期刊文献+
共找到3,892篇文章
< 1 2 195 >
每页显示 20 50 100
Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review
1
作者 Qinghe Cui Xuefeng Liu +4 位作者 Wenjing Wang Shaojie Tian Vasili Rubanik Vasili Rubanik Jr. Dzmitry Bahrets 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1322-1332,共11页
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli... Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed. 展开更多
关键词 ultrasonic vibration plastic forming crystal structure MICROSTRUCTURE forming mechanism
下载PDF
Effect of Low pH on Forming Process of Desulfurization Gypsum Composite Boards Strengthened by Melamine-formaldehyde Resin
2
作者 CAO Lijiu ZHANG Jiyao +4 位作者 WANG Xinqi ZHANG Xinhe HUANG Jian CHEN Yufang JIN Tao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1223-1228,共6页
Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate... Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively. 展开更多
关键词 MF-reinforced desulphurized gypsum board composite forming system low pH condition hydration process aspect ratio synergistic effect
下载PDF
MPI/OpenMP-Based Parallel Solver for Imprint Forming Simulation
3
作者 Yang Li Jiangping Xu +2 位作者 Yun Liu Wen Zhong Fei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期461-483,共23页
In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining pr... In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining process to address the challenge of capturing fine relief features of approximately 50 microns.Achieving such precision demands the utilization of at least 7 million tetrahedron elements,surpassing the capabilities of traditional serial programs previously developed.To mitigate data races when calculating internal forces,intermediate arrays are introduced within the OpenMP directive.This helps ensure proper synchronization and avoid conflicts during parallel execution.Additionally,in the MPI implementation,the coins are partitioned into the desired number of regions.This division allows for efficient distribution of computational tasks across multiple processes.Numerical simulation examples are conducted to compare the three solvers with serial programs,evaluating correctness,acceleration ratio,and parallel efficiency.The results reveal a relative error of approximately 0.3%in forming force among the parallel and serial solvers,while the predicted insufficient material zones align with experimental observations.Additionally,speedup ratio and parallel efficiency are assessed for the coining process simulation.The pureMPI parallel solver achieves a maximum acceleration of 9.5 on a single computer(utilizing 12 cores)and the hybrid solver exhibits a speedup ratio of 136 in a cluster(using 6 compute nodes and 12 cores per compute node),showing the strong scalability of the hybrid MPI/OpenMP programming model.This approach effectively meets the simulation requirements for commemorative coins with intricate relief patterns. 展开更多
关键词 Hybrid MPI/OpenMP parallel computing MPI OPENMP imprint forming
下载PDF
Method of fabricating artificial rock specimens based on extrusion free forming(EFF)3D printing
4
作者 Xiaomeng Shi Tingbang Deng +2 位作者 Sen Lin Chunjiang Zou Baoguo Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1455-1466,共12页
Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natura... Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation. 展开更多
关键词 Artificial rock 3D printing Extrusion free forming(EFF) Similarity analysis Mechanical properties
下载PDF
A Hybrid Optimization Approach of Single Point Incremental Sheet Forming of AISI 316L Stainless Steel Using Grey Relation Analysis Coupled with Principal Component Analysiss
5
作者 A Visagan P Ganesh 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期160-166,共7页
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use... We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response. 展开更多
关键词 single point incremental forming AISI 316L taguchi grey relation analysis principal component analysis surface roughness scanning electron microscopy
下载PDF
Analysis and Optimization of the Electrohydraulic Forming Process of Sinusoidal Corrugation Tubes
6
作者 Da Cai Yinlong Song +2 位作者 Hao Jiang Guangyao Li Junjia Cui 《Fluid Dynamics & Materials Processing》 EI 2024年第4期873-887,共15页
Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic for... Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters. 展开更多
关键词 Electrohydraulic forming aluminum alloy tube process parameters attaching-die state 1 Introduction
下载PDF
Experimental study on the forming characteristics of 1.5 GPa ultrahigh-strength dual-phase steel
7
作者 LI Ya LIAN Changwei HAN Fei 《Baosteel Technical Research》 CAS 2024年第3期10-15,共6页
The DP1500 steel series successfully produced by Baosteel is a marked improvement over the cold-rolled hot-dip galvanized dual-phase steel series.Sufficient parameter data related to forming characteristics are needed... The DP1500 steel series successfully produced by Baosteel is a marked improvement over the cold-rolled hot-dip galvanized dual-phase steel series.Sufficient parameter data related to forming characteristics are needed for the successful application of dual-phase steel series in engineering structures.Therefore,differences in the mech-anical properties,forming limit,hole expansion ratio,and stretch bend limit of the 1.5 GPa ultrahigh-strength steel,including DP1500,QP1500,and MS1500,have been systematically studied.Results show that the DP1500 exhibits good plastic deformation performance and approximately 5% uniform elongation,and its true major strain minimum on the forming limit curve(FLC_(0)) value is approximately 0.083,which is higher and lower than the FLC_(0) values of MS1500 and QP1500 of the same strength grade,respectively.DP1500 also exhibits good flanging and pore expansion capabilities and superior performance to QP1500 and MS1500.The minimum radius-to-thickness(R/T) ratio(1.4) of DP1500 in the 90° bend tests transverse to the rolling direction is between the R/T ratios of MS1500 and the QP1500.Overall,the formability performance of DP1500 is between that of MS1500 and QP1500.Its excellent crash energy absorption and formability performance render it a suitable structural component,and it has been successfully tested and verified on a typical complex ultrahigh-strength steel skeleton structure. 展开更多
关键词 forming limit hole expansion ratio ultrahigh-strength steel
下载PDF
Prediction and Verifcation of Forming Limit Diagrams Based on a Modifed Shear Failure Criterion
8
作者 Haibo Wang Zipeng Wang +1 位作者 Yu Yan Yuanhui Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期364-373,共10页
The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the o... The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is efective and simple.The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area.In this study,in order to improve the accuracy of the original shear failure criterion,a modifed shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion.The detailed improvement strategies of the shear failure criterion and the complete calculation process are given.Based on the modifed shear failure criterion and diferent constitutive equations,the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated.By comparing the theoretical and experimental results,it is shown that proposed modifed shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion.The efect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth.The modifed shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals. 展开更多
关键词 Modifed shear failure criterion Sheet metal forming forming limit diagram Loading path
下载PDF
Recent research and development on forming for large magnesium alloy components with high mechanical properties 被引量:2
9
作者 Zhimin Zhang Jianmin Yu +3 位作者 Yong Xue Beibei Dong Xi Zhao Qiang Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4054-4081,共28页
The lightweight of high-end equipment relies on high mechanical properties magnesium(Mg) alloy structural components, because it is the best way to improve equipment service performance and reduce energy consumption. ... The lightweight of high-end equipment relies on high mechanical properties magnesium(Mg) alloy structural components, because it is the best way to improve equipment service performance and reduce energy consumption. This article summarizes the current progress and characteristics of large-scale high-performance Mg alloy components by analyzing the strengthening-toughening mechanisms, characteristics of plastic forming, and the preparation of large high mechanical properties forging blanks. Due to the lack of breakthroughs in the key technologies for forming large-scale Mg alloy components, their uniformity of mechanical properties and consistency are poor, the forming accuracy of components is low, and the production cost is high, which limit their engineering application and restrict the lightweight level of high-end equipment. In view of the above problems, the forming trends and research directions of large-scale and high mechanical properties Mg alloy components are proposed in this paper. It can provide help for the breakthrough of the key technology of large-scale Mg alloy components with high mechanical properties and expand the application of Mg alloy in high-end products. 展开更多
关键词 Mg alloys Wrought Mg alloys components Plastic forming Large-scale Mg alloys components High mechanical properties
下载PDF
Local Buckling-Induced Forming Method to Produce Metal Bellows 被引量:1
10
作者 Tianyin Zhang Dongqing Li +2 位作者 Tianjiao Xu Yongfeng Sui Xianhong Han 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期104-114,共11页
A novel buckling-induced forming method is proposed to produce metal bellows.The tube billet is firstly treated by local heating and cooling,and the axial loading is applied on both ends of the tube,then the buckling ... A novel buckling-induced forming method is proposed to produce metal bellows.The tube billet is firstly treated by local heating and cooling,and the axial loading is applied on both ends of the tube,then the buckling occurs at the designated position and forms a convolution.In this paper,a forming apparatus is designed and developed to produce both discontinuous and continuous bellows of 304 stainless steel,and their characteristics are discussed respectively.Furthermore,the influences of process parameters and geometric parameters on the final convolution profile are deeply studied based on FEM analysis.The results suggest that the steel bellows fabricated by the presented buckling-induced forming method have a uniform shape and no obvious reduction of wall thickness.Meanwhile,the forming force required in the process is quite small. 展开更多
关键词 Buckling-induced forming Dieless No wall-thinning Stainless-steel bellows
下载PDF
Multi-Point Forming Technology for Sheet Metal 被引量:10
11
作者 LI Ming-zhe, CAI Zhong-yi, SUI Zhen, YAN Qing-guang (Roll Forging Institute, Jilin University of Technology, Changchun 130025, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期17-,共1页
Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need ... Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need for solid dies, and given only geometry and material information about the desired part. The central component of this system is a pair of matrices of punches, and the desired discrete die surface is constructed by changing the positions of punches though the CAD and control system. The basic MPF process is introduced and the typical application examples show the applicability of the MPF technology. Wrinkle and dimple are the major forming defects in MPF process, numerical simulation is a feasible way to predict forming defects in MPF. In conventional stamping, the mode to form sheet metal with blankholder is an effective way to suppress wrinkling; the same is true in MPF. A MPF press with flexible blankholder was developed, and the forming results indicated the forming stability of this technique. Based on the flexibility of MPF, varying deformation path MPF and sectional MPF were explored that cannot be realized in conventional stamping. By controlling each punch in real-time, a sheet part can be manufactured along a specific forming path. When the path of deformation in MPF is designed properly, forming defects will be avoided completely and lager deformation is achieved. A work piece can be formed section by section though the sectional MPF, and this technique makes it possible to manufacture large size parts in a small MPF press. Some critical experiments were performed that confirmed the validity of two special MPF techniques. 展开更多
关键词 sheet metal multi-point forming flexible forming forming path WRINKLING forming defects
下载PDF
NC INCREMENTAL SHEET METAL FORMING PROCESS AND VERTICAL WALL SQUARE BOX FORMING 被引量:2
12
作者 ZhouLiuru MoJianhua XiaoXiangzhi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第3期442-445,共4页
The forming principle and deformation analysis of NC incremental sheet metalforming process as well as the process planning, experiment and key process parameters of verticalwall square box forming are presented. Beca... The forming principle and deformation analysis of NC incremental sheet metalforming process as well as the process planning, experiment and key process parameters of verticalwall square box forming are presented. Because the deformation of sheet metal only occurs around thetool head and the deformed region is subjected to stretch deformation, the deformed region of sheetmetal thins, and surface area increases. Sheet metal forming stepwise is to lead to the whole sheetmetal deformation. The forming half-apex angle 9 and corner radius R are the main processparameters in NC incremental forming of vertical wall square box. According to sine law, a verticalwall square box can't be formed by NC incremental sheet metal forming process in a single process,rather, it must be formed in multi processes. Thus, the parallel line type tool path process methodis presented to form the vertical wall square box, and the experiment and analysis are made toverify it. 展开更多
关键词 Sheet metal forming NC incremental forming Dieless forming Vertical wallsquare box forming
下载PDF
Numerical investigation of film forming characteristics and mass transfer enhancement in horizontal polycondensation kettle
13
作者 Xupeng Chen Jintao Wu +2 位作者 Jianfei Sun Kunpeng Yu Jianzhong Yin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期31-42,共12页
The process of producing high viscosity polyester by transesterification polycondensation needs to adjust the operating conditions and equipment structure of pre-polycondensation kettle and final polycondensation kett... The process of producing high viscosity polyester by transesterification polycondensation needs to adjust the operating conditions and equipment structure of pre-polycondensation kettle and final polycondensation kettle to realize process intensification.In view of this,the fluid volume function method of computational fluid dynamics numerical simulation was used to investigate the film formation and surface renewal characteristics of horizontal polycondensation kettle under different operating conditions,including viscosity,rotating speed and liquid height.The results show that the viscosity and rotating speed were positively correlated with the film area and surface renewal in the pre-polycondensation stage.However,increasing the viscosity by several orders of magnitude in the final polycondensation kettle,the larger the film area and film thickness,but the overall surface renewal of the disk decreased.Therefore,a hexagonal hole disk is designed.By comparison,it is found that the film is more uniform,the surface update frequency is higher,and the power consumption can be reduced by more than 20%. 展开更多
关键词 Pre-polycondensation kettle Final polycondensation kettle Film forming characteristic Surface renewal Numerical simulation
下载PDF
Design and analysis of longitudinal–flexural hybrid transducer for ultrasonic peen forming
14
作者 Wuqin Li Yongyong Zhu +4 位作者 Xiaolong Lu Huafeng Li Ying Wei Pengwei Shang Bo Feng 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第4期30-39,共10页
Ultrasonic peen forming(UPF)is an emerging technology that exhibits great superiority in both its flexible operating modes and the deep residual stress that it produces compared with conventional plastic forming metho... Ultrasonic peen forming(UPF)is an emerging technology that exhibits great superiority in both its flexible operating modes and the deep residual stress that it produces compared with conventional plastic forming methods.Although ultrasonic transducers with longitudinal vibration have been widely studied,they have seldom been incorporated into UPF devices for machining in confined spaces.To meet the requirements of this type of machining,a sandwich-type piezoelectric transducer with coupled longitudinal-flexural vibrational modes is proposed.The basic structure of the transducer is designed to obtain large vibrational amplitudes in both modes.Experimental results obtained with a prototype device demonstrate the feasibility of the proposed transducer.The measured vibrational amplitude for the working face in the longitudinal vibrational mode is 1.0μm,and electrical matching increases this amplitude by 40%.The flexural vibration characteristics of the same prototype transducer are also tested and are found to be slightly smaller than those of longitudinal mode.The resultant working strokes of the UPF impact pins reach 1.7 mm and 1.2 mm in the longitudinal and flexural modes,respectively.The forming capability of the prototype has been evaluated via 15-min machining on standard 2024-T351 aluminum plates.After UPF,an improved surface morphology with lower surface roughness is obtained.The aluminum plate test piece has an apparent upper deformation with an arc height of 0.64 mm.The measured peak value of the compressive residual stress is around 250 MPa,appearing at a depth of 100μm.The proposed longitudinal-flexural hybrid transducer thus provides a high-performance tool for plate peen forming in confined spaces. 展开更多
关键词 Ultrasonic peen forming Piezoelectric transducer Longitudinal-flexural vibrational mode Modal analysis
下载PDF
Theoretical prediction of forming limit diagram of AZ31 magnesium alloy sheet at warm temperatures 被引量:3
15
作者 曹晓卿 徐平平 +1 位作者 樊奇 王文先 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2426-2432,共7页
A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in... A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in this model. Mechanical properties of AZ31 magnesium alloy used in the prediction were obtained by uniaxial tensile tests and the Fields-Backofen equation was incorporated in the analysis. In addition, experimental FLDs of AZ31 were acquired by conducting rigid die swell test at different temperatures to verify the prediction. It is demonstrated from a comparison between the predicted and the experimental FLDs at 473 K and 523 K that the predicted results are influenced by the type of yield criterion used in the calculation, especially at lower temperatures. Furthermore, a better agreement between the predicted results and experimental data for AZ31 magnesium alloy sheet at warm temperatures was obtained when Hill'48 yield criterion was applied. 展开更多
关键词 magnesium alloy forming limit diagram theoretical prediction yield criterion sheet warm forming
下载PDF
Fundamentals and Processes of Fluid Pressure Forming Technology for Complex Thin-Walled Components 被引量:26
16
作者 Shijian Yuan 《Engineering》 SCIE EI 2021年第3期358-366,共9页
A new generation of fluid pressure forming technology has been developed for the three typical structures of tubes,sheets,and shells,and hard-to-deform material components that are urgently needed for aerospace,aircra... A new generation of fluid pressure forming technology has been developed for the three typical structures of tubes,sheets,and shells,and hard-to-deform material components that are urgently needed for aerospace,aircraft,automobile,and high-speed train industries.in this paper,an over all review is introduced on the state of the art in fundamentals and processes for lower-pressure hydroforming of tubular components,double-sided pressure hydroforming of sheet components,die-less hydroforming of ellipsoidai shells,and dual hardening hot medium forming af hard-to-deform materiais Particular attention is paid to deformation behavior,stress state adjustment,defect prevention,and typical applications.In addition,future development directions of fluid pressure forming technology are discussed,including hyper lower-loading forming for ultra-large non-uniform components,precision for ming for intermetallic compound and high-entropy alloy components,intelligent process and equipment,and precise finite element simulation of inhomogeneous and strong anisotropic thin shells. 展开更多
关键词 Fluid pressure forming HYDROforming Hot medium pressure forming Thin-walled components Stress state
下载PDF
Soft-punch Hydro-forming of 304 Stainless Steel Sheet 被引量:1
17
作者 Maosheng LI Yongnian YAN +1 位作者 Junbin PENG Rendong WU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第4期478-482,共5页
The process of soft-punch hydro-forming was use.d to form some workpieces. However, it has not been completely understood until now. In this paper, based on some primary experiments, in which cups have been tried unde... The process of soft-punch hydro-forming was use.d to form some workpieces. However, it has not been completely understood until now. In this paper, based on some primary experiments, in which cups have been tried under different working conditions with the soft-punch hydro-forming process, systematical know-how about why the LDR of a metal sheet is different, how working conditions influence qualities of a work-piece, and how the deformation takes place has been achieved when simulations are employed. All these results claim that the cup depth heavily weighs on the cup wall thinning rate, and a satisfied complex part can be achieved when the contacting time between the sheet and the female die is under our control well by a movable slider, which is fixed as the bottom of the female die. 展开更多
关键词 Soft-punch hydro-forming Sheet metal forming Metal sheet forming simulation
下载PDF
Forming limit of textured AZ31B magnesium alloy sheet at different temperatures 被引量:13
18
作者 黄光胜 张华 +2 位作者 高孝云 宋波 张雷 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期836-843,共8页
Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of A... Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of AZ31B magnesium alloy sheet were determined experimentally by conducting stretch-forming tests at room temperature, 100, 200 and 300 ℃ Compared with the as-received sheet, the lowest limited strain of AZ31B magnesium alloy sheet with tilted texture in the FLD increased by 79% at room temperature and 104% at 100 ℃. The texture also affected the extension of the forming limit curves (FLC) in the FLD. However, the FLCs of two kinds of sheets almost overlapped at temperature above 200 ℃. It can be concluded that the reduction of (0002) texture intensity is effective to the improvement of formability not only at room temperature but also at low-and-medium temperature. The effect of texture on FLDs becomes weak with increasing temperature. 展开更多
关键词 magnesium alloy sheet repeated unidirectional bending texture FORMABILITY forming limit diagram
下载PDF
Forming defects in aluminum alloy hot stamping of side-door impact beam 被引量:12
19
作者 周靖 王宝雨 +2 位作者 林建国 傅垒 马闻宇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3611-3620,共10页
The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive... The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s. 展开更多
关键词 aluminum alloy hot stamping forming defects numerical simulation blank holder force
下载PDF
Influence of forming process on three-dimensional morphology of TiB_2 particles in Al-Ti-B alloys 被引量:10
20
作者 李鹏廷 李云国 +1 位作者 聂金凤 刘相法 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期564-570,共7页
A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on... A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on the three-dimensional morphology of TiB2 particles.Different preparation routes result in different reaction forms,which accounts for the morphology variation of TiB2 particles.When the Al-Ti-B master alloy is prepared using "halide salt" route,TiB2 particles exhibit hexagonal platelet morphology and are independent with each other.In addition,the reaction temperature almost does not have influence on the morphology of TiB2 particles.However,TiB2 particles exhibit different morphologies at different reaction temperatures when the master alloys are prepared with Al-3B and Ti sponge.When the master alloy is prepared at 850 ℃,a kind of TiB2 particle agglomeration forms with a size larger than 5 μm.The TiB2 particles change to layered stacking morphology even dendritic morphology with the reaction temperature reaching up to 1200 ℃. 展开更多
关键词 Al-Ti-B alloy TIB2 forming process three-dimensional morphology
下载PDF
上一页 1 2 195 下一页 到第
使用帮助 返回顶部