With the large penetration of renewable energy,fulfilling the balance between electricity demand and supply is a challenge to the modern power system.According to the UK government,the wind power penetration will reac...With the large penetration of renewable energy,fulfilling the balance between electricity demand and supply is a challenge to the modern power system.According to the UK government,the wind power penetration will reach 30%by the year 2020.The role of electric vehicles(EVs)contributing to frequency response was investigated.A dynamic frequency control strategy which considers the comfort level of vehicle owners was developed for EVs to regulate their power consumption according to the deviation of system frequency.A simulation model of a population of EVs equipped with such controlwas implemented inMatlab/Simulink platform.In this paper,a simplified Great Britain power system model is used to study the contribution of EVs to dynamic frequency control.The case study showed that using EVs as a demand response resource can greatly reduce the frequency deviations.And the rapid response from EVs can help reduce the operation cost of conventional generators.展开更多
The continuous development of hydrogen-electrolyser and fuel-cell technologies not only reduces their investment and operating costs but also improves their technical performance to meet fast-acting requirements of el...The continuous development of hydrogen-electrolyser and fuel-cell technologies not only reduces their investment and operating costs but also improves their technical performance to meet fast-acting requirements of electrical grid balancing services such as frequency-response services.In order to project the feasibility of co-locating a hydrogen-storage system with a wind farm for the dynamic regulation frequency-response provision in Great Britain,this paper develops a modelling framework to coordinate the wind export and frequency responses to the main grid and manage the interaction of the electrolyser,compressor,storage tank and fuel cell within the hydrogen-storage system by respecting the market mechanisms and the balance and conversion of power and hydrogen flows.Then the revenue of frequency-response service provision and a variety of costs induced by the hydrogen-storage system are translated into the net profit of the co-location system,which is maximized by optimizing the capacities of hydrogen-storage-system components,hydrogen-storage levels that guide the hydrogen restoration via operational baselines and the power interchange between a wind-farm and hydrogen-storage system,as well as the capacities tendered for low-and high-frequency dynamic regulation services.The developed modelling framework is tested based on a particular 432-MW offshore wind farm in Great Britain combined with the techno-economics of electrolysers and fuel cells projected for 2030 and 2050 scenarios.The optimized system configuration and operation are compared between different operating scenarios and discussed alongside the prospect of applying hydrogen-storage systems for frequency-response provision.展开更多
基金This work was supported in part by UK-China NSFC/EPSRC EV(Nos.51361130152&EP/L001039/1)the project National Natural Science Foundation of China(Nos.51307115,51377117,and 51277128)+3 种基金the National High Technology R&D Program(863 Program)of China(No.2015AA050403)the Special funding for"Thousands Plan"of SGCC(No.XT71-12-028)Top&Tail Transformation Program(No.EP/I031707/1)Tianjin Municipal Science and Technology Development Program of China(No.13TXSYJC40400).
文摘With the large penetration of renewable energy,fulfilling the balance between electricity demand and supply is a challenge to the modern power system.According to the UK government,the wind power penetration will reach 30%by the year 2020.The role of electric vehicles(EVs)contributing to frequency response was investigated.A dynamic frequency control strategy which considers the comfort level of vehicle owners was developed for EVs to regulate their power consumption according to the deviation of system frequency.A simulation model of a population of EVs equipped with such controlwas implemented inMatlab/Simulink platform.In this paper,a simplified Great Britain power system model is used to study the contribution of EVs to dynamic frequency control.The case study showed that using EVs as a demand response resource can greatly reduce the frequency deviations.And the rapid response from EVs can help reduce the operation cost of conventional generators.
文摘The continuous development of hydrogen-electrolyser and fuel-cell technologies not only reduces their investment and operating costs but also improves their technical performance to meet fast-acting requirements of electrical grid balancing services such as frequency-response services.In order to project the feasibility of co-locating a hydrogen-storage system with a wind farm for the dynamic regulation frequency-response provision in Great Britain,this paper develops a modelling framework to coordinate the wind export and frequency responses to the main grid and manage the interaction of the electrolyser,compressor,storage tank and fuel cell within the hydrogen-storage system by respecting the market mechanisms and the balance and conversion of power and hydrogen flows.Then the revenue of frequency-response service provision and a variety of costs induced by the hydrogen-storage system are translated into the net profit of the co-location system,which is maximized by optimizing the capacities of hydrogen-storage-system components,hydrogen-storage levels that guide the hydrogen restoration via operational baselines and the power interchange between a wind-farm and hydrogen-storage system,as well as the capacities tendered for low-and high-frequency dynamic regulation services.The developed modelling framework is tested based on a particular 432-MW offshore wind farm in Great Britain combined with the techno-economics of electrolysers and fuel cells projected for 2030 and 2050 scenarios.The optimized system configuration and operation are compared between different operating scenarios and discussed alongside the prospect of applying hydrogen-storage systems for frequency-response provision.