Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work in...Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type.展开更多
The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmo...The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmonic load acting on the lining were studied in the frequency domain.The lining is in close contact with the frozen soil,and there is relative movement between the frozen and unfrozen soil due to the phase change.The analytical solution of the vibration of tunnel portal section caused by the harmonic load acting on the lining was derived under the consideration of the anisotropy frost heave of overlying soil.Based on the continuity conditions and boundary conditions,the undetermined coefficients were obtained,and the analytical solutions for different medium displacements and stresses of the cold-region tunnel system were acquired.The vertical pressure coefficient was equivalently simplified as a variable that could be used to replace the thickness of the overlying soil above the tunnel.The analysis of the parameter model shows that the change of the medium parameters(lining,frozen,and unfrozen soil)affects the circumferential stresses,the radial displacements and their peak frequencies of the soil.For example,the increase of density ratio of tunnel lining to frozen soil decreases the radial stresses of the frozen and unfrozen soil;the increase of volumetric frost heaving strain of the frozen soil increases the radial displacements of the frozen surface and decreases the stability of the frozen surface;the increasing of thickness of the frozen soil significantly reduces the radial displacement of unfrozen soil at dimensionless radius η=4.5 compared with that of frozen soil at η=1.5.展开更多
Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the me...Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.展开更多
A macroscopic frost heave model with more clear parameters was established. Based on a porosity rate frost heave model and segregation potential theory, a porosity rate function was deduced and introduced into the str...A macroscopic frost heave model with more clear parameters was established. Based on a porosity rate frost heave model and segregation potential theory, a porosity rate function was deduced and introduced into the stress-strain relationship. Numerical simulation was conducted and verified by frost heave tests. Results show that the porosity rate within the frozen fringe is proportional to the square of temperature gradient and current porosity, and is also proportional to the exponential function of applied pressure. The relative errors between the calculated and measured results of frost depth and frost heave are within 3% and 15% respectively, demonstrating that the temperature gradient, applied pressure and current porosity are the main influencing factors, while temperature is just the constraint of frozen fringe. The improved model have meaningful and accessible parameters, which can be used in engineering with good accuracy.展开更多
Frost heave is an upward swelling of soil during cryogenic conditions in cold regions. It is caused by the accumulation of ice crystals in subgrade soil, which grow upwards when freezing temperatures penetrate into th...Frost heave is an upward swelling of soil during cryogenic conditions in cold regions. It is caused by the accumulation of ice crystals in subgrade soil, which grow upwards when freezing temperatures penetrate into the subgrade. This study establishes the allowable soil subgrade frost heave based on the roughness standard of asphalt pavement in China, and aims to balance the pavement design and frost heave resistance of subgrades in cold regions. We formulated a mechanical model of pavement supported by the boundary conditions of differential frost heave, based on the elastie layered system theory. The differential soil subgrade frost heave was modeled as a sinusoidal function, and the allowable frost heave and the roughness index were modeled as the displacement boundaries for the top and bottom of the pavement structure. Then the allowable frost heave was back-calculated according to the roughness standard. Numerical results show that the allowable frost heave depends on the pavement structure, material properties, the highway grade, and other factors. In order to ensure that the actual soil subgrade frost heave is lower than the allowable frost heave, pavement structures and materials need to be selected and designed carefully. The numerical method proposed here can be applied to establish the frost heave re- sistance of subgrade when the pavement structure and materials are determined.展开更多
The Haerbin-Dalian Passenger Dedicated Line is the first high-speed railway constructed in the seasonally frozen ground regions of northeastern China. Frost heave diseases occurred in the first winter of its operation...The Haerbin-Dalian Passenger Dedicated Line is the first high-speed railway constructed in the seasonally frozen ground regions of northeastern China. Frost heave diseases occurred in the first winter of its operation (between October 2012 and January 2013), and frost heave was observed mainly in the roadbed fills that were considered not susceptible to frost heave. This paper proposes applying two special pavements -- black pavement and insulation-black pavement -- to improve the thermal regime of the roadbed. Three numerical models of the roadbed temperature field were built based on the field con- ditions of the Changchun section (D3K692+840 to D3K692+860). The results show that: (1) Compared with cement pave- ment, black pavement and insulation-black pavement could reduce the freezing index at the roadbed surface by 37% and 64%, respectively, which could influence the maximum frozen depth; (2) the maximum frozen depths under the black pavement and insulation-black pavement were respectively 1.3-1.4 m and 1 m. Compared with cement pavement, they could reduce the maximum frozen depth by 0.4 m and 0.7-0.8 m, respectively, which would reduce the permitted amount of frost heave by 4 mm and 7-8 ram, which would meet the deformation limit established by the Code for Design on Special Subgrade of Railway; (3) the freezing periods of the black pavement and the insulation-black pavement were, respectively, approximately four months and two months. Compared with cement pavement, they could reduce the freezing period by approximately 19 days and 40 days, respectively, and delay the initial freezing time by 9 days and 18 days; and (4) compared with cement pavement, black pavement and black-insulation pavement could reduce the frozen areas of roadbeds in the cold season, which suggests that these two special pavements could provide better thermal stability for roadbeds.展开更多
In order to analyze the connection between the railway subgrade frost heave deformation and temperature variation, five GPS stations' data were used to monitor the deformation on a certain section of railway subgrade...In order to analyze the connection between the railway subgrade frost heave deformation and temperature variation, five GPS stations' data were used to monitor the deformation on a certain section of railway subgrade in northeast China. GAMIT software is used to process the data, providing daily solution, daytime solution and nighttime solution. Vertical trends of these five stations were analyzed to investigate frost heave effect on railway subgrade deformation. The results show that the temperature difference between daytime and night induces stations, significant vertical displacement, and the temperature difference between seasons causes settlement of station which appears linear trend.展开更多
The building of railways on seasonally frozen ground is inevitable as China pursues economic development and the improvement of its citizens'living standards.However,railway construction in seasonally frozen soil ...The building of railways on seasonally frozen ground is inevitable as China pursues economic development and the improvement of its citizens'living standards.However,railway construction in seasonally frozen soil areas is often faced with frost heave,leading to uneven subgrades which seriously threaten traffic safety.This article summarizes extant research results on frost heave mechanism,frost heave factors,and anti-frost measures of railway subgrades in seasonally frozen soil areas.展开更多
In cold regions,the widened subgrade could produce uneven frost heave that is detrimental to the pavement.This study investigates the differential frost heave characteristics in a widened subgrade.The field monitoring...In cold regions,the widened subgrade could produce uneven frost heave that is detrimental to the pavement.This study investigates the differential frost heave characteristics in a widened subgrade.The field monitoring system mainly consists of temperature,moisture,and displacement sensors and distributed optical fiber cables for strain measurement.The monitoring results show that the cooling period in the subgrade is longer than the warming period.Water content in the subgrade changes significantly within 0−2 m below the subgrade surface but stabilizes within 2−5 m.The maximum frost heave occurs from February to March.In comparison,the existing subgrade has a longer freezing period and larger heave value,caused by the higher density and water content inside.Water in the existing subgrade migrates into the new one after widening,leading to frost heave reduction in the existing subgrade.Simultaneously,the traffic loads result in the consolidation of the new subgrade,thus reducing the heave value in the second year.In the third year,the water supply from the existing subgrade facilitates the frost heave in the new subgrade.The tensile strain distributions obtained by the distributed optical fiber cables show that the maximum differential frost heave occurs at the joint between the existing and new subgrades.The differential frost heave gradually stabilizes after three years.Finally,an improved frost heave prediction model is developed based on the segregation potential concept and monitoring results.展开更多
Frost heave is one of the major complications in highway construction in cold regions. Laboratory experiments are im- portant in the study frost heave behavior of soils, and one-dimensional frost heave experiments are...Frost heave is one of the major complications in highway construction in cold regions. Laboratory experiments are im- portant in the study frost heave behavior of soils, and one-dimensional frost heave experiments are the easiest way to evaluate the soil frost heave potential. In a one dimensional frost heave test, the deformation in axial direction is non-uniform because of the confining effect of the cutting ring's sidewall. If the effect of confining boundary on soil de- formation is ignored, the deformation will be over-estimated. In this paper, the effect of confining boundary on soil de- formation is theoretically studied and a volume correction method is developed and applied to the frost heave test of a sulfite saline soil. Test results demonstrate that the sulfite saline soil will expand to a loose, low-density state after several freezing-thawing cycles under the condition of zero axial stress.展开更多
This paper presents methods for monitoring frost heave, device requirements, testing principals, and data analysis re- quirements, such as manual leveling observation, automatic monitoring (frost heave, frost depth, ...This paper presents methods for monitoring frost heave, device requirements, testing principals, and data analysis re- quirements, such as manual leveling observation, automatic monitoring (frost heave, frost depth, and moisture), track dynamic detection, and track status detection. We focused on the requirements of subgrade frost heave monitoring for high speed railways, and the relationship of different monitoring methods during different phases of the railway. The com- prehensive monitoring system of high speed railway subgrade frost heave provided the technical support for dynamic design during construction and safe operation of the rail system.展开更多
In this paper a new mathematical model of secondary frost heave is presented. It is expected that the problem considered under some assumptions is well posed.
Frost heave is one of the main freezing problems for construction in permafrost regions.The Konrad-Morgenstern segregation potential(SP) model is being used in practice for frost heave using numerical techniques.How...Frost heave is one of the main freezing problems for construction in permafrost regions.The Konrad-Morgenstern segregation potential(SP) model is being used in practice for frost heave using numerical techniques.However,the heat release from in-situ and migrated water in the freezing zone could result in some numerical instability,so the simulation of frost fringe is not ideal.In this study,a semi-analytical solution is developed for frost heave prediction of clay soil.The prediction results to the two tests with different freezing mode with clay soil agree well with the tested behavior,which indicates the feasibility of the solution.展开更多
This paper outlines development of the thickness design of cylindrical frozen walls in artificial ground freezing (AFG). A plain strain mechanical model coupled with infinite surrounding soil and rock takes into acc...This paper outlines development of the thickness design of cylindrical frozen walls in artificial ground freezing (AFG). A plain strain mechanical model coupled with infinite surrounding soil and rock takes into account the frost heave ratio to investigate the influence of frost heave on the thickness design of frozen wall, and superposition method is used to solve the complicated problem of frozen wall swelling. A revised formula referred to as "Baoshen" formula has been proposed. This formula provides a convenient analytic solution for any AGF problem involving not only frost heave but also the action of surrounding soil.展开更多
In order to resolve the frost-heave problem of highway foundation,firstly,the author discussed the law to frost heave of highway roadbed and gave an analysis on its influencing factors,such as soil,water and temperatu...In order to resolve the frost-heave problem of highway foundation,firstly,the author discussed the law to frost heave of highway roadbed and gave an analysis on its influencing factors,such as soil,water and temperature.Meanwhile,sand clay and silt are given a classification according to frost heave ratio.Secondly,the roadbed frozen damage shows to frost heave and froze boiling based on the frost heave law and its influencing factors.In addition,taking some highway as an example and some principle suggestion was given through the theory on providing frostbite methods for highway foundation frost heave in seasonal frozen area.Specially,an effective method,STYROFOAM extruded polystyrene foam was introduced.展开更多
Fine round gravel soil is widely employed in the subgrade of high and thawing. The lower the fines content in fine round gravel soil, but compaction difficulty increases. This study is to obtain the speed railways in ...Fine round gravel soil is widely employed in the subgrade of high and thawing. The lower the fines content in fine round gravel soil, but compaction difficulty increases. This study is to obtain the speed railways in cold regions to prevent frost heaving the smaller the quantities of frost heaving and thawing, optimum fines content and limited frost heaving and thawing. The fine round gravel soil filling (FRGSF) used in the Harbin-Qiqihaer Passenger Dedicated Line is taken as the study object. Influence of fines content on optimum water content, maximum dry density and frost heaving properties of FRGSF were studied by means of compaction and frost heaving tests. Results show that the maximum dry density of the FRGSF increases first and then decreases with an increase of fines content, namely there is an optimum fines content for easy compaction. The method of surface-vibratory instrument is fit for coarse-grained soils, and wet state of coarse-grained soil is in favor of compaction. Considering the relationship of fines content with maximum dry density and the frost heaving ratio of FRGSF, the fines content should be limited to within the range of 9%-10%, so that the frost heaving ratio is less than 1%, and the FRGSF is easily compacted. Water supply is proved to be an important factor influencing the amount of frost heaving of FRGSF. We also conclude that in the field, it is imperative to control waterproofing and drainage measures.展开更多
Subgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)inve...Subgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)investigate track-subgrade frost heave and develop a dynamic model of vehicle-track-subgrade frost heave;(2)explore the transfer relation between subgrade frost heave and track structure deformation;(3)examine the characteristics of interlayer debonding;(4)study the influence of subgrade frost heave on the dynamic response of vehicles in high-speed railways in seasonally frozen regions.A Fourier series was used to fit the frost heave waveform and simulate the behavior of subgrade uneven frost heave using data collected on-site.The results show:(i)The position of frost heave significantly affects the transfer of deformation to a slab track.The largest deformation of the track slab,with the amplitude transfer ratio reaching 20%,was recorded when the frost heave occurred near the joint of the base plate.(ii)At the same frost heave amplitude,long-wave frost heave causes smaller deformation and debonding of the track structure than short-wave frost heave.In the wavelength range of 10-30 m,the main frequency of the acceleration spectral density was concentrated between 3.5 and 3.7 Hz,with larger frost heave wavelengths producing smaller superposition on the vertical acceleration of the vehicle.(ii)The maximum wheel-rail force occurs when the front bogie passes the frost heave peak,with greater frost heave amplitudes producing greater wheel-rail force.From these results,we conclude there is a clear need to control the frost heave deformation of the track to reduce the dynamic response of the vehicle and in turn improve train operatSubgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)investigate track`-subgrade frost heave and develop a dynamic model of vehicle`-track`-subgrade frost heave;(2)explore the transfer relation between subgrade frost heave and track structure deformation;(3)examine the characteristics of interlayer debonding;(4)study the influence of subgrade frost heave on the dynamic response of vehicles in high-speed railways in seasonally frozen regions.A Fourier series was used to fit the frost heave waveform and simulate the behavior of subgrade uneven frost heave using data collected on-site.The results show:(i)The position of frost heave significantly affects the transfer of deformation to a slab track.The largest deformation of the track slab,with the amplitude transfer ratio reaching 20%,was recorded when the frost heave occurred near the joint of the base plate.(ii)At the same frost heave amplitude,long-wave frost heave causes smaller deformation and debonding of the track structure than short-wave frost heave.In the wavelength range of 10-30 m,the main frequency of the acceleration spectral density was concentrated between 3.5 and 3.7 Hz,with larger frost heave wavelengths producing smaller superposition on the vertical acceleration of the vehicle.(iii)The maximum wheel`-rail force occurs when the front bogie passes the frost heave peak,with greater frost heave amplitudes producing greater wheel`-rail force.From these results,we conclude there is a clear need to control the frost heave deformation of the track to reduce the dynamic response of the vehicle and in turn improve train operations.ions.展开更多
Roads are exposed to various degradation mechanisms during their lifetime.The pavement deterioration caused by the surrounding environment is particularly severe in winter when the humidity and subfreezing temperature...Roads are exposed to various degradation mechanisms during their lifetime.The pavement deterioration caused by the surrounding environment is particularly severe in winter when the humidity and subfreezing temperatures prevail.Frost heave-induced damage is one of the winter-related pavement deterioration.It occurs when the porewater in the soil is exposed to freezing temperatures.The study of frost heave requires conducting a multiphysics analysis,considering the thermal,mechanical,and hydraulic fields.This paper presents the use of a coupled thermo-mechanical approach to simulate frost heave in saturated soils.A function predicting porosity evolution is implemented to couple the thermal and mechanical field analyses.This function indirectly considers the effect of the water seepage inside the soil.Different frost heave scenarios with uniform and non-uniform boundary conditions are considered to demonstrate the capabilities of the method.The results of the simulations indicate that the thermo-mechanical model captures various processes involved in the frost heave phenomenon,such as water fusion,porosity variation,cryogenic suction force generation,and soil expansion.The characteristics and consequences of each process are determined and discussed separately.Furthermore,the results show that non-uniform thermal boundaries and presence of a culvert inside the soil result in uneven ground surface deformations.展开更多
Frost heave experiments on saturated sandstone and tuff with an open crack are conducted under uniform and unidirectional freezing conditions.Frost heave of crack in sandstone with high permeability is more significan...Frost heave experiments on saturated sandstone and tuff with an open crack are conducted under uniform and unidirectional freezing conditions.Frost heave of crack in sandstone with high permeability is more significant under uniform freezing condition than that under unidirectional freezing condition.However,frost heave of crack in tuff with low permeability is more significant under unidirectional freezing condition.To illustrate the reasons for this phenomenon,a numerical model on the freezing processes of saturated rock with an open crack considering the latent heat of pore water and water in crack is proposed and confirmed to be reliable.Numerical results show that a frozen shell that blocks the migration of water in crack to rock develops first in the outer part of the rock before the freezing of water in crack under unifonn freezing condition.However,the migration path of water in crack to the unfrozen rock under freezing front exists under unidirectional freezing condition.The freezing process and permeability of rock together determine the migration of water in crack and lead to the different frost heave modes of crack for various permeable rocks under different freezing conditions.The frost heave modes of crack in rock with low or high permeability are similar under uniform freezing condition because water migration is blocked by a frozen shell and is irrelevant to rock permeability.For high permeability rock,the frost heave of crack will be weakened due to water migration under unidirectional freezing condition;however,the frost heave of crack would be more significant for low permeability rock because water migration is blocked under unidirectional freezing condition.Therefore,the freezing condition and rock permeability determine the frost heave of rock with crack together,and this should be concerned in cold regions engineering applications.展开更多
THAT year, I returned from Tibet to visit my home inland. It took a 15-day ride on bus. The truck I took carried worn tires. After diving down from the plateau, 5,000 meters above sea level, we bumped along for 10 day...THAT year, I returned from Tibet to visit my home inland. It took a 15-day ride on bus. The truck I took carried worn tires. After diving down from the plateau, 5,000 meters above sea level, we bumped along for 10 days and finally arrived at the Gobi. It was spring and the road was covered with frost heaves. Driving on such a road, our truck was like a drunken cat, lurching now to the left and now to the right. It should have been only an eight hour journey, but we still had not展开更多
基金supported by the National Natural Science Foundation of China(No.51808128)the Natural Science Foundation of Fujian Province(No.2022J01091)。
文摘Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type.
基金funded by National Natural Science Foundation of China(Grant No.51978039)the Fundamental Research Funds for the Central Universities(Grant No.2021YJS115)。
文摘The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmonic load acting on the lining were studied in the frequency domain.The lining is in close contact with the frozen soil,and there is relative movement between the frozen and unfrozen soil due to the phase change.The analytical solution of the vibration of tunnel portal section caused by the harmonic load acting on the lining was derived under the consideration of the anisotropy frost heave of overlying soil.Based on the continuity conditions and boundary conditions,the undetermined coefficients were obtained,and the analytical solutions for different medium displacements and stresses of the cold-region tunnel system were acquired.The vertical pressure coefficient was equivalently simplified as a variable that could be used to replace the thickness of the overlying soil above the tunnel.The analysis of the parameter model shows that the change of the medium parameters(lining,frozen,and unfrozen soil)affects the circumferential stresses,the radial displacements and their peak frequencies of the soil.For example,the increase of density ratio of tunnel lining to frozen soil decreases the radial stresses of the frozen and unfrozen soil;the increase of volumetric frost heaving strain of the frozen soil increases the radial displacements of the frozen surface and decreases the stability of the frozen surface;the increasing of thickness of the frozen soil significantly reduces the radial displacement of unfrozen soil at dimensionless radius η=4.5 compared with that of frozen soil at η=1.5.
基金supported by the National Natural Science Foundation of China (41731281,42071078)the National Key Basic Research Program of China (No.2012CB026104)Science and Technology Project of Qinghai,China (2021-GX-121).
文摘Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.
基金Supported by National Natural Science Foundation of China (No. 40571032)Open Research Fund Program of State Key Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUE 08001X)
文摘A macroscopic frost heave model with more clear parameters was established. Based on a porosity rate frost heave model and segregation potential theory, a porosity rate function was deduced and introduced into the stress-strain relationship. Numerical simulation was conducted and verified by frost heave tests. Results show that the porosity rate within the frozen fringe is proportional to the square of temperature gradient and current porosity, and is also proportional to the exponential function of applied pressure. The relative errors between the calculated and measured results of frost depth and frost heave are within 3% and 15% respectively, demonstrating that the temperature gradient, applied pressure and current porosity are the main influencing factors, while temperature is just the constraint of frozen fringe. The improved model have meaningful and accessible parameters, which can be used in engineering with good accuracy.
基金supported by the National Key Basic Research Development Plan(No.2012CB026104)the National Science and Technology Support Project(No.2014BAG05B07)+1 种基金the Natural Science Foundation of Heilongjiang Province(No.ZD201218)the National Natural Science Foundation of China(No.51408163)
文摘Frost heave is an upward swelling of soil during cryogenic conditions in cold regions. It is caused by the accumulation of ice crystals in subgrade soil, which grow upwards when freezing temperatures penetrate into the subgrade. This study establishes the allowable soil subgrade frost heave based on the roughness standard of asphalt pavement in China, and aims to balance the pavement design and frost heave resistance of subgrades in cold regions. We formulated a mechanical model of pavement supported by the boundary conditions of differential frost heave, based on the elastie layered system theory. The differential soil subgrade frost heave was modeled as a sinusoidal function, and the allowable frost heave and the roughness index were modeled as the displacement boundaries for the top and bottom of the pavement structure. Then the allowable frost heave was back-calculated according to the roughness standard. Numerical results show that the allowable frost heave depends on the pavement structure, material properties, the highway grade, and other factors. In order to ensure that the actual soil subgrade frost heave is lower than the allowable frost heave, pavement structures and materials need to be selected and designed carefully. The numerical method proposed here can be applied to establish the frost heave re- sistance of subgrade when the pavement structure and materials are determined.
基金supported by the National Science and Technology Support Program (No. 2014BAG05B03)the National Key Basic Research Program of China (973 Program) (No. 2012CB026106)the Program for Innovative Research Group of the Natural Science Foundation of China (No. 41121061)
文摘The Haerbin-Dalian Passenger Dedicated Line is the first high-speed railway constructed in the seasonally frozen ground regions of northeastern China. Frost heave diseases occurred in the first winter of its operation (between October 2012 and January 2013), and frost heave was observed mainly in the roadbed fills that were considered not susceptible to frost heave. This paper proposes applying two special pavements -- black pavement and insulation-black pavement -- to improve the thermal regime of the roadbed. Three numerical models of the roadbed temperature field were built based on the field con- ditions of the Changchun section (D3K692+840 to D3K692+860). The results show that: (1) Compared with cement pave- ment, black pavement and insulation-black pavement could reduce the freezing index at the roadbed surface by 37% and 64%, respectively, which could influence the maximum frozen depth; (2) the maximum frozen depths under the black pavement and insulation-black pavement were respectively 1.3-1.4 m and 1 m. Compared with cement pavement, they could reduce the maximum frozen depth by 0.4 m and 0.7-0.8 m, respectively, which would reduce the permitted amount of frost heave by 4 mm and 7-8 ram, which would meet the deformation limit established by the Code for Design on Special Subgrade of Railway; (3) the freezing periods of the black pavement and the insulation-black pavement were, respectively, approximately four months and two months. Compared with cement pavement, they could reduce the freezing period by approximately 19 days and 40 days, respectively, and delay the initial freezing time by 9 days and 18 days; and (4) compared with cement pavement, black pavement and black-insulation pavement could reduce the frozen areas of roadbeds in the cold season, which suggests that these two special pavements could provide better thermal stability for roadbeds.
基金supported by the National Natural Science Foundation of China (41374033)
文摘In order to analyze the connection between the railway subgrade frost heave deformation and temperature variation, five GPS stations' data were used to monitor the deformation on a certain section of railway subgrade in northeast China. GAMIT software is used to process the data, providing daily solution, daytime solution and nighttime solution. Vertical trends of these five stations were analyzed to investigate frost heave effect on railway subgrade deformation. The results show that the temperature difference between daytime and night induces stations, significant vertical displacement, and the temperature difference between seasons causes settlement of station which appears linear trend.
基金the Foundation for Excellent Youth Scholars of"Northwest Institute of Eco-Environment and Resources",CAS(grant number:FEYS2019002)the Research Project of State Key Laboratory of Frozen Soil Engineering(grant number:SKLFSE-ZQ-52)the Open Project of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(grant number:KF2020-02)。
文摘The building of railways on seasonally frozen ground is inevitable as China pursues economic development and the improvement of its citizens'living standards.However,railway construction in seasonally frozen soil areas is often faced with frost heave,leading to uneven subgrades which seriously threaten traffic safety.This article summarizes extant research results on frost heave mechanism,frost heave factors,and anti-frost measures of railway subgrades in seasonally frozen soil areas.
基金supported by the National Natural Science Foundation of China(Nos.42171128,41971076)the National Key Research and Development Program of China(No.2018YFC1505306)the Key Research and Development Program of Heilongjiang Province(No.GA21A501).
文摘In cold regions,the widened subgrade could produce uneven frost heave that is detrimental to the pavement.This study investigates the differential frost heave characteristics in a widened subgrade.The field monitoring system mainly consists of temperature,moisture,and displacement sensors and distributed optical fiber cables for strain measurement.The monitoring results show that the cooling period in the subgrade is longer than the warming period.Water content in the subgrade changes significantly within 0−2 m below the subgrade surface but stabilizes within 2−5 m.The maximum frost heave occurs from February to March.In comparison,the existing subgrade has a longer freezing period and larger heave value,caused by the higher density and water content inside.Water in the existing subgrade migrates into the new one after widening,leading to frost heave reduction in the existing subgrade.Simultaneously,the traffic loads result in the consolidation of the new subgrade,thus reducing the heave value in the second year.In the third year,the water supply from the existing subgrade facilitates the frost heave in the new subgrade.The tensile strain distributions obtained by the distributed optical fiber cables show that the maximum differential frost heave occurs at the joint between the existing and new subgrades.The differential frost heave gradually stabilizes after three years.Finally,an improved frost heave prediction model is developed based on the segregation potential concept and monitoring results.
基金supported by the State Key Development Program of Basic Research of China (Project No.2012CB026104)a Chinese National Key Technology R&D Program of the Ministry of Science and Technology Project(2012BAH10B01)an open fund sponsored by Qinghai Research and Observation Base, Key Laboratory of Highway Construction & Maintenance Technologyin Permafrost Regions, Ministry of Transport
文摘Frost heave is one of the major complications in highway construction in cold regions. Laboratory experiments are im- portant in the study frost heave behavior of soils, and one-dimensional frost heave experiments are the easiest way to evaluate the soil frost heave potential. In a one dimensional frost heave test, the deformation in axial direction is non-uniform because of the confining effect of the cutting ring's sidewall. If the effect of confining boundary on soil de- formation is ignored, the deformation will be over-estimated. In this paper, the effect of confining boundary on soil de- formation is theoretically studied and a volume correction method is developed and applied to the frost heave test of a sulfite saline soil. Test results demonstrate that the sulfite saline soil will expand to a loose, low-density state after several freezing-thawing cycles under the condition of zero axial stress.
基金support from the China Railways Corporation research project entitled"The technical tests for the high speed railway subgrade frost heave prevention in the alpine"(Project No.Z2013-038),"The long term observation of frost-heave technology for Ha-Da high-speed railway during the operation"(Project No.Z2012-062)+2 种基金Optimal design for high-speed railway subgrade structure under different grade and environment(Project No.2014G003-A)support from the railway scientific and technological research and development center called"The mechanism and evolution rule of the graded gravel under freeze and thawing cycles for the high speed railway"(Project No.J2014G003)The disease control technology and equipment of gradating gravel in surface layer of subgrade bed(Project No.2013YJ032)
文摘This paper presents methods for monitoring frost heave, device requirements, testing principals, and data analysis re- quirements, such as manual leveling observation, automatic monitoring (frost heave, frost depth, and moisture), track dynamic detection, and track status detection. We focused on the requirements of subgrade frost heave monitoring for high speed railways, and the relationship of different monitoring methods during different phases of the railway. The com- prehensive monitoring system of high speed railway subgrade frost heave provided the technical support for dynamic design during construction and safe operation of the rail system.
基金Supported by NNSF of China(1 9871 0 77) and State Key L ab.of Frozen Soil Engineering of China
文摘In this paper a new mathematical model of secondary frost heave is presented. It is expected that the problem considered under some assumptions is well posed.
基金supported by the National Natural Science Foundation of China (No.41371090,No.41023003,No.40901039)the Project from the State Key Laboratory of Frozen Soil Engineering of China (SKLFSE-ZT-08)
文摘Frost heave is one of the main freezing problems for construction in permafrost regions.The Konrad-Morgenstern segregation potential(SP) model is being used in practice for frost heave using numerical techniques.However,the heat release from in-situ and migrated water in the freezing zone could result in some numerical instability,so the simulation of frost fringe is not ideal.In this study,a semi-analytical solution is developed for frost heave prediction of clay soil.The prediction results to the two tests with different freezing mode with clay soil agree well with the tested behavior,which indicates the feasibility of the solution.
文摘This paper outlines development of the thickness design of cylindrical frozen walls in artificial ground freezing (AFG). A plain strain mechanical model coupled with infinite surrounding soil and rock takes into account the frost heave ratio to investigate the influence of frost heave on the thickness design of frozen wall, and superposition method is used to solve the complicated problem of frozen wall swelling. A revised formula referred to as "Baoshen" formula has been proposed. This formula provides a convenient analytic solution for any AGF problem involving not only frost heave but also the action of surrounding soil.
文摘In order to resolve the frost-heave problem of highway foundation,firstly,the author discussed the law to frost heave of highway roadbed and gave an analysis on its influencing factors,such as soil,water and temperature.Meanwhile,sand clay and silt are given a classification according to frost heave ratio.Secondly,the roadbed frozen damage shows to frost heave and froze boiling based on the frost heave law and its influencing factors.In addition,taking some highway as an example and some principle suggestion was given through the theory on providing frostbite methods for highway foundation frost heave in seasonal frozen area.Specially,an effective method,STYROFOAM extruded polystyrene foam was introduced.
基金funded by the National Key Technology Support Program of China under Grant No. 2012BAG05B00the National Natural Science Foundation (NSFC) of China under Grant No. 51208320 and No. 51171281
文摘Fine round gravel soil is widely employed in the subgrade of high and thawing. The lower the fines content in fine round gravel soil, but compaction difficulty increases. This study is to obtain the speed railways in cold regions to prevent frost heaving the smaller the quantities of frost heaving and thawing, optimum fines content and limited frost heaving and thawing. The fine round gravel soil filling (FRGSF) used in the Harbin-Qiqihaer Passenger Dedicated Line is taken as the study object. Influence of fines content on optimum water content, maximum dry density and frost heaving properties of FRGSF were studied by means of compaction and frost heaving tests. Results show that the maximum dry density of the FRGSF increases first and then decreases with an increase of fines content, namely there is an optimum fines content for easy compaction. The method of surface-vibratory instrument is fit for coarse-grained soils, and wet state of coarse-grained soil is in favor of compaction. Considering the relationship of fines content with maximum dry density and the frost heaving ratio of FRGSF, the fines content should be limited to within the range of 9%-10%, so that the frost heaving ratio is less than 1%, and the FRGSF is easily compacted. Water supply is proved to be an important factor influencing the amount of frost heaving of FRGSF. We also conclude that in the field, it is imperative to control waterproofing and drainage measures.
基金This work is supported by the National Key R&D Program of China(No.2021YFF0502100)the National Natural Science Foundation of China(Nos.52022085 and 52278461)+1 种基金the Sichuan Provincial Youth Science and Technology Innovation Team(No.2022JDTD0015)the Research and Development Program of China State Railway Group Co.,Ltd.(No.N2022G033),China.
文摘Subgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)investigate track-subgrade frost heave and develop a dynamic model of vehicle-track-subgrade frost heave;(2)explore the transfer relation between subgrade frost heave and track structure deformation;(3)examine the characteristics of interlayer debonding;(4)study the influence of subgrade frost heave on the dynamic response of vehicles in high-speed railways in seasonally frozen regions.A Fourier series was used to fit the frost heave waveform and simulate the behavior of subgrade uneven frost heave using data collected on-site.The results show:(i)The position of frost heave significantly affects the transfer of deformation to a slab track.The largest deformation of the track slab,with the amplitude transfer ratio reaching 20%,was recorded when the frost heave occurred near the joint of the base plate.(ii)At the same frost heave amplitude,long-wave frost heave causes smaller deformation and debonding of the track structure than short-wave frost heave.In the wavelength range of 10-30 m,the main frequency of the acceleration spectral density was concentrated between 3.5 and 3.7 Hz,with larger frost heave wavelengths producing smaller superposition on the vertical acceleration of the vehicle.(ii)The maximum wheel-rail force occurs when the front bogie passes the frost heave peak,with greater frost heave amplitudes producing greater wheel-rail force.From these results,we conclude there is a clear need to control the frost heave deformation of the track to reduce the dynamic response of the vehicle and in turn improve train operatSubgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)investigate track`-subgrade frost heave and develop a dynamic model of vehicle`-track`-subgrade frost heave;(2)explore the transfer relation between subgrade frost heave and track structure deformation;(3)examine the characteristics of interlayer debonding;(4)study the influence of subgrade frost heave on the dynamic response of vehicles in high-speed railways in seasonally frozen regions.A Fourier series was used to fit the frost heave waveform and simulate the behavior of subgrade uneven frost heave using data collected on-site.The results show:(i)The position of frost heave significantly affects the transfer of deformation to a slab track.The largest deformation of the track slab,with the amplitude transfer ratio reaching 20%,was recorded when the frost heave occurred near the joint of the base plate.(ii)At the same frost heave amplitude,long-wave frost heave causes smaller deformation and debonding of the track structure than short-wave frost heave.In the wavelength range of 10-30 m,the main frequency of the acceleration spectral density was concentrated between 3.5 and 3.7 Hz,with larger frost heave wavelengths producing smaller superposition on the vertical acceleration of the vehicle.(iii)The maximum wheel`-rail force occurs when the front bogie passes the frost heave peak,with greater frost heave amplitudes producing greater wheel`-rail force.From these results,we conclude there is a clear need to control the frost heave deformation of the track to reduce the dynamic response of the vehicle and in turn improve train operations.ions.
基金the Swedish Transport Administration (Trafikverket)for the financial support of this research work (No.TRV 2020/19896).
文摘Roads are exposed to various degradation mechanisms during their lifetime.The pavement deterioration caused by the surrounding environment is particularly severe in winter when the humidity and subfreezing temperatures prevail.Frost heave-induced damage is one of the winter-related pavement deterioration.It occurs when the porewater in the soil is exposed to freezing temperatures.The study of frost heave requires conducting a multiphysics analysis,considering the thermal,mechanical,and hydraulic fields.This paper presents the use of a coupled thermo-mechanical approach to simulate frost heave in saturated soils.A function predicting porosity evolution is implemented to couple the thermal and mechanical field analyses.This function indirectly considers the effect of the water seepage inside the soil.Different frost heave scenarios with uniform and non-uniform boundary conditions are considered to demonstrate the capabilities of the method.The results of the simulations indicate that the thermo-mechanical model captures various processes involved in the frost heave phenomenon,such as water fusion,porosity variation,cryogenic suction force generation,and soil expansion.The characteristics and consequences of each process are determined and discussed separately.Furthermore,the results show that non-uniform thermal boundaries and presence of a culvert inside the soil result in uneven ground surface deformations.
基金This study was supported by the National Natural Science Foundation of China (Grant Nos.51778475 and 41472248).
文摘Frost heave experiments on saturated sandstone and tuff with an open crack are conducted under uniform and unidirectional freezing conditions.Frost heave of crack in sandstone with high permeability is more significant under uniform freezing condition than that under unidirectional freezing condition.However,frost heave of crack in tuff with low permeability is more significant under unidirectional freezing condition.To illustrate the reasons for this phenomenon,a numerical model on the freezing processes of saturated rock with an open crack considering the latent heat of pore water and water in crack is proposed and confirmed to be reliable.Numerical results show that a frozen shell that blocks the migration of water in crack to rock develops first in the outer part of the rock before the freezing of water in crack under unifonn freezing condition.However,the migration path of water in crack to the unfrozen rock under freezing front exists under unidirectional freezing condition.The freezing process and permeability of rock together determine the migration of water in crack and lead to the different frost heave modes of crack for various permeable rocks under different freezing conditions.The frost heave modes of crack in rock with low or high permeability are similar under uniform freezing condition because water migration is blocked by a frozen shell and is irrelevant to rock permeability.For high permeability rock,the frost heave of crack will be weakened due to water migration under unidirectional freezing condition;however,the frost heave of crack would be more significant for low permeability rock because water migration is blocked under unidirectional freezing condition.Therefore,the freezing condition and rock permeability determine the frost heave of rock with crack together,and this should be concerned in cold regions engineering applications.
文摘THAT year, I returned from Tibet to visit my home inland. It took a 15-day ride on bus. The truck I took carried worn tires. After diving down from the plateau, 5,000 meters above sea level, we bumped along for 10 days and finally arrived at the Gobi. It was spring and the road was covered with frost heaves. Driving on such a road, our truck was like a drunken cat, lurching now to the left and now to the right. It should have been only an eight hour journey, but we still had not