Based on the importance of fractured rock mass seepage research, in order to analyze seepage flow characteristics of collapse column under the influence of mining, a method by embedding fractured rock mass flow solid ...Based on the importance of fractured rock mass seepage research, in order to analyze seepage flow characteristics of collapse column under the influence of mining, a method by embedding fractured rock mass flow solid coupling relationship into FLAC3D internal flow models is presented according to fluid-solid coupling theory and strength criterion. A calculation model of numerical analysis was established, and the influences of mining pressure and plastic damage to pore water pressure and seepage vector change rule were studied. The results show that collapse column is the main channel of confined water seepage upward. The impact is not big when the workface is away from the collapse column. But when the workface is nearing a collapse column, there will be a seepage channel on a side near the workface, in which seepage vector and head are comparatively large. With workface pushing through collapse column, the seepage channel transfers to the other side of the column. In addition, when the plastic damage area within the collapse column breaks through, a "pipeline flow" will be formed within the column, and seepage field will change remarkably and the possibility of water bursting will be greater.展开更多
Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under dif...Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under difficult geological conditions are rarely reported. This paper presents a case study on the transient groundwater flow behaviors in the rock foundation of Jinping I double-curvature arch dam, the world's highest dam of this type to date that has been completed. Taking into account the geological settings at the site, an inverse modeling technique utilizing the time series measurements of both hydraulic head and discharge was adopted to back-calculate the permeability of the foundation rocks,which effectively improves the uniqueness and reliability of the inverse modeling results. The transient seepage flow in the dam foundation during the reservoir impounding was then modeled with a parabolic variational inequality(PVI) method. The distribution of pore water pressure, the amount of leakage, and the performance of the seepage control system in the dam foundation during the entire impounding process were finally illustrated with the numerical results.展开更多
The flow through a single fracture is numerically studied by means of the Fluent Software. The results show that the roughness of the fracture significantly affects the hydraulic conductivity in the fracture as compar...The flow through a single fracture is numerically studied by means of the Fluent Software. The results show that the roughness of the fracture significantly affects the hydraulic conductivity in the fracture as compared with the cubic law model widely used to describe the flow between two smooth parallel plates. A new model is proposed in this paper, the non-symmetric sinusoidal fracture model, to simulate the flow in a real fracture. This model involves two sinusoidal-varying walls with different phases to replace the flat planes in the cubic law model. The relationships between the effective hydraulic apertures and the phase retardation for different relative amplitudes and wavelengths are numerically investigated. A simple expression of the effective hydraulic aperture of the fracture is obtained, together with the law of the effective hydraulic aperture against the amplitude, the phase retardation and the wavelength of two sinusoidal-varying walls.展开更多
基金the financial support for this work by the National Key Basic Research and Development Program of China (No. 2010CB226805)the National Natural Science Foundation of China (No. 0874103)the Natural Science Foundation of Jiangsu Province (No. BK2008135)
文摘Based on the importance of fractured rock mass seepage research, in order to analyze seepage flow characteristics of collapse column under the influence of mining, a method by embedding fractured rock mass flow solid coupling relationship into FLAC3D internal flow models is presented according to fluid-solid coupling theory and strength criterion. A calculation model of numerical analysis was established, and the influences of mining pressure and plastic damage to pore water pressure and seepage vector change rule were studied. The results show that collapse column is the main channel of confined water seepage upward. The impact is not big when the workface is away from the collapse column. But when the workface is nearing a collapse column, there will be a seepage channel on a side near the workface, in which seepage vector and head are comparatively large. With workface pushing through collapse column, the seepage channel transfers to the other side of the column. In addition, when the plastic damage area within the collapse column breaks through, a "pipeline flow" will be formed within the column, and seepage field will change remarkably and the possibility of water bursting will be greater.
基金financially supported through NSERC Discovery Grant(RGPIN/4994-2014)
文摘Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under difficult geological conditions are rarely reported. This paper presents a case study on the transient groundwater flow behaviors in the rock foundation of Jinping I double-curvature arch dam, the world's highest dam of this type to date that has been completed. Taking into account the geological settings at the site, an inverse modeling technique utilizing the time series measurements of both hydraulic head and discharge was adopted to back-calculate the permeability of the foundation rocks,which effectively improves the uniqueness and reliability of the inverse modeling results. The transient seepage flow in the dam foundation during the reservoir impounding was then modeled with a parabolic variational inequality(PVI) method. The distribution of pore water pressure, the amount of leakage, and the performance of the seepage control system in the dam foundation during the entire impounding process were finally illustrated with the numerical results.
基金supported by the National Natural Science Foundation of China(Grant No.10932012)the National Natural Science Funds of China for Distinguished Young Scholar(Grant No.10825211)the National Key Basic Research Program of China(973Program,Grant No.2010CB731506)
文摘The flow through a single fracture is numerically studied by means of the Fluent Software. The results show that the roughness of the fracture significantly affects the hydraulic conductivity in the fracture as compared with the cubic law model widely used to describe the flow between two smooth parallel plates. A new model is proposed in this paper, the non-symmetric sinusoidal fracture model, to simulate the flow in a real fracture. This model involves two sinusoidal-varying walls with different phases to replace the flat planes in the cubic law model. The relationships between the effective hydraulic apertures and the phase retardation for different relative amplitudes and wavelengths are numerically investigated. A simple expression of the effective hydraulic aperture of the fracture is obtained, together with the law of the effective hydraulic aperture against the amplitude, the phase retardation and the wavelength of two sinusoidal-varying walls.