期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic frequency response from electric vehicles in the Great Britain power system 被引量:8
1
作者 Jian MENG Yunfei MU +3 位作者 Jianzhong WU Hongjie JIA Qian DAI Xiaodan YU 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2015年第2期203-211,共9页
With the large penetration of renewable energy,fulfilling the balance between electricity demand and supply is a challenge to the modern power system.According to the UK government,the wind power penetration will reac... With the large penetration of renewable energy,fulfilling the balance between electricity demand and supply is a challenge to the modern power system.According to the UK government,the wind power penetration will reach 30%by the year 2020.The role of electric vehicles(EVs)contributing to frequency response was investigated.A dynamic frequency control strategy which considers the comfort level of vehicle owners was developed for EVs to regulate their power consumption according to the deviation of system frequency.A simulation model of a population of EVs equipped with such controlwas implemented inMatlab/Simulink platform.In this paper,a simplified Great Britain power system model is used to study the contribution of EVs to dynamic frequency control.The case study showed that using EVs as a demand response resource can greatly reduce the frequency deviations.And the rapid response from EVs can help reduce the operation cost of conventional generators. 展开更多
关键词 Electric vehicles(EVs) dynamic frequency response Vehicle to grid(V2G) State of charge(SOC)
原文传递
Wind-farm and hydrogen-storage co-location system optimization for dynamic frequency response in the UK
2
作者 Fulin Fan Shanay Skellern +1 位作者 David Campos-Gaona John Nwobu 《Clean Energy》 EI CSCD 2023年第1期157-173,共17页
The continuous development of hydrogen-electrolyser and fuel-cell technologies not only reduces their investment and operating costs but also improves their technical performance to meet fast-acting requirements of el... The continuous development of hydrogen-electrolyser and fuel-cell technologies not only reduces their investment and operating costs but also improves their technical performance to meet fast-acting requirements of electrical grid balancing services such as frequency-response services.In order to project the feasibility of co-locating a hydrogen-storage system with a wind farm for the dynamic regulation frequency-response provision in Great Britain,this paper develops a modelling framework to coordinate the wind export and frequency responses to the main grid and manage the interaction of the electrolyser,compressor,storage tank and fuel cell within the hydrogen-storage system by respecting the market mechanisms and the balance and conversion of power and hydrogen flows.Then the revenue of frequency-response service provision and a variety of costs induced by the hydrogen-storage system are translated into the net profit of the co-location system,which is maximized by optimizing the capacities of hydrogen-storage-system components,hydrogen-storage levels that guide the hydrogen restoration via operational baselines and the power interchange between a wind-farm and hydrogen-storage system,as well as the capacities tendered for low-and high-frequency dynamic regulation services.The developed modelling framework is tested based on a particular 432-MW offshore wind farm in Great Britain combined with the techno-economics of electrolysers and fuel cells projected for 2030 and 2050 scenarios.The optimized system configuration and operation are compared between different operating scenarios and discussed alongside the prospect of applying hydrogen-storage systems for frequency-response provision. 展开更多
关键词 dynamic regulation frequency response hydrogen-storage system techno-economic optimization UK perspective wind farm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部