期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Soft Computing Based Discriminator Model for Glaucoma Diagnosis
1
作者 Anisha Rebinth S.Mohan Kumar 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期867-880,共14页
In this study, a Discriminator Model for Glaucoma Diagnosis (DMGD)using soft computing techniques is presented. As the biomedical images such asfundus images are often acquired in high resolution, the Region of Intere... In this study, a Discriminator Model for Glaucoma Diagnosis (DMGD)using soft computing techniques is presented. As the biomedical images such asfundus images are often acquired in high resolution, the Region of Interest (ROI)for glaucoma diagnosis must be selected at first to reduce the complexity of anysystem. The DMGD system uses a series of pre-processing;initial cropping by thegreen channel’s intensity, Spatially Weighted Fuzzy C Means (SWFCM), bloodvessel detection and removal by Gaussian Derivative Filters (GDF) and inpaintingalgorithms. Once the ROI has been selected, the numerical features such as colour, spatial domain features from Local Binary Pattern (LBP) and frequencydomain features from LAWS are generated from the corresponding ROI forfurther classification using kernel based Support Vector Machine (SVM). TheDMGD system performances are validated using four fundus image databases;ORIGA, RIM-ONE, DRISHTI-GS1, and HRF with four different kernels;LinearKernel (LK), Polynomial Kernel (PK), Radial Basis Function (RBFK) kernel,Quadratic Kernel (QK) based SVM classifiers. Results show that the DMGD system classifies the fundus images accurately using the multiple features and kernelbased classifies from the properly segmented ROI. 展开更多
关键词 GLAUCOMA support vector classification clustering technique spatial domain and frequency domain features
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部