Tannin foam is a new functional material.It can be widely applied to the automobile industry,construction industry,and packaging industry due to its wide range of raw materials,renewable,easily degraded,low cost and a...Tannin foam is a new functional material.It can be widely applied to the automobile industry,construction industry,and packaging industry due to its wide range of raw materials,renewable,easily degraded,low cost and almost no pollution.Preparing tannin foam is a very complex process that includes high temperature,two phases,mechanical agitation,and phase change.To investigate the influence of the stirring velocity and paddle shape,simulation was calculated by making use of the volume of fluid(VOF)method and multiple reference frame(MRF)method in a three-dimensional flow field of tannin-based foaming precursor resin.The gas holdup and velocity magnitude were analysed with various conditions of mechanical velocities and paddle shape in the stirring flow field.The result shows the higher the velocity,the greater the disturbance and paddle shape between the eggbeater and the Rushton turbine,obviously the paddle shape of the eggbeater with a wider range of agitation,which can entrap more air into the tannin-based foaming precursor resin in a short time.Especially when the speed is 1500 rpm,the flow field of the Rushton turbine comes out of a ditch,which decreases the efficiency of mass transfer;there is less air to mix into the tannin-based foaming precursor resin,which causes unevenness.At the same time,the eggbeater shows the marvelous capability of hybrid as it has two vortexes and multiple cycles that make a difference from the Rushton turbine,which has only one vortex and two upper and lower loops;the structure makes the flow field more stable allowed evenness of flow field tannin-based foaming precursor resin.The results reveal that it is beneficial for tannin-based foaming precursor resin to use an eggbeater with a speed of 1500 rpm to reduce the consumption of resources while obtaining a uniform flow field.展开更多
Melamine formaldehyde (MF) foam is kind of fire-retardant material and has great potential in acoustic and thermal insulation area. In this article, MF resin foam was prepared by microwave radiation. We discussed the ...Melamine formaldehyde (MF) foam is kind of fire-retardant material and has great potential in acoustic and thermal insulation area. In this article, MF resin foam was prepared by microwave radiation. We discussed the thermal stability of MF foam and the effect of different emulsifiers on its morphology, apparent density, fire-retardancy and mechanical property. The decomposition temperature of MF foam we prepared is nearly 400℃ and the constitution of residue after combustion is made up of carbon and graphite. Emulsifier influenced the apparent density of MF foam and using coemulsifiers can get flexible foam with uniform cell size, good morphology and low apparent density. When the fire-retardant MF foam’s apparent density is low of 5.53 kg/cm-3, its value of LOI can reach 32.4. The mechanical property of foam is consistent with apparent density.展开更多
The compressive mechanical properties of syntactic foams reinforced by hollow plastic beads were studied by the quasi-static compression test. The failure mechanism of syntactic foams was also investigated by macrosco...The compressive mechanical properties of syntactic foams reinforced by hollow plastic beads were studied by the quasi-static compression test. The failure mechanism of syntactic foams was also investigated by macroscopic and microscopic observation on the fractured specimens. The experimental results show that the density of syntactic foams is still the key factor affecting their mechanical properties. The macroscopic and microscopic observation on the fractured specimens indicates that the main failure mode is the elastic-plastic collapse caused by shear.展开更多
基金supported by the Key Program of Applied and Basic Research in Yunnan Province(Grant No.202101AS070008)the National Natural Science Foundation of China(NSFC 31760187)+4 种基金supported by the 111 Project(D21027)the Yunnan Provincial Academician Workstation(YSZJGZZ-2020052)the Foreign Expert Workstation(202305AF150006)supported by the Scientific Research Foundation of Education Department of Yunnan Province(Grant Nos.2023J0696,2023Y0699)Foreign Talent Introduction Program of Science and Technology Department of Yunnan Province(Grant No.202305AO350002).
文摘Tannin foam is a new functional material.It can be widely applied to the automobile industry,construction industry,and packaging industry due to its wide range of raw materials,renewable,easily degraded,low cost and almost no pollution.Preparing tannin foam is a very complex process that includes high temperature,two phases,mechanical agitation,and phase change.To investigate the influence of the stirring velocity and paddle shape,simulation was calculated by making use of the volume of fluid(VOF)method and multiple reference frame(MRF)method in a three-dimensional flow field of tannin-based foaming precursor resin.The gas holdup and velocity magnitude were analysed with various conditions of mechanical velocities and paddle shape in the stirring flow field.The result shows the higher the velocity,the greater the disturbance and paddle shape between the eggbeater and the Rushton turbine,obviously the paddle shape of the eggbeater with a wider range of agitation,which can entrap more air into the tannin-based foaming precursor resin in a short time.Especially when the speed is 1500 rpm,the flow field of the Rushton turbine comes out of a ditch,which decreases the efficiency of mass transfer;there is less air to mix into the tannin-based foaming precursor resin,which causes unevenness.At the same time,the eggbeater shows the marvelous capability of hybrid as it has two vortexes and multiple cycles that make a difference from the Rushton turbine,which has only one vortex and two upper and lower loops;the structure makes the flow field more stable allowed evenness of flow field tannin-based foaming precursor resin.The results reveal that it is beneficial for tannin-based foaming precursor resin to use an eggbeater with a speed of 1500 rpm to reduce the consumption of resources while obtaining a uniform flow field.
文摘Melamine formaldehyde (MF) foam is kind of fire-retardant material and has great potential in acoustic and thermal insulation area. In this article, MF resin foam was prepared by microwave radiation. We discussed the thermal stability of MF foam and the effect of different emulsifiers on its morphology, apparent density, fire-retardancy and mechanical property. The decomposition temperature of MF foam we prepared is nearly 400℃ and the constitution of residue after combustion is made up of carbon and graphite. Emulsifier influenced the apparent density of MF foam and using coemulsifiers can get flexible foam with uniform cell size, good morphology and low apparent density. When the fire-retardant MF foam’s apparent density is low of 5.53 kg/cm-3, its value of LOI can reach 32.4. The mechanical property of foam is consistent with apparent density.
基金the National Natural Science Foundation of China(No. 50473013)
文摘The compressive mechanical properties of syntactic foams reinforced by hollow plastic beads were studied by the quasi-static compression test. The failure mechanism of syntactic foams was also investigated by macroscopic and microscopic observation on the fractured specimens. The experimental results show that the density of syntactic foams is still the key factor affecting their mechanical properties. The macroscopic and microscopic observation on the fractured specimens indicates that the main failure mode is the elastic-plastic collapse caused by shear.