Chloride (Cl−) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas(LNG) storage tanks and other polar offshore structures. This study investigates the impact of differe...Chloride (Cl−) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas(LNG) storage tanks and other polar offshore structures. This study investigates the impact of different low-temperaturecycles (20°C, –80°C, and −160°C) and concrete specimen crack widths (0, 0.3, and 0.6 mm) on the Cl−ion diffusion performance through rapid erosion tests conducted on pre-cracked concrete. The results show thatthe minimum temperature and crack width of freeze-thaw cycles enhance the erosive effect of chloride ions. TheCl− ion concentration and growth rate increased with the increasing crack width. Based on the experimental modeland in accordance with Fick’s second law of diffusion, the Cl− ion diffusion equation was modified by introducingcorrection factors in consideration of the freeze-thaw temperature, crack width, and their coupling effect.The experimental and fitting results obtained from this model can provide excellent reference for practical engineeringapplications.展开更多
A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles...A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles were investigated.The whiteness,water-holding capacity,storage modulus(G')and texture properties of the MPGs were significantly improved by adding 1%-2%Pickering emulsion(P<0.05).Meanwhile,Raman spectral analysis demonstrated that Pickering emulsion promoted the transformation of secondary structure,enhanced hydrogen bonds and hydrophobic interactions,and promoted the transition of disulfide bond conformation from g-g-g to g-g-t and t-g-t.At an emulsion concentration of 2%,theα-helix content decreased by 10.37%,while theβ-sheet content increased by 7.94%,compared to the control.After F-T cycles,the structure of the MPGs was destroyed,with an increase in hardness and a decrease in whiteness and water-holding capacity,however,the quality degradation of MPGs was reduced with 1%-2%Pickering emulsion.These findings demonstrated that SSOS-Pickering emulsions,as potential fat substitutes,can enhance the gel properties and the F-T stability of MPGs.展开更多
The interface of slab track laid in cold regions is prone to debonding under the coupling of freeze-thaw cyclesand temperature loads.Based on the composite specimen tests,the parameters of cohesive zone model were obt...The interface of slab track laid in cold regions is prone to debonding under the coupling of freeze-thaw cyclesand temperature loads.Based on the composite specimen tests,the parameters of cohesive zone model were obtained andused in a simulation model of CRTS III prefabricated slab track to study the interlayer damage.The results show that 1)the digital image correlation(DIC)technique can accurately capture the strain field changes on the interface of compositespecimens under splitting and shear loading;2)when the temperature gradient is−40℃/m−60℃/m,the interfacedamage of the slab track is minimal and presents different patterns of expansion under positive and negative temperaturegradients,each corresponding to damage of the cohesive element dominated by shear stress and normal tensile stress,respectively;3)the reduction of the elastic modulus at the concrete base after freeze-thaw inhibits interface damage andleads to a higher starting temperature gradient load,but cracking can occur on the concrete base after 150 freeze-thaws.For this reason,in the light of damage control of both the interface and concrete base,the elastic modulus of the concretebase is 54%or over that without freeze-thaw cycles.展开更多
In order to study the deterioration characteristics of the microscopic structure of sandstones in freeze-thaw cycles, tests of180 freeze-thaw cycles were performed on sandstone specimens. The nuclear magnetic resonan...In order to study the deterioration characteristics of the microscopic structure of sandstones in freeze-thaw cycles, tests of180 freeze-thaw cycles were performed on sandstone specimens. The nuclear magnetic resonance (NMR) technique was applied tothe measurement of sandstone specimens and analysis of the magnetic resonance imaging. Then, the fractal theory was employed tocompute the fractal dimension values of pore development of rocks after different freeze-thaw cycles. The results show that the massand porosity of rocks grow with the increase of freeze-thaw cycles. According to the NMR T2 distribution of sandstones, the poresizes of rock specimens increase after 180 freeze-thaw cycles, especially that of the medium-sized and small-sized pores. The spatialdistribution of sandstone pores after freeze-thaw cycles has fractal features within certain range, and the fractal dimension ofsandstones tends to increase gradually.展开更多
A theoretical prediction method based on the change of concrete material is proposed to evaluate the ultimate bending moment of concrete beams which have undergone freeze-thaw cycles (PTCs). First, the freeze-thaw d...A theoretical prediction method based on the change of concrete material is proposed to evaluate the ultimate bending moment of concrete beams which have undergone freeze-thaw cycles (PTCs). First, the freeze-thaw damage on concrete material is analyzed and the residual compressive strength is chosen to indicate the freeze-thaw damage. Then, the equivalent block method is employed to simplify the compressive stress-strain curve of the freeze-thaw damaged concrete and the mathematical expression for the ultimate bending moment is obtained. Comparisons of the predicted results with the test data indicate that the ultimate bending moment of concrete beams affected by FTC attack can be predicted by this proposed method. However, the bond-slip behavior and the randomness of freeze-thaw damage will affect the accuracy of the predicted results, especially when the residual compressive strength is less than 50%.展开更多
The glacial history of Pico de Orizaba indicates that during the Last Glacial Maximum,its icecap covered up to~3000 m asl;due to the air temperature increasing,its main glacier has retreated to 5050 m asl.The retracti...The glacial history of Pico de Orizaba indicates that during the Last Glacial Maximum,its icecap covered up to~3000 m asl;due to the air temperature increasing,its main glacier has retreated to 5050 m asl.The retraction of the glacier has left behind an intense climatic instability that causes a high frequency of freeze-thaw cycles of great intensity;the resulting geomorphological processes are represented by the fragmentation of the bedrock that occupies the upper parts of the mountain.There is a notable lack of studies regarding the fragmentation and erosion occurring in tropical high mountains,and the associated geomorphological risks;for this reason,as a first stage of future continuous research,this study analyzes the freezing and thawing cycles that occur above 4000 m asl,through continuous monitoring of surface ground temperature.The results allow us to identify and characterize four zones:glacial,paraglacial,periglacial and proglacial.It was found that the paraglacial zone presents an intense drop of temperature,of up to~9℃ in only sixty minutes.The rock fatigue and intense freeze-thaw cycles that occur in this area are responsible for the high rate of rock disintegration and represent the main factor of the constant slope dynamics that occur at the site.This activity decreases,both in frequency and intensity,according to the distance to the glacier,which is where the temperature presents a certain degree of stability,until reaching the proglacial zone,where cycles are almost non-existent,and therefore there is no gelifraction activity.The geomorphological processes have resulted in significant alterations to the mountain slopes,which can have severe consequences in terms of risk and water.展开更多
We aimed to investigate the synergistic effects of ultrasonic waves and repeated freeze-thaw cycles on cel-wal destruction of Auricularia auric-ula mycelia, and determine the best combination of conditions for cel-wal...We aimed to investigate the synergistic effects of ultrasonic waves and repeated freeze-thaw cycles on cel-wal destruction of Auricularia auric-ula mycelia, and determine the best combination of conditions for cel-wal destruc-tion of Auricularia auricula mycelia. [Method] The effects of destruction time, added water, destruction times, freeze time and number of freeze-thaw cycles during ultra-sonic treatment on polysaccharide yield were investigated by single-factor test in our research. The optimum conditions for cel-wal destruction of Auricularia auricula mycelia by the synergistic effect of ultrasonic waves and repeated freeze-thaw cycles were ascertained by orthogonal test. [Result] The results of single test indicated the best combination of conditions was as fol ows: freeze time, 30 min; destruction time, 20 min; added water, 15 times; destruction times, 2 times; number of freeze-thaw cycles, 3 cycles. The results of orthogonal test indicated the influencing factors ranked as destruction time 〉 destruction times 〉 freeze time. The best combination of conditions was as fol ows: freeze time, 30 min; destruction time, 25 min; destruc-tion times, 2 times. Under above conditions, the polysaccharide yield reached 57.76 mg/g. [Conclusion] This research would provide a basis and reference for practical production.展开更多
According to the winter temperature of Peking,the freeze-thaw(FT) condition in laboratory was determined.Seven groups of epoxy asphalt concrete(EAC) specimen were exposed to different FT cycles.The flexural modulu...According to the winter temperature of Peking,the freeze-thaw(FT) condition in laboratory was determined.Seven groups of epoxy asphalt concrete(EAC) specimen were exposed to different FT cycles.The flexural modulus and fracture energy(G_F) of EAC exposed to different FT cycles were obtained through the 3-point bending test.Meanwhile,the plane strain fracture toughness(K_(IC)) of EAC was obtained through numerical simulation.The results show that the flexural modulus of the FT conditioned EAC samples decreases with the increase of FT cycles.The FT damage of flexural modulus is 60%after 30 FT cycles.Nevertheless,with the increase of FT cycles,the G_F and K_(IC) of EAC decrease first and then increase after 15 FT cycles.展开更多
Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of...Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of rocks is very important. In this study, red sandstone samples were frozen and thawed with o, 4, 8 and 12 cycles, each cycle including 12 h of freezing and 12 h of thawing. The P-wave velocities of these samples were measured, and the mechanical properties and evolution of the steady-state permeabilities were investigated in a series of uniaxial and triaxial compression tests. Experimental results show that, with the increasing of cyclic freeze-thaw times, the P-wave velocity of the red sandstone decreases. The number of freeze-thaw cycles has a significant influence on the uniaxial compressive strength, elastic modulus, cohesion, and angle of internal friction. The evolution of permeability of the rock samples after cycles of freeze-thaw in a complete stress-strain process under triaxial compression is closely related to the variation of the microstructure in the rock. There is a highly corresponding relationship between volumetric strain and permeability with axial strain in all stages of the stress-strain behaviour.展开更多
To study the deterioration mechanisms of anhydrite rock under the freeze-thaw weathering process,the physico-mechanical characteristics and microstructure evolutions of anhydrite samples were determined by a series of...To study the deterioration mechanisms of anhydrite rock under the freeze-thaw weathering process,the physico-mechanical characteristics and microstructure evolutions of anhydrite samples were determined by a series of laboratory tests.Then,a descriptive-behavioral model was used to measure the integrity loss in anhydrite samples caused by cyclic freeze-thaw.Finally,the freeze-thaw damage mechanisms of anhydrite rock were revealed from the macro and micro aspects.The results show that the pore size of the anhydrite rock is mainly concentrated in the range of 0.001-10μm.As the number of freeze-thaw cycles increases,there is a growth in the proportion of macropores and mesopores.However,the proportion of micropores shows a declining trend.The relations of the uniaxial compressive strength,triaxial compressive strength,cohesion,and elastic modulus versus freeze-thaw cycles can be fitted by a decreasing exponential function,while the internal friction angle is basically unchanged with freezethaw cycles.With the increase of confining pressure,the disintegration rates of the compressive strength and the elastic modulus decrease,and the corresponding half-life values increase,which reveals that the increase of confining pressures could inhibit freeze-thaw damage to rocks.Moreover,it has been proven that the water chemical softening mechanism plays an essential role in the freeze-thaw damage to anhydrite rock.Furtherly,it is concluded that the freeze-thaw weathering process significantly influences the macroscopic and microscopic damages of anhydrite rock.展开更多
The experimental study of air-entrained concrete specimens subjected to different cycles of freeze-thaw was completed. The dynamic modulus of elasticity, weight loss, the cubic compressive strength, compressive streng...The experimental study of air-entrained concrete specimens subjected to different cycles of freeze-thaw was completed. The dynamic modulus of elasticity, weight loss, the cubic compressive strength, compressive strength, tensile strength and cleavage strength of air-entrained concrete were measured after 0, 100, 200, 300, 400 cycles of freeze-thaw. The experimental results showed that the dynamic modulus of elasticity and strength decreased as the freeze-thaw was repeated. The influences of freeze-thaw cycles on the mechanical properties, the dynamic modulus of elasticity and weight loss were analyzed according to the experimental results. It can serve as a reference for the maintenance, design and the life prediction of dams, hydraulic structures, offshore structures, concrete roads and bridges in northern cold regions.展开更多
The experiments of concrete attacked by sulfate solution under freeze-thaw cycles were investigated. The sulfate solution includes two types of 5% Na2SO4 and 5% MgSO4. Through the experiment, microstructural analyses ...The experiments of concrete attacked by sulfate solution under freeze-thaw cycles were investigated. The sulfate solution includes two types of 5% Na2SO4 and 5% MgSO4. Through the experiment, microstructural analyses such as SEM, XRD and TGA measurements were performed on the selected samples after freeze-thaw cycles. The corrosion products of the concrete were distinguished and quantitatively compared by the thermal analysis. Besides, the damage mechanism considering the dynamic modulus of elastically of concrete under the coupling effect was also investigated. The experimental results show that, under the action of freeze-thaw cycles and sulfate attack, the main attack products in concrete are ettringite and gypsum. The corrosion products exposed to MgSO4 solution are more than those to Na2SO4 solution. Furthermore, the content of gypsum in concrete is less than that of ettringite in test, and some of gypsum can be observed only after a certain corrosion extent. It is also shown that MgSO4 solution has a promoting effect to the damage of concrete under freeze-thaw cycles. Whereas for Na:SO4 solution, the damage of concrete has restrained before 300 freeze-thaw cycles, but the sulfate attack accelerates the deterioration process in its further test period.展开更多
The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed...The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed steel bars, the bond stress-slip curves after freezing and thawing were obtained. The empirical equations of peak bond strength were proposed that the damage accounted for effects of freezing and thawing cycle. Meanwhile, the mechanism of bond deterioration between steel bars and concrete after freezing and thawing cycles was discussed. All these conclusions will be useful to the durability design and reliability calculation of RC structures in cold region.展开更多
The instability of soil bank slopes induced by freeze-thaw cycles at the northern foot of Tianshan Mountain is very common.The failure not only caused a large amount of soil erosion,but also led to serious reservoir s...The instability of soil bank slopes induced by freeze-thaw cycles at the northern foot of Tianshan Mountain is very common.The failure not only caused a large amount of soil erosion,but also led to serious reservoir sedimentation and water quality degradation,which exerted a lot of adverse effects on agricultural production in the local irrigation areas.Based on field investigations on dozens of irrigation reservoirs there,laboratory tests were carried out to quantitatively analyze the freeze-thaw effect on the soil engineering characteristics to reveal the facilitation on the bank slope instability.The results show that the softening characteristics of the stressstrain curves gradually weaken,the effective cohesions decline exponentially,the seepage coefficients enlarge,and the thermal conductivities decrease after 7 freeze-thaw cycles.The freeze-thaw effect on the specimens with low confining pressures,low dry densities and high water contents is more significant.The water migration and the phase transition between water and ice result in the variations of the soil internal microstructures,which is the main factor affecting the soil engineering characteristics.Sufficient water supply and the alternation of positive and negative temperatures at the reservoir bank slopes in cold regions make the water migration and phase transition in the soil very intensely.It is easy to form a large number of pores and micro cracks in the soil freezing and thawing areas.The volume changes of the soil and the water migration are difficult to reach a dynamic balance in the open system.Long-term freeze-thaw cycles will bring out the fragmentation of the soil particles,resulting in that the micro cracks on the soil surfaces are developing continuously.The soil of the bank slopes will fall or collapse when these cracks penetrate,which often happens in winter there.展开更多
The freeze-thaw cycling process considerably changes the composition, structure, and properties of soils. Since the grain size is the most important factor in determining soil characteristics, our current research pri...The freeze-thaw cycling process considerably changes the composition, structure, and properties of soils. Since the grain size is the most important factor in determining soil characteristics, our current research primarily aims to investigate dynamic changes of the soil fraction when exposed to freeze-thaw conditions. We observed two series of Moscow morainic clayey specimens (gQⅡm): (Ⅰ) the original series, and (Ⅱ) the remolded series. We subjected each series of soil specimens to different frequencies of freeze-thaw cycles (3, 6, 20, and 40 cycles), and we used granulometric tests to analyze both series before and after exposure to freeze-thaw conditions. As a result of our experiments, the granulometric compositions tended to be distributed evenly after 40 freeze-thaw processes (i.e., content of fraction for 0.1-0.05 mm was increased after 40 freeze-thaw cycles) because the division of coarse grains and the aggregation of fine grains were synchronized during the freeze-thaw process. The soil grains in both series changed bi-directionally. In the original series, changes of the sand grains were conjugated with the clay grains, and in the remolded series, changes of the sand grains were conjugated with the silt grains, because potential energy difference caused the division and aggregation processes to relate to the counteraction process. The even distribution of soil grain size indicated the state of equilibrium or balance. The granulometric compositions were altered the most during the sixth freeze-thaw cycle, because the coefficient of the intensity variation of the grain fineness (Kvar) had its maximum value at that time.展开更多
Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-th...Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-thaw cycles change the characteristics of soil, which can render the soil from an unstable state to a new dynamic equilibrium state. The freezing process changes the structttre coupled between the soil particle arrangements, which will change the mechanical properties of the soil. The method of significance and interaction between different fac tors should be considered to measure the influence on the propties of soil under freeze-thaw cycles.展开更多
The use of clay-gravel mixtures(i.e.,adding excavated or natural gravel particles into clay soil matrix)as the main filling materials is increasing in the anti-seepage system of high Earth Core Rockfill Dams(ECRDs).Wi...The use of clay-gravel mixtures(i.e.,adding excavated or natural gravel particles into clay soil matrix)as the main filling materials is increasing in the anti-seepage system of high Earth Core Rockfill Dams(ECRDs).With the continuous construction of high ECRDs in the Chinese plateaus and cold regions,it is of great urgency and importance to understand the physical and mechanical characteristics of compacted clay-gravel mixtures under freeze-thaw action.To this end,laboratory freezing-thawing tests,computed tomography(CT),and triaxial compression tests were conducted to evaluate the effects of freezethaw cycles on moisture loss,pore structure characteristics,stress-strain behavior,failure strength,elastic modulus,cohesion,and internal friction angle of compacted clay-gravel mixtures.The results demonstrate that,1)the freeze-thaw cycle significantly changed the mechanical characteristics of the clay-gravel mixture samples,but the shape of the stress-strain curve is less sensitive to it.2)The failure strength of samples exhibits a significant decrease after the first freeze-thaw cycle,but shows a certain increase as the number of freeze-thaw cycles increases from 1 to 2.3)The elastic modulus of samples first decreases and then increases with increasing freeze-thaw cycle,and the most severe deterioration was observed after the first freeze-thaw cycle.4)Regardless of the number of freeze-thaw cycles,there is a linear relationship between failure strength and elastic modulus for a sample that has suffered freeze-thaw weathering.5)The cohesion of samples decreases firstly and then slightly increases with increasing freeze-thaw cycles,while the internal friction angle is hardly affected.展开更多
This paper presents an experimental investigation to identify suitable indices to assess durability of glulam when subjected to freeze-thaw cycles in an exposed enviroenment.In this study,two types of glulam specimens...This paper presents an experimental investigation to identify suitable indices to assess durability of glulam when subjected to freeze-thaw cycles in an exposed enviroenment.In this study,two types of glulam specimens were tested for their performance when subjected to different levels of aging due to freezing and thawing.Effect of aging treatment on various parameters including thickness swelling rate,static bending strength,elastic modulus,shear strength,and peeling rate of adhesive layer were studied.Obtained results showed that freeze-thaw aging treatment did not affect the water-resistance of the specimens as measured by thickness swelling rate and had little effect on the dimensional stability of the material.However,the applied aging treatment weakened the bending resistance of the glulam specimens with more pronounced effects on on low-density wood.On the other hand,bond strength of high-density wood was relatively more affected due to the appliedfreeze-thaw cycles.For highdensity wood,it is suggested that the shear strength of the adhesive layer be taken as an important index to determine the durability of freeze-thaw cycles aging.For low-density wood,on the other hand,the static bending strength can be used as an index to determine the durability of glulam under freeze-thaw cycles aging.展开更多
To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magneti...To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect.展开更多
The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied. Strength and deformations of plain concrete specimens in two loading d...The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied. Strength and deformations of plain concrete specimens in two loading direction under biaxial compression with stress ratio of a=0, 0.25, 0.5, 0.75, 1.0 were obtained after 0, 25, 50 cycles of freeze-thaw. Influences of freeze-thaw cycles and stress ratio on the peak stress and deformation of this point were analyzed according to the experimental results, Based on the test data, the failure criterion expressed in terms of principal stress after different cycles of freeze-thaw, and the failure criterion with consideration of the influence of freeze-thaw cycle and stress ratio were proposed respectively.展开更多
基金the Key Laboratory of Intelligent Health Perception and Lakes,Ministry of Education,Hubei University of Technology(No.2020EJB004)National Natural Science Foundation of China(No.51508171)Natural Science Foundation of Hubei Province(No.2020CFB860).
文摘Chloride (Cl−) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas(LNG) storage tanks and other polar offshore structures. This study investigates the impact of different low-temperaturecycles (20°C, –80°C, and −160°C) and concrete specimen crack widths (0, 0.3, and 0.6 mm) on the Cl−ion diffusion performance through rapid erosion tests conducted on pre-cracked concrete. The results show thatthe minimum temperature and crack width of freeze-thaw cycles enhance the erosive effect of chloride ions. TheCl− ion concentration and growth rate increased with the increasing crack width. Based on the experimental modeland in accordance with Fick’s second law of diffusion, the Cl− ion diffusion equation was modified by introducingcorrection factors in consideration of the freeze-thaw temperature, crack width, and their coupling effect.The experimental and fitting results obtained from this model can provide excellent reference for practical engineeringapplications.
基金supported by the National Natural Science Foundation of China(U20A2067,32272360)。
文摘A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles were investigated.The whiteness,water-holding capacity,storage modulus(G')and texture properties of the MPGs were significantly improved by adding 1%-2%Pickering emulsion(P<0.05).Meanwhile,Raman spectral analysis demonstrated that Pickering emulsion promoted the transformation of secondary structure,enhanced hydrogen bonds and hydrophobic interactions,and promoted the transition of disulfide bond conformation from g-g-g to g-g-t and t-g-t.At an emulsion concentration of 2%,theα-helix content decreased by 10.37%,while theβ-sheet content increased by 7.94%,compared to the control.After F-T cycles,the structure of the MPGs was destroyed,with an increase in hardness and a decrease in whiteness and water-holding capacity,however,the quality degradation of MPGs was reduced with 1%-2%Pickering emulsion.These findings demonstrated that SSOS-Pickering emulsions,as potential fat substitutes,can enhance the gel properties and the F-T stability of MPGs.
基金Project(52425213)supported by the National Science Fund for Distinguished Young Scholars of ChinaProjects(52278461,52308467)supported by the National Natural Science Foundation of China+1 种基金Projects(2021YFF0502100,2021YFB2600900)supported by the National Key R&D Program of ChinaProject(2022JDTD0015)supported by the Sichuan Province Youth Science and Technology Innovation Team,China。
文摘The interface of slab track laid in cold regions is prone to debonding under the coupling of freeze-thaw cyclesand temperature loads.Based on the composite specimen tests,the parameters of cohesive zone model were obtained andused in a simulation model of CRTS III prefabricated slab track to study the interlayer damage.The results show that 1)the digital image correlation(DIC)technique can accurately capture the strain field changes on the interface of compositespecimens under splitting and shear loading;2)when the temperature gradient is−40℃/m−60℃/m,the interfacedamage of the slab track is minimal and presents different patterns of expansion under positive and negative temperaturegradients,each corresponding to damage of the cohesive element dominated by shear stress and normal tensile stress,respectively;3)the reduction of the elastic modulus at the concrete base after freeze-thaw inhibits interface damage andleads to a higher starting temperature gradient load,but cracking can occur on the concrete base after 150 freeze-thaws.For this reason,in the light of damage control of both the interface and concrete base,the elastic modulus of the concretebase is 54%or over that without freeze-thaw cycles.
基金Projects(41502327,51474252)supported by the National Natural Science Foundation of ChinaProject(2013YQ17046310)supported by the National Key Scientific Instrument and Equipment Development Project of China+1 种基金Project(20130162120012)supported by the Special Research Fund for the Doctoral Program of Higher Education of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘In order to study the deterioration characteristics of the microscopic structure of sandstones in freeze-thaw cycles, tests of180 freeze-thaw cycles were performed on sandstone specimens. The nuclear magnetic resonance (NMR) technique was applied tothe measurement of sandstone specimens and analysis of the magnetic resonance imaging. Then, the fractal theory was employed tocompute the fractal dimension values of pore development of rocks after different freeze-thaw cycles. The results show that the massand porosity of rocks grow with the increase of freeze-thaw cycles. According to the NMR T2 distribution of sandstones, the poresizes of rock specimens increase after 180 freeze-thaw cycles, especially that of the medium-sized and small-sized pores. The spatialdistribution of sandstone pores after freeze-thaw cycles has fractal features within certain range, and the fractal dimension ofsandstones tends to increase gradually.
基金The National Natural Science Foundation of China(No.5097822451378104)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A theoretical prediction method based on the change of concrete material is proposed to evaluate the ultimate bending moment of concrete beams which have undergone freeze-thaw cycles (PTCs). First, the freeze-thaw damage on concrete material is analyzed and the residual compressive strength is chosen to indicate the freeze-thaw damage. Then, the equivalent block method is employed to simplify the compressive stress-strain curve of the freeze-thaw damaged concrete and the mathematical expression for the ultimate bending moment is obtained. Comparisons of the predicted results with the test data indicate that the ultimate bending moment of concrete beams affected by FTC attack can be predicted by this proposed method. However, the bond-slip behavior and the randomness of freeze-thaw damage will affect the accuracy of the predicted results, especially when the residual compressive strength is less than 50%.
基金support from the Programa de Apoyos para la Superación del Personal Académico (DGAPA)the support by the Alexander von Humboldt Foundationpart of the SIREI project num 531062023178 developed at CCT-UV
文摘The glacial history of Pico de Orizaba indicates that during the Last Glacial Maximum,its icecap covered up to~3000 m asl;due to the air temperature increasing,its main glacier has retreated to 5050 m asl.The retraction of the glacier has left behind an intense climatic instability that causes a high frequency of freeze-thaw cycles of great intensity;the resulting geomorphological processes are represented by the fragmentation of the bedrock that occupies the upper parts of the mountain.There is a notable lack of studies regarding the fragmentation and erosion occurring in tropical high mountains,and the associated geomorphological risks;for this reason,as a first stage of future continuous research,this study analyzes the freezing and thawing cycles that occur above 4000 m asl,through continuous monitoring of surface ground temperature.The results allow us to identify and characterize four zones:glacial,paraglacial,periglacial and proglacial.It was found that the paraglacial zone presents an intense drop of temperature,of up to~9℃ in only sixty minutes.The rock fatigue and intense freeze-thaw cycles that occur in this area are responsible for the high rate of rock disintegration and represent the main factor of the constant slope dynamics that occur at the site.This activity decreases,both in frequency and intensity,according to the distance to the glacier,which is where the temperature presents a certain degree of stability,until reaching the proglacial zone,where cycles are almost non-existent,and therefore there is no gelifraction activity.The geomorphological processes have resulted in significant alterations to the mountain slopes,which can have severe consequences in terms of risk and water.
文摘We aimed to investigate the synergistic effects of ultrasonic waves and repeated freeze-thaw cycles on cel-wal destruction of Auricularia auric-ula mycelia, and determine the best combination of conditions for cel-wal destruc-tion of Auricularia auricula mycelia. [Method] The effects of destruction time, added water, destruction times, freeze time and number of freeze-thaw cycles during ultra-sonic treatment on polysaccharide yield were investigated by single-factor test in our research. The optimum conditions for cel-wal destruction of Auricularia auricula mycelia by the synergistic effect of ultrasonic waves and repeated freeze-thaw cycles were ascertained by orthogonal test. [Result] The results of single test indicated the best combination of conditions was as fol ows: freeze time, 30 min; destruction time, 20 min; added water, 15 times; destruction times, 2 times; number of freeze-thaw cycles, 3 cycles. The results of orthogonal test indicated the influencing factors ranked as destruction time 〉 destruction times 〉 freeze time. The best combination of conditions was as fol ows: freeze time, 30 min; destruction time, 25 min; destruc-tion times, 2 times. Under above conditions, the polysaccharide yield reached 57.76 mg/g. [Conclusion] This research would provide a basis and reference for practical production.
基金The National Natural Science Foundation of China(No.51378122)
文摘According to the winter temperature of Peking,the freeze-thaw(FT) condition in laboratory was determined.Seven groups of epoxy asphalt concrete(EAC) specimen were exposed to different FT cycles.The flexural modulus and fracture energy(G_F) of EAC exposed to different FT cycles were obtained through the 3-point bending test.Meanwhile,the plane strain fracture toughness(K_(IC)) of EAC was obtained through numerical simulation.The results show that the flexural modulus of the FT conditioned EAC samples decreases with the increase of FT cycles.The FT damage of flexural modulus is 60%after 30 FT cycles.Nevertheless,with the increase of FT cycles,the G_F and K_(IC) of EAC decrease first and then increase after 15 FT cycles.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2011CB013503)the National Natural Science Foundation of China (Grant No. 51374112)the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-PY112)
文摘Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of rocks is very important. In this study, red sandstone samples were frozen and thawed with o, 4, 8 and 12 cycles, each cycle including 12 h of freezing and 12 h of thawing. The P-wave velocities of these samples were measured, and the mechanical properties and evolution of the steady-state permeabilities were investigated in a series of uniaxial and triaxial compression tests. Experimental results show that, with the increasing of cyclic freeze-thaw times, the P-wave velocity of the red sandstone decreases. The number of freeze-thaw cycles has a significant influence on the uniaxial compressive strength, elastic modulus, cohesion, and angle of internal friction. The evolution of permeability of the rock samples after cycles of freeze-thaw in a complete stress-strain process under triaxial compression is closely related to the variation of the microstructure in the rock. There is a highly corresponding relationship between volumetric strain and permeability with axial strain in all stages of the stress-strain behaviour.
基金the National Natural Science Foundation of China for financial support (Grant No. 51578091)
文摘To study the deterioration mechanisms of anhydrite rock under the freeze-thaw weathering process,the physico-mechanical characteristics and microstructure evolutions of anhydrite samples were determined by a series of laboratory tests.Then,a descriptive-behavioral model was used to measure the integrity loss in anhydrite samples caused by cyclic freeze-thaw.Finally,the freeze-thaw damage mechanisms of anhydrite rock were revealed from the macro and micro aspects.The results show that the pore size of the anhydrite rock is mainly concentrated in the range of 0.001-10μm.As the number of freeze-thaw cycles increases,there is a growth in the proportion of macropores and mesopores.However,the proportion of micropores shows a declining trend.The relations of the uniaxial compressive strength,triaxial compressive strength,cohesion,and elastic modulus versus freeze-thaw cycles can be fitted by a decreasing exponential function,while the internal friction angle is basically unchanged with freezethaw cycles.With the increase of confining pressure,the disintegration rates of the compressive strength and the elastic modulus decrease,and the corresponding half-life values increase,which reveals that the increase of confining pressures could inhibit freeze-thaw damage to rocks.Moreover,it has been proven that the water chemical softening mechanism plays an essential role in the freeze-thaw damage to anhydrite rock.Furtherly,it is concluded that the freeze-thaw weathering process significantly influences the macroscopic and microscopic damages of anhydrite rock.
基金supported by part of the Key Project of the China Postdoctoral Science Foundation(Nos.20080430183 and 200801386)the Promotional Foundation for Excellent Middle-aged or Young Scientists of Shandong Province(No.2008BS08001)National Basic Research Program(No.2007CB714202)
文摘The experimental study of air-entrained concrete specimens subjected to different cycles of freeze-thaw was completed. The dynamic modulus of elasticity, weight loss, the cubic compressive strength, compressive strength, tensile strength and cleavage strength of air-entrained concrete were measured after 0, 100, 200, 300, 400 cycles of freeze-thaw. The experimental results showed that the dynamic modulus of elasticity and strength decreased as the freeze-thaw was repeated. The influences of freeze-thaw cycles on the mechanical properties, the dynamic modulus of elasticity and weight loss were analyzed according to the experimental results. It can serve as a reference for the maintenance, design and the life prediction of dams, hydraulic structures, offshore structures, concrete roads and bridges in northern cold regions.
基金Funded by the Durability and Life Forecast of Shotcrete Tunnel Structure Fund(No.51278403)the Program for Changjiang Scholars and Innovative Research Team in University
文摘The experiments of concrete attacked by sulfate solution under freeze-thaw cycles were investigated. The sulfate solution includes two types of 5% Na2SO4 and 5% MgSO4. Through the experiment, microstructural analyses such as SEM, XRD and TGA measurements were performed on the selected samples after freeze-thaw cycles. The corrosion products of the concrete were distinguished and quantitatively compared by the thermal analysis. Besides, the damage mechanism considering the dynamic modulus of elastically of concrete under the coupling effect was also investigated. The experimental results show that, under the action of freeze-thaw cycles and sulfate attack, the main attack products in concrete are ettringite and gypsum. The corrosion products exposed to MgSO4 solution are more than those to Na2SO4 solution. Furthermore, the content of gypsum in concrete is less than that of ettringite in test, and some of gypsum can be observed only after a certain corrosion extent. It is also shown that MgSO4 solution has a promoting effect to the damage of concrete under freeze-thaw cycles. Whereas for Na:SO4 solution, the damage of concrete has restrained before 300 freeze-thaw cycles, but the sulfate attack accelerates the deterioration process in its further test period.
基金the National Natural Science Foundation of China(No.50479059)
文摘The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed steel bars, the bond stress-slip curves after freezing and thawing were obtained. The empirical equations of peak bond strength were proposed that the damage accounted for effects of freezing and thawing cycle. Meanwhile, the mechanism of bond deterioration between steel bars and concrete after freezing and thawing cycles was discussed. All these conclusions will be useful to the durability design and reliability calculation of RC structures in cold region.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFC0809605,2018YFC0809600)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.QYZDY-SSWDQC015)+2 种基金the National Natural Science Foundation of China(Grant No.41230630)the National Science Fund for Distinguished Young Scholars(Grant No.41825015)the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDRW-ZS-2020-1)。
文摘The instability of soil bank slopes induced by freeze-thaw cycles at the northern foot of Tianshan Mountain is very common.The failure not only caused a large amount of soil erosion,but also led to serious reservoir sedimentation and water quality degradation,which exerted a lot of adverse effects on agricultural production in the local irrigation areas.Based on field investigations on dozens of irrigation reservoirs there,laboratory tests were carried out to quantitatively analyze the freeze-thaw effect on the soil engineering characteristics to reveal the facilitation on the bank slope instability.The results show that the softening characteristics of the stressstrain curves gradually weaken,the effective cohesions decline exponentially,the seepage coefficients enlarge,and the thermal conductivities decrease after 7 freeze-thaw cycles.The freeze-thaw effect on the specimens with low confining pressures,low dry densities and high water contents is more significant.The water migration and the phase transition between water and ice result in the variations of the soil internal microstructures,which is the main factor affecting the soil engineering characteristics.Sufficient water supply and the alternation of positive and negative temperatures at the reservoir bank slopes in cold regions make the water migration and phase transition in the soil very intensely.It is easy to form a large number of pores and micro cracks in the soil freezing and thawing areas.The volume changes of the soil and the water migration are difficult to reach a dynamic balance in the open system.Long-term freeze-thaw cycles will bring out the fragmentation of the soil particles,resulting in that the micro cracks on the soil surfaces are developing continuously.The soil of the bank slopes will fall or collapse when these cracks penetrate,which often happens in winter there.
基金supported in part by the National Natural Science Foundation of China(No.41301070)the West Light Program for Talent Cultivation of Chinese Academy of Sciencesthe project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,which granted to Dr.Ze Zhang
文摘The freeze-thaw cycling process considerably changes the composition, structure, and properties of soils. Since the grain size is the most important factor in determining soil characteristics, our current research primarily aims to investigate dynamic changes of the soil fraction when exposed to freeze-thaw conditions. We observed two series of Moscow morainic clayey specimens (gQⅡm): (Ⅰ) the original series, and (Ⅱ) the remolded series. We subjected each series of soil specimens to different frequencies of freeze-thaw cycles (3, 6, 20, and 40 cycles), and we used granulometric tests to analyze both series before and after exposure to freeze-thaw conditions. As a result of our experiments, the granulometric compositions tended to be distributed evenly after 40 freeze-thaw processes (i.e., content of fraction for 0.1-0.05 mm was increased after 40 freeze-thaw cycles) because the division of coarse grains and the aggregation of fine grains were synchronized during the freeze-thaw process. The soil grains in both series changed bi-directionally. In the original series, changes of the sand grains were conjugated with the clay grains, and in the remolded series, changes of the sand grains were conjugated with the silt grains, because potential energy difference caused the division and aggregation processes to relate to the counteraction process. The even distribution of soil grain size indicated the state of equilibrium or balance. The granulometric compositions were altered the most during the sixth freeze-thaw cycle, because the coefficient of the intensity variation of the grain fineness (Kvar) had its maximum value at that time.
基金the support and motivation provided by National 973 Project of China (No. 2012CB026104)the Fundamental Research Funds for the Central Universities (No. 2011JBZ009)
文摘Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-thaw cycles change the characteristics of soil, which can render the soil from an unstable state to a new dynamic equilibrium state. The freezing process changes the structttre coupled between the soil particle arrangements, which will change the mechanical properties of the soil. The method of significance and interaction between different fac tors should be considered to measure the influence on the propties of soil under freeze-thaw cycles.
基金funded by the Fundamental Research Funds for the Central Universities(B220203029)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_0511)+1 种基金the Open Research Fund of Key Laboratory of Construction and Safety of Water Engineering of the Ministry of Water Resources,China Institute of Water Resources and Hydropower Research(IWHR-ENGI-202006)partly supported by the National Natural Science Foundation of China(52109123,51979091)。
文摘The use of clay-gravel mixtures(i.e.,adding excavated or natural gravel particles into clay soil matrix)as the main filling materials is increasing in the anti-seepage system of high Earth Core Rockfill Dams(ECRDs).With the continuous construction of high ECRDs in the Chinese plateaus and cold regions,it is of great urgency and importance to understand the physical and mechanical characteristics of compacted clay-gravel mixtures under freeze-thaw action.To this end,laboratory freezing-thawing tests,computed tomography(CT),and triaxial compression tests were conducted to evaluate the effects of freezethaw cycles on moisture loss,pore structure characteristics,stress-strain behavior,failure strength,elastic modulus,cohesion,and internal friction angle of compacted clay-gravel mixtures.The results demonstrate that,1)the freeze-thaw cycle significantly changed the mechanical characteristics of the clay-gravel mixture samples,but the shape of the stress-strain curve is less sensitive to it.2)The failure strength of samples exhibits a significant decrease after the first freeze-thaw cycle,but shows a certain increase as the number of freeze-thaw cycles increases from 1 to 2.3)The elastic modulus of samples first decreases and then increases with increasing freeze-thaw cycle,and the most severe deterioration was observed after the first freeze-thaw cycle.4)Regardless of the number of freeze-thaw cycles,there is a linear relationship between failure strength and elastic modulus for a sample that has suffered freeze-thaw weathering.5)The cohesion of samples decreases firstly and then slightly increases with increasing freeze-thaw cycles,while the internal friction angle is hardly affected.
基金the Natural Science Foundation of Jiang-su Province(Grant No.BK20181402)the National Natural Science Foundation of China(Grant No.51878354)+1 种基金a Project Funded by the National First-class Disciplines(PNFD),a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)a Project Funded by the Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,Nanjing Forestry University(Nanjing,China).
文摘This paper presents an experimental investigation to identify suitable indices to assess durability of glulam when subjected to freeze-thaw cycles in an exposed enviroenment.In this study,two types of glulam specimens were tested for their performance when subjected to different levels of aging due to freezing and thawing.Effect of aging treatment on various parameters including thickness swelling rate,static bending strength,elastic modulus,shear strength,and peeling rate of adhesive layer were studied.Obtained results showed that freeze-thaw aging treatment did not affect the water-resistance of the specimens as measured by thickness swelling rate and had little effect on the dimensional stability of the material.However,the applied aging treatment weakened the bending resistance of the glulam specimens with more pronounced effects on on low-density wood.On the other hand,bond strength of high-density wood was relatively more affected due to the appliedfreeze-thaw cycles.For highdensity wood,it is suggested that the shear strength of the adhesive layer be taken as an important index to determine the durability of freeze-thaw cycles aging.For low-density wood,on the other hand,the static bending strength can be used as an index to determine the durability of glulam under freeze-thaw cycles aging.
基金the Fundamental Research Funds for the Central Universities(Project No.2022CDJKYJH037)the National Key R&D Program of China(Grant No.2021YFB3901402)。
文摘To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect.
基金the National Natural Science Foundation of China(No.50479059)National Basic Research Program(No.2007CB714202)
文摘The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied. Strength and deformations of plain concrete specimens in two loading direction under biaxial compression with stress ratio of a=0, 0.25, 0.5, 0.75, 1.0 were obtained after 0, 25, 50 cycles of freeze-thaw. Influences of freeze-thaw cycles and stress ratio on the peak stress and deformation of this point were analyzed according to the experimental results, Based on the test data, the failure criterion expressed in terms of principal stress after different cycles of freeze-thaw, and the failure criterion with consideration of the influence of freeze-thaw cycle and stress ratio were proposed respectively.