This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch si...This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.展开更多
The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Rec...The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Recognition(HAR)efforts.However,the significant computational demands and memory requirements hinder the practical deployment of deep networks in resource-constrained systems.This paper introduces a novel network pruning method based on the energy spectral density of data in the frequency domain,which reduces the model’s depth and accelerates activity inference.Unlike traditional pruning methods that focus on the spatial domain and the importance of filters,this method converts sensor data,such as HAR data,to the frequency domain for analysis.It emphasizes the low-frequency components by calculating their energy spectral density values.Subsequently,filters that meet the predefined thresholds are retained,and redundant filters are removed,leading to a significant reduction in model size without compromising performance or incurring additional computational costs.Notably,the proposed algorithm’s effectiveness is empirically validated on a standard five-layer CNNs backbone architecture.The computational feasibility and data sensitivity of the proposed scheme are thoroughly examined.Impressively,the classification accuracy on three benchmark HAR datasets UCI-HAR,WISDM,and PAMAP2 reaches 96.20%,98.40%,and 92.38%,respectively.Concurrently,our strategy achieves a reduction in Floating Point Operations(FLOPs)by 90.73%,93.70%,and 90.74%,respectively,along with a corresponding decrease in memory consumption by 90.53%,93.43%,and 90.05%.展开更多
The traditional calculation method of frequency-domain Green function mainly utilizes series or asymptotic expansion to carry out numerical approximation, however, this method requires very careful zoning, thus the co...The traditional calculation method of frequency-domain Green function mainly utilizes series or asymptotic expansion to carry out numerical approximation, however, this method requires very careful zoning, thus the computing process is complex with many cycles, which has greatly affected the computing efficiency. To improve the computing efficiency, this paper introduces Gaussian integral to the numerical calculation of the frequency-domain Green function and its partial derivatives. It then compares the calculation result with that in existing references. The comparison results demonstrate that, on the basis of its sufficient accuracy, the method has greatly simplified the computing process, reduced the zoning and improved the computing efficiency.展开更多
Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is d...Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods.3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data.Thus,we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm.To eliminate the source singularities in the numerical simulations,we split the fields into primary and secondary fields.The primary fields are calculated using homogeneous or layered models with analytical solutions,and the secondary(scattered) fields are solved by the finite-element method.The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver,which greatly improves the computational efficiency.The inversion algorithm was based on damping leastsquares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix.Synthetic and field data were used to test the effectiveness of the proposed method.展开更多
The complexity of an elastic wavefield increases the nonlinearity of inversion, To some extent, multiscale inversion decreases the nonlinearity of inversion and prevents it from falling into local extremes. A multisca...The complexity of an elastic wavefield increases the nonlinearity of inversion, To some extent, multiscale inversion decreases the nonlinearity of inversion and prevents it from falling into local extremes. A multiscale strategy based on the simultaneous use of frequency groups and layer stripping method based on damped wave field improves the stability of inversion. A dual-level parallel algorithm is then used to decrease the computational cost and improve practicability. The seismic wave modeling of a single frequency and inversion in a frequency group are computed in parallel by multiple nodes based on multifrontal massively parallel sparse direct solver and MPI. Numerical tests using an overthrust model show that the proposed inversion algorithm can effectively improve the stability and accuracy of inversion by selecting the appropriate inversion frequency and damping factor in low- frequency seismic data.展开更多
As a high quality seismic imaging method, full waveform inversion (FWI) can accurately reconstruct the physical parameter model for the subsurface medium. However, application of the FWI in seismic data processing i...As a high quality seismic imaging method, full waveform inversion (FWI) can accurately reconstruct the physical parameter model for the subsurface medium. However, application of the FWI in seismic data processing is computationally expensive, especially for the three-dimension complex medium inversion. Introducing blended source technology into the frequency-domain FWI can greatly reduce the computational burden and improve the efficiency of the inversion. However, this method has two issues: first, crosstalk noise is caused by interference between the sources involved in the encoding, resulting in an inversion result with some artifacts; second, it is more sensitive to ambient noise compared to conventional FWI, therefore noisy data results in a poor inversion. This paper introduces a frequency-group encoding method to suppress crosstalk noise, and presents a frequency- domain auto-adapting FWI based on source-encoding technology. The conventional FWI method and source-encoding based FWI method are combined using an auto-adapting mechanism. This improvement can both guarantee the quality of the inversion result and maximize the inversion efficiency.展开更多
The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the tim...The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.展开更多
AIM To establish whether frequency-domain optical coherence tomography(FD-OCT) is safe and effective in the evaluation and treatment of angiographicallyintermediate coronary lesions(ICL) METHODS Sixty-four patients wi...AIM To establish whether frequency-domain optical coherence tomography(FD-OCT) is safe and effective in the evaluation and treatment of angiographicallyintermediate coronary lesions(ICL) METHODS Sixty-four patients with 2-dimensional quantitativecoronary angiography(2D-QCA) demonstrating ICL were included. OCT imaging was performed. According to predetermined OCT criteria, patients were assigned to either of 2 groups: OCT-guided percutaneous coronary intervention(PCI) or OCT-guided optimal medical therapy(OMT). The primary efficacy endpoint was to demonstrate the superiority and higher accuracy of FD-OCT compared to 2D-QCA in evaluating stenosis severity in patients with ICL. The primary safety endpoint was the incidence of 30-d major adverse cardiac events(MACE). Secondary endpoints included MACE at 12 mo and other clinical events.RESULTS Analysis of the primary efficacy endpoint demonstrates that 2D-QCA overestimates the stenosis severity of ICL in both the OCT-guided PCI and OMT groups, proving FD-OCT to be superior to and more precise than 2D-QCA in treating this subset of lesions. The primary safety endpoint was fully met with the incidence of 30-d MACE being nil in both the OCT-guided PCI and OCTguided OMT groups. Incidences of secondary endpoints were found to be low in both arms, the only exception being the relatively high incidence of recurrent episodes of angina which was, however, very similar in the 2 groups.CONCLUSION FD-OCT is safe and effective in the evaluation and treatment of ICL. Larger studies are needed to firmly establish the efficacy and safety of FD-OCT in treating ICL across all coronary artery disease population subgroups.展开更多
In this paper, a Turbo aided Cyclic Prefix (CP) reconstruction scheme, termed Turbo- CPR, is proposed for Single-Carrier systems with Frequency-Domain Equalization (SC-FDE) that employ insufficient CP in the transmitt...In this paper, a Turbo aided Cyclic Prefix (CP) reconstruction scheme, termed Turbo- CPR, is proposed for Single-Carrier systems with Frequency-Domain Equalization (SC-FDE) that employ insufficient CP in the transmitter. In Turbo-CPR, the decoder output is incorporated in the process of equalization, i.e. Turbo equalizer is employed. It is shown in the simulation results that Turbo-CPR not only recovers the performance loss due to insufficiency of CP, but also provides extra gains over the lower bound of performance for conventional CP reconstruction schemes.展开更多
Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element method...Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element methods. Targeted at viscoelastic numerical modeling for multilayered media, the constant-Q acoustic wave equation is transformed into the corresponding wave integral representation with its Green's function accounting for viscoelastic coefficients. An efficient alternative for full-waveform solution to the integral equation is proposed in this article by extending conventional frequency-domain boundary element methods to viscoelastic media. The viscoelastic boundary element method enjoys a distinct characteristic of the explicit use of boundary continuity conditions of displacement and traction, leading to a semi-analytical solution with sufficient accuracy for simulating the viscoelastic effect across irregular interfaces. Numerical experiments to study the viscoelastic absorption of different Q values demonstrate the accuracy and applicability of the method.展开更多
Aiming at harmonic detection, fast Fourier transform can only detect integer harmonics precisely, short time Fourier transform can detect non-integer harmonics with low resolution, and some former wavelet based method...Aiming at harmonic detection, fast Fourier transform can only detect integer harmonics precisely, short time Fourier transform can detect non-integer harmonics with low resolution, and some former wavelet based methods have no aliasing-reduction scheme which result in low measurement precision and poor robustness. A frequency-domain interpolation algorithm to detect harmonics is proposed by choosing Shannon wavelet. Shannon wavelet is an orthogonal wavelet possessing best ideal frequency domain localization ability, it can restrict wavelet abasing but bring about Gibbs oscillation phenomenon simultaneously. An interpolation algorithm is developed to overcome this problem. Simulation reveals that the proposed method can effectively cancel aliasing, spectral leakage and Gibbs phenomenon, so it provides an effective means for power system harmonic analysis.展开更多
A discrete algorithm suitable for the computation of complex frequency-domain convolution on computers was derived. The Durbin's numerical inversion of Laplace transforms can be used to figure out the time-domain ...A discrete algorithm suitable for the computation of complex frequency-domain convolution on computers was derived. The Durbin's numerical inversion of Laplace transforms can be used to figure out the time-domain digital solution of the result of complex frequency-domain convolutions. Compared with the digital solutions and corresponding analytical solutions, it is shown that the digital solutions have high precision.展开更多
A new mixed method for relative error model order reduction is proposed. In the proposed method the frequency domain balanced stochastic truncation method is improved by applying the generalized singular perturbation ...A new mixed method for relative error model order reduction is proposed. In the proposed method the frequency domain balanced stochastic truncation method is improved by applying the generalized singular perturbation method to the frequency domain balanced system in the reduction procedure. The frequency domain balanced stochastic truncation method, which was proposed in [15] and [17] by the author, is based on two recently developed methods, namely frequency domain balanced truncation within a desired frequency bound and inner-outer factorization techniques. The proposed method in ttiis paper is a carry over of the frequency-domain balanced stochastic truncation and is of interest for practical model order reduction because in this context it shows to keep the accuracy of the approximation as high as possible without sacrificing the computational efficiency and important system properties. It is shown that some important properties of the frequency domain stochastic balanced reduction technique are extended to the proposed reduction method by using the concept and properties of the reciprocal systems. Numerical results show the accuracy, simplicity and flexibility enhancement of the method.展开更多
In this paper, an efficient Cyclic Prefix (CP) reconstruction scheme is proposed for Single-Carrier systems with Frequency-Domain Equalization (SC-FDE) that employ insufficient length of CP at the transmitter. By ...In this paper, an efficient Cyclic Prefix (CP) reconstruction scheme is proposed for Single-Carrier systems with Frequency-Domain Equalization (SC-FDE) that employ insufficient length of CP at the transmitter. By utilizing a decision feedback filter to cancel the residual InterSymbol Interference (ISI) in the equalized signal, the proposed scheme can effectively lower the low bound of performance for the CP reconstruction schemes and can greatly improve the Bit Error P^te (BER) performance of SC-FDE systems. In addition, the existing methods and the proposed scheme are also optimized. It is shown in the simulation results that, when the Signal-to-Noise Ratio (SNR) exceeds a certain threshold, the proposed scheme can achieve the low bound of performance for the existing methods. Moreover, by increasing the number of iteration or through optimization, the low bound can be outperformed.展开更多
The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved...The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments,we studied the frequency-domain modeling and solution method for FSI in these pipeline systems.Fourteen partial differential equations(PDEs)are utilized to model the pipeline FSI,considering both frequency-dependent friction and bending-flexibility modification.To address the numerical instability encountered by the traditional transfer matrix method(TMM)in solving relatively complex pipelines,an improved TMM is proposed for solving the PDEs in the frequency domain,based on the matrix-stacking strategy and matrix representation of boundary conditions.The proposed FSI model and improved solution method are validated by numerical cases and experiments.An experimental rig of a practical hydraulic system,consisting of an aircraft engine-driven pump,a Z-shaped aero-hydraulic pipeline,and a throttle valve,was constructed for testing.The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results,which indicate that the proposed model and solution method are effective in practical applications.The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.展开更多
High-resolution frequency-domain spectroscopy(FDS) is set up using a coherent and continuous wave terahertz(THz) emitter and receiver.THz waves are generated and detected by two photomixers with two distributed feedba...High-resolution frequency-domain spectroscopy(FDS) is set up using a coherent and continuous wave terahertz(THz) emitter and receiver.THz waves are generated and detected by two photomixers with two distributed feedback(DFB) lasers.Atmospheric water vapor with different relative humidity is systematically investigated by the FDS.A high-frequency resolution of ~14 MHz is obtained with the help of Hilbert transformation, leading to a well resolved and distinct transmittance characterization of water vapor.Compared with conventional THz time-domain spectroscopy, the high-resolution continuous wave THz spectrometer is one of the most practical systems in gas-phase molecular sensing, identification, and monitoring.展开更多
By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sound...By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sounding in near-field zone difficult are discussed.Based on the theory of near source field,a new method of dual-frequency electromagnetic sounding of combination wave in near-field zone is advanced.Meanwhile,the method of measurement of fields,the definition of apparent resistivity and the numerical algorithm are approached.展开更多
This article studies the broadband noise of a rotor in upstream turbulence. A numerical approach is proposed, based on frequency domain, for predicting rotor broadband noise which requires the aerodynamic sources to b...This article studies the broadband noise of a rotor in upstream turbulence. A numerical approach is proposed, based on frequency domain, for predicting rotor broadband noise which requires the aerodynamic sources to be integrated over the actual blade surface rather than over the mean-chord surface. The prediction of the radiated rotor broadband noise due to turbulence is made This method is validated through a comparison between numerical predictions and measured data, with a reasonable agreement. Noise level directivity shows that the main lobe is located along the rotor axis, while the minimum noise occurs in the direction vertical to the rotor axis.展开更多
Flutter derivatives are essential for flutter analysis of long-span bridges,and they are generally identified from the vibration testing data of a sectional model suspended in a wind tunnel.Making use of the forced vi...Flutter derivatives are essential for flutter analysis of long-span bridges,and they are generally identified from the vibration testing data of a sectional model suspended in a wind tunnel.Making use of the forced vibration testing data of three sectional models,namely,a thin-plate model,a nearly streamlined model,and a bluff-body model,a comparative study was made to identify the flutter derivatives of each model by using a time-domain method and a frequency-domain method.It was shown that all the flutter derivatives of the thin-plate model identified with the frequency-domain method and time-domain method,respectively,agree very well.Moreover,some of the flutter derivatives of each of the other two models identified with the two methods deviate to some extent.More precisely,the frequency-domain method usually results in smooth curves of the flutter derivatives.The formulation of time-domain method makes the identification results of flutter derivatives relatively sensitive to the signal phase lag between vibration state vector and aerodynamic forces and also prone to be disturbed by noise and nonlinearity.展开更多
Frequency-domain waveform seismic tomography includes modeling of wave propagation and full waveform inversion of correcting the initial velocity model. In the forward modeling, we use direct solution based on sparse ...Frequency-domain waveform seismic tomography includes modeling of wave propagation and full waveform inversion of correcting the initial velocity model. In the forward modeling, we use direct solution based on sparse matrix factorization, combined with nine-point finite-difference for the linear system of equations. In the waveform inversion, we use preconditioned gradient method where the preconditioner is provided by the diagonal of the approximate Hessian matrix. We successfully applied waveform inversion method from low to high frequency in two sets of Marmousi data. One is the data set generated by frequencydomain finite-difference modeling, and the other is the original Marmousi shots data set. The former result is very close to the true velocity model. In the original shots data set inversion, we replace the prior source with estimated source; the result is also acceptable, and consistent with the true model.展开更多
基金supported by the National Key R&D Program(No.2022YFA1602201)。
文摘This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.
基金supported by National Natural Science Foundation of China(Nos.61902158 and 62202210).
文摘The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Recognition(HAR)efforts.However,the significant computational demands and memory requirements hinder the practical deployment of deep networks in resource-constrained systems.This paper introduces a novel network pruning method based on the energy spectral density of data in the frequency domain,which reduces the model’s depth and accelerates activity inference.Unlike traditional pruning methods that focus on the spatial domain and the importance of filters,this method converts sensor data,such as HAR data,to the frequency domain for analysis.It emphasizes the low-frequency components by calculating their energy spectral density values.Subsequently,filters that meet the predefined thresholds are retained,and redundant filters are removed,leading to a significant reduction in model size without compromising performance or incurring additional computational costs.Notably,the proposed algorithm’s effectiveness is empirically validated on a standard five-layer CNNs backbone architecture.The computational feasibility and data sensitivity of the proposed scheme are thoroughly examined.Impressively,the classification accuracy on three benchmark HAR datasets UCI-HAR,WISDM,and PAMAP2 reaches 96.20%,98.40%,and 92.38%,respectively.Concurrently,our strategy achieves a reduction in Floating Point Operations(FLOPs)by 90.73%,93.70%,and 90.74%,respectively,along with a corresponding decrease in memory consumption by 90.53%,93.43%,and 90.05%.
基金Supported by the National Natural Science Foundation of China under Grant No.50779007the National Science Foundation for Young Scientists of China under Grant No.50809018+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070217074the Defence Advance Research Program of Science and Technology of Ship Industry under Grant No.07J1.1.6Harbin Engineering University Foundation under Grant No.HEUFT07069
文摘The traditional calculation method of frequency-domain Green function mainly utilizes series or asymptotic expansion to carry out numerical approximation, however, this method requires very careful zoning, thus the computing process is complex with many cycles, which has greatly affected the computing efficiency. To improve the computing efficiency, this paper introduces Gaussian integral to the numerical calculation of the frequency-domain Green function and its partial derivatives. It then compares the calculation result with that in existing references. The comparison results demonstrate that, on the basis of its sufficient accuracy, the method has greatly simplified the computing process, reduced the zoning and improved the computing efficiency.
基金supported by the Doctoral Fund Project of the Ministry of Education(No.20130061110060 class tutors)the National Natural Science Foundation of China(No.41504083)National Basic Research Program of China(973Program)(No.2013CB429805)
文摘Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods.3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data.Thus,we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm.To eliminate the source singularities in the numerical simulations,we split the fields into primary and secondary fields.The primary fields are calculated using homogeneous or layered models with analytical solutions,and the secondary(scattered) fields are solved by the finite-element method.The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver,which greatly improves the computational efficiency.The inversion algorithm was based on damping leastsquares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix.Synthetic and field data were used to test the effectiveness of the proposed method.
基金supported by the Natural Science Foundation of China(No.41374122)
文摘The complexity of an elastic wavefield increases the nonlinearity of inversion, To some extent, multiscale inversion decreases the nonlinearity of inversion and prevents it from falling into local extremes. A multiscale strategy based on the simultaneous use of frequency groups and layer stripping method based on damped wave field improves the stability of inversion. A dual-level parallel algorithm is then used to decrease the computational cost and improve practicability. The seismic wave modeling of a single frequency and inversion in a frequency group are computed in parallel by multiple nodes based on multifrontal massively parallel sparse direct solver and MPI. Numerical tests using an overthrust model show that the proposed inversion algorithm can effectively improve the stability and accuracy of inversion by selecting the appropriate inversion frequency and damping factor in low- frequency seismic data.
基金financially supported by the National Natural Science Foundation of China(No.41074075/D0409)the National Science and Technology Major Project(No.2011ZX05025-001-04)
文摘As a high quality seismic imaging method, full waveform inversion (FWI) can accurately reconstruct the physical parameter model for the subsurface medium. However, application of the FWI in seismic data processing is computationally expensive, especially for the three-dimension complex medium inversion. Introducing blended source technology into the frequency-domain FWI can greatly reduce the computational burden and improve the efficiency of the inversion. However, this method has two issues: first, crosstalk noise is caused by interference between the sources involved in the encoding, resulting in an inversion result with some artifacts; second, it is more sensitive to ambient noise compared to conventional FWI, therefore noisy data results in a poor inversion. This paper introduces a frequency-group encoding method to suppress crosstalk noise, and presents a frequency- domain auto-adapting FWI based on source-encoding technology. The conventional FWI method and source-encoding based FWI method are combined using an auto-adapting mechanism. This improvement can both guarantee the quality of the inversion result and maximize the inversion efficiency.
基金supported by the Joint Fund of Seismological Science(Grant No.U1839206)the National R&D Program on Monitoring,Early Warning and Prevention of Major Natural Disaster(Grant No.2017YFC1500301)+2 种基金supported by IGGCAS Research Start-up Funds(Grant No.E0515402)National Natural Science Foundation of China(Grant No.E1115401)supported by National Natural Science Foundation of China(Grant No.11971258).
文摘The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.
基金Supported by the National Natural Science Foundation of China,No.81570363the National Key Research and Development Program of China,No.2016YFA0201304the Priority Academic Program Development of Jiangsu Higher Education Institutions,No.KYZZ15_0263
文摘AIM To establish whether frequency-domain optical coherence tomography(FD-OCT) is safe and effective in the evaluation and treatment of angiographicallyintermediate coronary lesions(ICL) METHODS Sixty-four patients with 2-dimensional quantitativecoronary angiography(2D-QCA) demonstrating ICL were included. OCT imaging was performed. According to predetermined OCT criteria, patients were assigned to either of 2 groups: OCT-guided percutaneous coronary intervention(PCI) or OCT-guided optimal medical therapy(OMT). The primary efficacy endpoint was to demonstrate the superiority and higher accuracy of FD-OCT compared to 2D-QCA in evaluating stenosis severity in patients with ICL. The primary safety endpoint was the incidence of 30-d major adverse cardiac events(MACE). Secondary endpoints included MACE at 12 mo and other clinical events.RESULTS Analysis of the primary efficacy endpoint demonstrates that 2D-QCA overestimates the stenosis severity of ICL in both the OCT-guided PCI and OMT groups, proving FD-OCT to be superior to and more precise than 2D-QCA in treating this subset of lesions. The primary safety endpoint was fully met with the incidence of 30-d MACE being nil in both the OCT-guided PCI and OCTguided OMT groups. Incidences of secondary endpoints were found to be low in both arms, the only exception being the relatively high incidence of recurrent episodes of angina which was, however, very similar in the 2 groups.CONCLUSION FD-OCT is safe and effective in the evaluation and treatment of ICL. Larger studies are needed to firmly establish the efficacy and safety of FD-OCT in treating ICL across all coronary artery disease population subgroups.
文摘In this paper, a Turbo aided Cyclic Prefix (CP) reconstruction scheme, termed Turbo- CPR, is proposed for Single-Carrier systems with Frequency-Domain Equalization (SC-FDE) that employ insufficient CP in the transmitter. In Turbo-CPR, the decoder output is incorporated in the process of equalization, i.e. Turbo equalizer is employed. It is shown in the simulation results that Turbo-CPR not only recovers the performance loss due to insufficiency of CP, but also provides extra gains over the lower bound of performance for conventional CP reconstruction schemes.
基金supported by the National Natural Science Foundation of China (No. 41130418)the Strategic Leading Science and Technology Programme (Class B) of the Chinese Academy of Sciences (No. XDB10010400)
文摘Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element methods. Targeted at viscoelastic numerical modeling for multilayered media, the constant-Q acoustic wave equation is transformed into the corresponding wave integral representation with its Green's function accounting for viscoelastic coefficients. An efficient alternative for full-waveform solution to the integral equation is proposed in this article by extending conventional frequency-domain boundary element methods to viscoelastic media. The viscoelastic boundary element method enjoys a distinct characteristic of the explicit use of boundary continuity conditions of displacement and traction, leading to a semi-analytical solution with sufficient accuracy for simulating the viscoelastic effect across irregular interfaces. Numerical experiments to study the viscoelastic absorption of different Q values demonstrate the accuracy and applicability of the method.
文摘Aiming at harmonic detection, fast Fourier transform can only detect integer harmonics precisely, short time Fourier transform can detect non-integer harmonics with low resolution, and some former wavelet based methods have no aliasing-reduction scheme which result in low measurement precision and poor robustness. A frequency-domain interpolation algorithm to detect harmonics is proposed by choosing Shannon wavelet. Shannon wavelet is an orthogonal wavelet possessing best ideal frequency domain localization ability, it can restrict wavelet abasing but bring about Gibbs oscillation phenomenon simultaneously. An interpolation algorithm is developed to overcome this problem. Simulation reveals that the proposed method can effectively cancel aliasing, spectral leakage and Gibbs phenomenon, so it provides an effective means for power system harmonic analysis.
文摘A discrete algorithm suitable for the computation of complex frequency-domain convolution on computers was derived. The Durbin's numerical inversion of Laplace transforms can be used to figure out the time-domain digital solution of the result of complex frequency-domain convolutions. Compared with the digital solutions and corresponding analytical solutions, it is shown that the digital solutions have high precision.
文摘A new mixed method for relative error model order reduction is proposed. In the proposed method the frequency domain balanced stochastic truncation method is improved by applying the generalized singular perturbation method to the frequency domain balanced system in the reduction procedure. The frequency domain balanced stochastic truncation method, which was proposed in [15] and [17] by the author, is based on two recently developed methods, namely frequency domain balanced truncation within a desired frequency bound and inner-outer factorization techniques. The proposed method in ttiis paper is a carry over of the frequency-domain balanced stochastic truncation and is of interest for practical model order reduction because in this context it shows to keep the accuracy of the approximation as high as possible without sacrificing the computational efficiency and important system properties. It is shown that some important properties of the frequency domain stochastic balanced reduction technique are extended to the proposed reduction method by using the concept and properties of the reciprocal systems. Numerical results show the accuracy, simplicity and flexibility enhancement of the method.
文摘In this paper, an efficient Cyclic Prefix (CP) reconstruction scheme is proposed for Single-Carrier systems with Frequency-Domain Equalization (SC-FDE) that employ insufficient length of CP at the transmitter. By utilizing a decision feedback filter to cancel the residual InterSymbol Interference (ISI) in the equalized signal, the proposed scheme can effectively lower the low bound of performance for the CP reconstruction schemes and can greatly improve the Bit Error P^te (BER) performance of SC-FDE systems. In addition, the existing methods and the proposed scheme are also optimized. It is shown in the simulation results that, when the Signal-to-Noise Ratio (SNR) exceeds a certain threshold, the proposed scheme can achieve the low bound of performance for the existing methods. Moreover, by increasing the number of iteration or through optimization, the low bound can be outperformed.
基金supported by the National Natural Science Foundation of China(Nos.51975025 and 51890822)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2016QNRC001)the National Key Research and Development Program of China(No.2019YFB2004500)。
文摘The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments,we studied the frequency-domain modeling and solution method for FSI in these pipeline systems.Fourteen partial differential equations(PDEs)are utilized to model the pipeline FSI,considering both frequency-dependent friction and bending-flexibility modification.To address the numerical instability encountered by the traditional transfer matrix method(TMM)in solving relatively complex pipelines,an improved TMM is proposed for solving the PDEs in the frequency domain,based on the matrix-stacking strategy and matrix representation of boundary conditions.The proposed FSI model and improved solution method are validated by numerical cases and experiments.An experimental rig of a practical hydraulic system,consisting of an aircraft engine-driven pump,a Z-shaped aero-hydraulic pipeline,and a throttle valve,was constructed for testing.The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results,which indicate that the proposed model and solution method are effective in practical applications.The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.
基金supported by the National Natural Science Foundation of China(Nos.61831001 and 61222110);the High-Level Talent Introduction Project of Beihang University(No.ZG216S1878)the Youth-Top-Talent Support Project of Beihang University(No.ZG226S1821)
文摘High-resolution frequency-domain spectroscopy(FDS) is set up using a coherent and continuous wave terahertz(THz) emitter and receiver.THz waves are generated and detected by two photomixers with two distributed feedback(DFB) lasers.Atmospheric water vapor with different relative humidity is systematically investigated by the FDS.A high-frequency resolution of ~14 MHz is obtained with the help of Hilbert transformation, leading to a well resolved and distinct transmittance characterization of water vapor.Compared with conventional THz time-domain spectroscopy, the high-resolution continuous wave THz spectrometer is one of the most practical systems in gas-phase molecular sensing, identification, and monitoring.
基金Project supported by the Post-Doctoral Science Foundation and the Doctoral Fund of Education Commission of China.
文摘By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sounding in near-field zone difficult are discussed.Based on the theory of near source field,a new method of dual-frequency electromagnetic sounding of combination wave in near-field zone is advanced.Meanwhile,the method of measurement of fields,the definition of apparent resistivity and the numerical algorithm are approached.
文摘This article studies the broadband noise of a rotor in upstream turbulence. A numerical approach is proposed, based on frequency domain, for predicting rotor broadband noise which requires the aerodynamic sources to be integrated over the actual blade surface rather than over the mean-chord surface. The prediction of the radiated rotor broadband noise due to turbulence is made This method is validated through a comparison between numerical predictions and measured data, with a reasonable agreement. Noise level directivity shows that the main lobe is located along the rotor axis, while the minimum noise occurs in the direction vertical to the rotor axis.
文摘Flutter derivatives are essential for flutter analysis of long-span bridges,and they are generally identified from the vibration testing data of a sectional model suspended in a wind tunnel.Making use of the forced vibration testing data of three sectional models,namely,a thin-plate model,a nearly streamlined model,and a bluff-body model,a comparative study was made to identify the flutter derivatives of each model by using a time-domain method and a frequency-domain method.It was shown that all the flutter derivatives of the thin-plate model identified with the frequency-domain method and time-domain method,respectively,agree very well.Moreover,some of the flutter derivatives of each of the other two models identified with the two methods deviate to some extent.More precisely,the frequency-domain method usually results in smooth curves of the flutter derivatives.The formulation of time-domain method makes the identification results of flutter derivatives relatively sensitive to the signal phase lag between vibration state vector and aerodynamic forces and also prone to be disturbed by noise and nonlinearity.
基金Supported by the National Natural Science Foundation of China (69983005)
文摘Frequency-domain waveform seismic tomography includes modeling of wave propagation and full waveform inversion of correcting the initial velocity model. In the forward modeling, we use direct solution based on sparse matrix factorization, combined with nine-point finite-difference for the linear system of equations. In the waveform inversion, we use preconditioned gradient method where the preconditioner is provided by the diagonal of the approximate Hessian matrix. We successfully applied waveform inversion method from low to high frequency in two sets of Marmousi data. One is the data set generated by frequencydomain finite-difference modeling, and the other is the original Marmousi shots data set. The former result is very close to the true velocity model. In the original shots data set inversion, we replace the prior source with estimated source; the result is also acceptable, and consistent with the true model.