total pollution loads of chemical oxygen demand(CODMn) and total phosphorus(TP) from the six rivers were 58.20 103 t and 1.863 10~3 t, respectively, and the non-point source pollution loads were 39.82 10~3 t and 1.544 10~3 t, respectively, indicating that the non-point source pollution is a major factor(with a contribution rate of 68.4% for CODMnand 82.9% for TP).(2) The Hanjiang River is the most significant contributor of pollution loads to the Danjiangkou Reservoir, and its CODMnand TP contribution rates reached 79.3% and 83.2%, respectively. The Duhe River took the second place.(3) Non-point source pollution mainly occurred in the wet season in 2013, accounting for 80.8% and 90.9% of the total pollution loads of CODMnand TP, respectively. It is concluded that the emphasis of pollution control should be placed on non-point source pollution.
文摘Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.
基金financially supported by the National Natural Science Foundation of China (No. 51774024)
文摘To improve the heat transfer capability and the crystallization property of the traditional mold flux, CaF_2 was replaced with B_2O_3. Then, the influences of CeO_2 on the heat transfer and the crystallization of the CaF_2-bearing mold flux and the new mold flux with 10 wt% B_2O_3 were studied using a slag film heat flux simulator and X-ray diffraction(XRD). The results revealed that the addition of CeO2 reduced the heat transfer by increasing the solid slag thickness and the crystallization of two mold fluxes. However, CeO_2 had less effect on the B_2O_3-containing mold flux compared with the CaF_2-bearing mold flux. According to the analyses, the CeO_2 contents in the CaF_2-bearing mold flux and the B_2O_3-containing mold flux should not exceed 8 wt% and 12 wt%, respectively. Therefore, these experimental results are beneficial to improve and develop the mold flux for casting rare earth alloy steels.
基金supported jointly by the National Key Research and Development Program of China (Grant No. 2016YFB0200800)the National Natural Science Foundation of China (Grant No. 41530426)
文摘The differences in the influences of the North Atlantic Oscillation (NAO) on the air–sea CO2 fluxes (fCO2) in the North Atlantic (NA) between different seasons and between different regions are rarely fully investigated. We used observation-based data of fCO2, surface-ocean CO2 partial pressure (pCO2sea), wind speed and sea surface temperature (SST) to analyze the relationship between the NAO and fCO2 of the subtropical and subpolar NA in winter and summer on the interannual time scale. Based on power spectrum estimation, there are significant interannual signs with a 2–6 year cycle in the NAO indexes and area-averaged fCO2 anomalies in winter and summer from 1980 to 2015. Regression analysis with the 2–6 year filtered data shows that on the interannual scale the response of the fCO2 anomalies to the NAO has an obvious meridional wave-train-like pattern in winter, but a zonal distribution in summer. This seasonal difference is because in winter the fCO2 anomalies are mainly controlled by the NAO-driven wind speed anomalies, which have a meridional distribution pattern, while in summer they are dominated by the NAO-driven SST anomalies, which show distinct zonal difference in the subtropical NA. In addition, in the same season, there are different factors controlling the variation of pCO2sea in different regions. In summer, SST is important to the interannual variation of pCO2sea in the subtropical NA, while some biogeochemical variables probably control the pCO2sea variation in the subpolar NA.
基金supported by National Natural Science Foundation of China(No.51565040)Science and Technology Planning Project of Jiangxi Province(20151BBE50034,20133BBE50021)Aviation Science Funds of China(2014ZE56016)
文摘In this study,adopting uniform design method established a mathematical model to prepare multi-element active flux. GH4169 superalloy plates were welded by the Nd: YAG laser equipment with the prepared active flux. The results show all kinds of fluxes increase the depth to width ratio and the multi-component systems are more significant. The largest increment of the weld depth to width ratio is 159%,obtained by using of the F12 series flux. It is proved that by using of the active flux to increase the depth to width ratio of micro laser welding is feasible.
基金Supported by the National Natural Science Foundation of China(Nos.42122040,42076016)。
文摘Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.